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Abstract

Cryo-electron tomography directly visualizes heterogeneous macromolecular structures in complex

cellular environments, but existing computer-assisted sorting approaches are low-throughput or in-

herently limited due to their dependency on available templates and manual labels.

We introduce a high-throughput template-and-label-free deep learning approach that automatically

discovers subsets of homogeneous structures by learning and modeling 3D structural features and

their distributions.

Diverse structures emerging from sorted subsets enable systematic unbiased recognition of macro-

molecular complexes in situ.
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1 Main text

In recent years, cryo-Electron Tomography (cryo-ET) has made it possible to image densities of dif-

ferent molecules and their spatial distributions inside intact cells in a near-native, “frozen-hydrated"

state to a resolution of a few nanometers in three dimensions [1]. This molecular-resolution visu-

alization of how macromolecular complexes work together inside cells has allowed researchers to

obtain mechanistic insights into particular cellular processes and distinguish competing models from

one another [2]. However, a major challenge remains to precisely and comprehensively identify den-

sities of different molecules in complex cellular tomograms. A popular method to perform this task

is “template matching” [3], which uses available structures obtained in vitro from X-ray crystal-

lography, nuclear magnetic resonance spectroscopy, or single-particle cryo-electron microscopy as

template references to search for similar shapes in the tomograms. While useful, its dependency on

available structural templates may introduce reference-dependent bias [4], especially when a tem-

plate is only available from a different species than the one imaged. An alternative popular practice

is to manually pick target structures and then average them to obtain the initial template, which is

also biased by subjective preferences [5]. More importantly, as evidenced by genome sequencing

and mass spectrometry [6,7], the native structure of a large number of macromolecular complexes

remains unknown. Macromolecular complexes that lack available structural information cannot be

identified in cryo-ET cellular tomograms using existing structural templates.

With that in mind, we and others have previously proposed a structural pattern mining approach

[8,9], as an important step towards template-free visual proteomics [10]. This approach consists of

(1) template-free particle picking steps that detect potential structures in a tomogram and (2) recog-

nition steps that classify each particle as a particular type of structure. However, the throughput of

these methods is limited because they involve a tremendous number of geometric transformation

operations. With the recent advance of cryo-ET data collection methods [11,12], large numbers

of tomograms can now be produced daily (50 tomograms of size ∼4,000×6,000×1,000 voxels,

containing up to a million particles), allowing the effective imaging of many samples with differ-

ent treatments and experimental controls for comparative analyses. The computationally expensive
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structural pattern mining approaches are impractical for handling such large-scale datasets. A new

type of high-throughput analysis method is therefore needed to allow systematic and comprehensive

investigation of the fast-growing size of in situ cryo-ET data.
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Figure 1: Workflow of DISCA exemplified on a Synechocystis cell. (a) 2D slice view of the template-free
particle picking on the raw tomogram. (b) Unsupervised training of the YOPO neural network by iteratively
clustering extracted features. (c) Discovered patterns by DISCA re-embedded to the original tomogram space.

Recently, supervised deep learning methods have been gaining momentum for cryo-ET image anal-

ysis [13,14]. By automatically learning better heuristics from accumulating data, their accuracy can

improve over time, and they have been shown to perform much more efficiently and accurately than

the aforementioned traditional geometry-based approaches [14,15]. Due to their significantly faster

recognition speed, they also promise better scalability to large-scale datasets with a large number of

classes encompassing heterogeneous structures. However, supervised methods pose an additional

major challenge: creating valid training data. In all these supervised deep learning methods, train-

ing a neural network requires a substantial amount of pre-labeled data. For cryo-ET, training data

has conventionally been produced either by using template matching mentioned above or via labo-

rious manual labeling of target structural patterns in tomograms [13]. Both unavoidably produce
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reference-dependent biases that limit the analysis. Unfortunately, this difficulty cannot be circum-

vented by using an annotated tomogram database consisting of multiple independent sources as a

less-biased universal training set. This difficulty is because training from separated cryo-ET data

sources, collected under different imaging conditions, was shown to result in lower recognition

accuracy due to the variable image intensity distribution among data sources [16,17]. Moreover,

these supervised methods remain unable to discover structures that are not annotated in the training

dataset, posing a similar limitation to template matching. Therefore, a more natural and effective

approach could be training the neural network in an unbiased template-and-label-free way by using

comprehensive intrinsic structural features in the data themselves.

In light of this, we introduce a high-throughput unsupervised learning approach, DISCA (Deep

Iterative Subtomogram Clustering Approach). DISCA automatically discovers structurally homoge-

neous particle subsets in large-scale cryo-ET datasets by learning 3D structural features extracted by

a Convolutional Neural Network (CNN) and statistically modeling the feature distributions. Given

a dataset of reconstructed 3D tomograms, as a preprocessing step, we first use template-free particle

picking to detect potential structures and extract them as subtomograms. The extracted subtomo-

grams contain heterogeneous structures. We then use DISCA (Fig. 1) to sort the subtomograms into

relatively homogeneous structural subsets. Specifically, we formulate a generalized Expectation-

Maximization (EM) framework (Supplementary Fig. 1 and 2) that iteratively clusters subtomo-

grams based on their extracted CNN features and optimizes the CNN through unsupervised training.

Finally, as postprocessing steps done outside our framework, the sorted subsets are aligned, aver-

aged and re-embedded to the original tomogram space to validate the recovered structures and their

spatial distributions. The design of DISCA enables transformation-invariant feature extraction, au-

tomatic estimation of the number of clusters, and progressively improved performance with larger

sample sizes, which are validated on realistically simulated datasets of various imaging parameters

(Supplementary Note 1). For feature extraction in DISCA, we designed a special CNN named

YOPO (You Only Pool Once) (Supplementary Fig. 3). YOPO preserves detailed structural infor-

mation and extracts rotation- and translation-invariant features from subtomogram data. Such invari-
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ance usually cannot be achieved by standard CNN architecture designs. As independently evaluated

by the SHape REtrieval Contest (SHREC) 2020 [14] in a supervised learning task, YOPO achieved

the third-best accuracy and outperformed the template matching baselines. Most importantly, YOPO

only requires localized coordinates of target macromolecules for training, in which, a whole subto-

mogram only needs a single label. In comparison, all the other participating methods require labeled

segmentation maps for training, in which every voxel needs to be labeled. The segmentation maps

(dense labels) for a real cryo-ET dataset are extremely time-consuming to prepare as every single

voxel of a tomogram needs to be labeled by experts. Therefore, YOPO was deemed ‘significantly

more accessible for cryo-ET researchers’ given that a minimal amount of training supervision was

needed [14]. We note that, in DISCA, the training of YOPO is completely unsupervised and further

automated to be free from all external domain knowledge, including existing structural templates,

manual labeling, or manual selection of densities in the tomograms.

We tested DISCA on five cryo-ET datasets from distinct cell types (Fig. 1 and 2): Rattus neuron,

Synechocystis, Cercopithecus aethiops kidney, Mycoplasma pneumoniae, and Murinae embryonic

fibroblast. Three of the datasets were obtained from public repository EMDB [18] and ETDB [19].

DISCA detected diverse representative structural patterns (detailed results in Supplementary Note

2) including macromolecular complexes: ribosome, TRiC, capped proteasome, and phycobilisome

array, and other cellular structures: thylakoid membrane, mitochondrial membrane, and calcium

phosphate precipitates (Fig. 2). The discovered macromolecular complexes have a wide range

of sizes from 1.2 MDa to 4.5 MDa in molecular weights. The original manuscripts describing

these datasets used manual density selection, template matching, and subtomogram classification

to recover the structures. Our unsupervised results from DISCA not only covered the previously

identified spatial localization of various macromolecules well but also validated their results in a

highly automatic, systematic, and unbiased way. Subtomogram alignment and averaging following

DISCA resulted in maps with 14-35 Å resolution range, confirming that template-and-label-free

approaches are suited for in situ structural analyses.
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Figure 2: (a-d) Example results of discovered patterns re-embedded to the tomogram of (a) Rattus neuron; (b)
Mycoplasma pneumoniae; (c) Murinae embryonic fibroblast; and (d) Cercopithecus aethiops kidney. (e) Com-
parison of recovered ribosome structure from the Mycoplasma pneumoniae dataset using template matching
(left) and DISCA (right at 14.17 Å). (f) Example results of discovered patterns from the above experimental
datasets.

We quantitatively assessed the accuracy of DISCA on the Mycoplasma pneumoniae dataset. For

this dataset of 65 tomograms, obtaining the clean ribosome particles for comparison required two

months of time and heavy computation for traditional 3D template matching, manual curation, and

computational sorting. DISCA achieved a low false-positive rate of 9.3% and false-negative rate of

15.0%. Furthermore, DISCA detected about 20% of the ribosomes missed by the template match-

ing and manual curation approach and detected more true ribosomes overall (Supplementary Note

2). We note that DISCA is a very efficient method for processing a large amount of data both the-

oretically (overall time complexity O(N), where N is the number of samples) and practically: on

the Mycoplasma pneumoniae cell dataset of 65 tomograms, DISCA took less than a day to sort
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198,715 template-free picked subtomograms (binned to 243 voxels of 13.33 Å spacing). Moreover,

with trained DISCA models, the prediction on new data is very fast and can process millions of

such sized subtomograms in less than an hour. The averages of the sorted structural subsets can be

further refined to a higher resolution on unbinned data. Even with new data of different image inten-

sities from another source, the trained DISCA models can be fine-tuned without manually preparing

training labels. Accordingly, DISCA can efficiently produce meaningful structures from large-scale

datasets that encompass very heterogeneous structures without any prior knowledge, which consti-

tutes the first major step for unsupervised structure determination in situ. DISCA shows the promise

of high-throughput cryo-ET structural pattern mining for discovering abundant and representative

structures systematically. The proposed framework will allow researchers to fully leverage state-of-

the-art cryo-ET imaging infrastructure and workflows.
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2 Methods

DISCA is a generalized Expectation-Maximization (EM) framework that runs iteratively. As shown

in Supplementary Fig. 1 and 2, in the M-step, the parameters of neural network YOPO are opti-

mized given estimated labels. We describe the architecture design of YOPO and how we achieve

rotation and translation invariant feature extraction in the following Methods section. In the E-step,

the clustering labels of input subtomograms are estimated using the current parameters based on

modeling extracted features. We describe how we statistically model the features and automatically

estimate the number of clusters in the following Methods section.

2.1 Neural network architecture design

A tomogram is a grayscale 3D volume of very large size (e.g., 4000×6000×1000 voxels). Even

binned 4 times across each axis, a tomogram is still large (e.g., 1000×1500×250 voxels). Feeding

such a large 3D volume into a CNN will inevitably exceed the memory of the system. One previ-

ous CNN method [13] dealt with this problem by slicing the tomogram into 2D images along the

z-axis for cost-effective processing. However, taking 2D slices resulted in losing relevant structural

information in 3D. In contrast, our objective is to cluster the heterogeneous densities of molecules

(the majority being macromolecular complexes) enclosed in subtomograms into structurally homo-

geneous subsets. Because subtomograms extracted from binned tomograms are significantly smaller

(e.g. 243 voxels) than tomograms [20], they can be efficiently processed by 3D CNN without infor-

mation loss.

Convolutional Neural Networks (CNNs) have been shown to outperform traditional hand-crafted

feature extraction methods for the task of extracting discriminative features from images for various

biomedical image analysis tasks [21,22]. In order to leverage the superior performance of CNNs,
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we designed a CNN named YOPO (Supplementary Fig. 3) specifically for subtomogram data that

considers its distinct characteristics: (1) the structural details are essential to determine the iden-

tity of a macromolecule enclosed in a subtomogram; (2) the enclosed macromolecule is of random

orientation and displacement; and (3) the Signal-to-Noise Ratio (SNR) is extremely low. Because

of the novel architecture design, YOPO achieves properties including structural detail preservation,

transformation invariance, and robustness to noise.

Structural detail preservation: The standard pooling operation (max-pooling or average pooling) in

CNN feature extraction is a problem for processing small 3D subvolumes. Indeed, even pooling by

the smallest factor, 2, will dramatically reduce the subvolume size (for example, 243 to 123) and

result in losing 87.5% of the information capacity. As structural details predominantly determine a

macromolecular complex’s identity, the standard pooling operation is not suitable for extracting fea-

tures that preserve detailed structural information. Therefore, we equipped YOPO with a sequence

of convolutional layers without any pooling operations in between for processing an input subto-

mogram into feature maps with both low-level and high-level structural information. Following the

sequence of convolutional layers, rather than using the basic step of flattening the 3D feature maps

into a 1D feature vector, we incorporated a global max-pooling layer to keep only the maximum of

each of the feature maps. The global max-pooling operation also achieved translation invariance. As

proved later, YOPO will output the same feature values for a subtomogram and its displaced copy

because of the translation invariance.

Robustness to noise: Another challenge is the extremely low SNR of cryo-ET data. Often, raw to-

mograms are so noisy that even human eyes barely recognize the structure. While the convolutional

layers in YOPO perform filter-like operations, we further boosted YOPO’s robustness to noise. We

use a dropout strategy inspired by denoising CNNs to regularize the network and reduce the variance

of model prediction from noisy samples. Here, we use a Gaussian dropout layer, which randomly

silences 50% of the nodes and injects multiplicative 1-centered Gaussian noise with standard devi-

ation 1 during training. The Gaussian dropout layer has similar regularization performance as the
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conventional dropout layer, but it exhibits faster convergence properties [23]. By randomly silencing

a subset of nodes and injecting Gaussian noise, the Gaussian dropout layer can be viewed as a com-

putationally efficient way to approximate multiple CNNs with slightly different parameters during

CNN training. When multiple CNN models are aggregated by inactivating the Gaussian dropout

layer during the prediction, the output variance is reduced, thus achieving robustness to noise.

Finally, we added one fully connected layer after the global max-pooling layer to output the feature

vectors of length 1024. In order to train YOPO, we equipped the final classification layer with

softmax activation to output class labels. The Gaussian dropout layer, data augmentation for rotation

invariance, and label smoothing described below have all been shown theoretically and empirically

to be effective in preventing overfitting to increase the optimization robustness [24].

2.2 Rotation and translation invariant feature extraction

One important characteristic of subtomogram data is that the structure enclosed is randomly oriented

and exhibits small random displacement. To cluster multiple copies of the same structure in different

orientations and displacements together into the same subset, YOPO must be able to extract features

invariant to both translation and rotation.

The rotation invariance was achieved by self-supervised learning for enforcing a CNN to be invariant

to certain geometric transformations of the input and improving its generalization ability. In each

iteration, alongside the original input subtomogram, a randomly rotated copy of the subtomogram

is also fed into YOPO for training. The empty region of the rotated subtomogram is filled with

Gaussian white noise. The Gaussian white noise has a mean zero and standard deviation one, same

as the normalized image intensity distribution of the input subtomogram data. The label of the

randomly rotated copy stays the same. By doing so, the rotation invariance of YOPO is enforced

through the loss gradient back-propagation.

The translation invariance is already achieved in the architecture design of YOPO by the global max-

pooling layer. The convolution operations yc are translation equivariant: the extracted feature maps
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of an input subtomogram sn translated by tθ will be the same as translating the extracted feature maps

from the original subtomogram by tθ : yc(tθ (sn)) = tθ (yc(sn)). Then, because the global max-pooling

layer yg computes the global maximum from a feature map, which is translation invariant, the output

from the global max-pooling layer is translation invariant to the input subtomograms: yg(tθ (sn)) =

yg(sn). Denoting YOPO feature extraction from a subtomogram as: y(sn) = y f ◦ yg ◦ yc(sn), where

yc denotes the sequence of convolutional layers, yg the global max-pooling layer, and y f the fully

connected layer, we have:

y(tθ (sn)) = y f ◦ yg ◦ yc(tθ (sn)) = y f ◦ yg(tθ (yc(sn))) = y f ◦ yg(yc(sn)) = y(sn). (1)

As a result, the final extracted feature vectors are translation invariant to the input subtomograms.

We also empirically verified the transformation invariance learned by YOPO (Supplementary Note

1).

When designing YOPO, we have tested alternative architectures such as 3D InceptionNet and ResNet

as feature extractors, and incorporated other layers including max-pooling, average pooling, global

average pooling, flatten, and conventional dropout layers into the network design. The final YOPO

design was based on empirically comparing alternative architectures.

2.3 Statistical modeling of structurally homogeneous subsets in feature

space

Recent works [25,26] have shown that second-order statistics in CNNs—for instance, the covariance

between features—are vital for differentiating between different visual patterns. Accordingly, simple

clustering algorithms such as K-means or hierarchical clustering which do not consider second-order

statistics are not suitable. To fully capture the feature covariance information, after extracting the

translation and rotation invariant features from the input subtomograms by YOPO, we model the
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learned feature vectors for each representative structural pattern as a multivariate Gaussian distribu-

tion in the feature space.

In greater detail, given a set of N subtomograms sn ∈ S extracted from a dataset of tomograms V , the

YOPO network y extracts feature vectors xn = y(sn), xn ∈ RP from each subtomogram, where P is

the dimensionality of the feature space. We model the distribution of the data point xn as a mixture

of K multivariate Gaussian distributions. The mixture distribution’s probability density fg is defined

as:

fg(xn;φ ,µ,Σ,K) =
K

∑
k=1

φkg(xn; µk,Σk). (2)

In Eq. 2, φk is the prior probability of sampling xn from the kth component. The kth component is

a multivariate Gaussian distribution g with mean µk and covariance matrix Σk. Hence, the posterior

probability of sampling xn from the kth component is ρk(xn) =
φkg(xn;µk,Σk)

∑
K
i=1 φig(xn;µi,Σi)

. Solving the model

[27] in Eq. 2 provides the probability ρk(xn) of feature vector xn being sampled from each compo-

nent distribution g(xn; µk,Σk). g(xn; µk,Σk) has its own covariance matrix Σk to distinguish between

different structural patterns. The component k̂ = argmax
k∈1,...,K

ρk(xn) is the highest posterior probabil-

ity among all components. k̂ will be used as the class label for subtomogram sn in the clustering

solution.

2.4 Automatic estimation of the number of structurally homogeneous sub-

sets

Because we operate in an unsupervised learning setting, the number of structurally homogeneous

subsets K is unknown to us. Furthermore, the automatic estimation of the number of clusters in a

feature space is a classic yet highly challenging and largely unsolved problem, which means that,

practically, most studies just set an arbitrary K or test multiple candidate values of K and manually

compare the results. Nevertheless, in our statistical modeling, it is beneficial to choose K properly.
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When the chosen K is too small, a subset may contain mixed structures. In contrast, when the chosen

K is too large, a structurally homogeneous subset may be over-partitioned to multiple subsets. Over-

partitioning likely results in some subsets containing too few subtomograms to recover the structure.

Both situations may lead to poorly recovered structures by subtomogram averaging. For this reason,

it is helpful to automatically determine K.

Automatic estimation of K relies on observing the extracted feature vectors. Most recent and popular

methods for estimating K are either prediction-based or stability-based, and require running the given

clustering algorithm repeatedly on bootstrapped samples [28]. These methods are not suitable for

our study because they are too slow to process large-scale datasets. Other methods for estimating

K compute a summary index measuring cluster tightness. For example, the silhouette coefficient

compares the average distance of a data point to all the other data points in its own cluster and in its

nearest cluster. However, computing the silhouette coefficient involves comparing all pairs of data

points (time complexity: O(N2)), which is still poor in scalability.

To overcome these shortcomings, we take an alternative approach from a statistical model selection

perspective. The number of model parameters increases along with K, which may result in increased

likelihood, but also runs the risk of overfitting. When modeling the structurally homogeneous subsets

in the feature space, a good statistical model would ideally have a higher likelihood with relatively

few parameters. To balance the likelihood and number of parameters among a set of models with

different Ks, we use the Bayesian Information Criterion (BIC) [29] to select among a set of fitted

models M, where the BIC is defined as:

BIC(Mk) = P(Mk) ln(N)−2ln(L̂(Mk))

= (K(P2 +P)/2) ln(N)−2
N

∑
n=1

ln(
K

∑
k=1

φkg(xn; µk,Σk)),
(3)

where Mk is the fitted model with K structurally homogeneous subsets, P(Mk) denotes the number

of parameters in model Mk and L̂(Mk) denotes the maximized value of the likelihood function of Mk.
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The model with the lowest BIC is selected. To validate the model selection, we conducted several

experiments on simulated datasets of various SNR and tilt-angle ranges and included experimental

comparison with baseline methods (Supplementary Note 1). We also tested Akaike information

criterion (AIC) [30], CH index [31], KL index [32], and Jump statistic [33], our preliminary results

showed that BIC achieved superior performance.

2.5 Iterative dynamic labeling

In supervised learning, a CNN is trained to maximize the prediction accuracy on a set of labeled

training data. As we only have unlabeled data, we develop a strategy to iteratively estimate both the

number of structurally homogeneous subsets and the structural class labels of input subtomograms.

The proposed iterative dynamic labeling strategy updates two models in an alternating fashion via

a generalized Expectation-Maximization (EM) algorithm [34]. Supplementary Fig. 3 illustrates

the YOPO model for feature extraction and the Gaussian distributions for the statistical modeling of

structurally homogeneous subsets in the feature space RP. In the E step, the number of structurally

homogeneous subsets and the labels are estimated given the current learned features according to Eq.

2. In the M step, YOPO parameters are updated by back-propagation training to minimize the loss

function of computing the labels estimated from the E step. For the optimization of the statistical

model fitting, it is stabilized by inheriting the parameters from the previous iteration. Moreover, be-

cause errors can accumulate when initializing the statistical model fitting using parameters from the

previous iteration, to avoid getting stuck at a local optimum, a de novo model fitting with randomly

initialized parameters was also performed in each iteration and its parameters were adopted if this

model increased the likelihood.

In summary, YOPO is randomly initialized to extract feature vectors xn ∈ RP from input subtomo-

grams sn ∈ S. Then, the feature vectors are fitted in the feature space by the mixed multivariate

Gaussian distributions across a set of candidate K number of structurally homogeneous subsets.

Only the mixture distribution with the lowest BIC is kept. The current estimated label of a subtomo-

gram is given by a hard cluster assignment that corresponds to the component multivariate Gaussian
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distribution with the highest probability. In the next iteration, the current estimated labels are used

for training YOPO by minimizing the categorical hinge loss function to learn better feature repre-

sentations. After YOPO training, the mixture distributions is updated on the newly extracted feature

vectors by optimizing Eq. 2. This process continues iteratively until convergence.

A potential issue is that, unlike in supervised learning, where training data labels are fixed, the

YOPO training data labels are dynamic. In other words, there will inevitably be mislabeled data

when training YOPO, especially in the early iterations. To address this issue, we adapt the label

smoothing regularization technique [35] to make the YOPO training less prone to mislabeled data.

The smoothed one-hot encoding of training labels is: lls = (1−α)∗ lhot +
α

K , where K is the number

of clusters, lhot is the original one-hot encoding of training labels, and α is the smoothing factor. The

larger the label smoothing factor α , the less certain the model prediction.

Moreover, the estimated K is also dynamic in different iterations. We need to enable YOPO to output

different class numbers during the training in different iterations. When the estimated K differs from

the previous iteration, we replace the last layer, the classification layer, with a new one with the

current estimated K number of nodes. Because the new classification layer has randomized initial

weights, we train its weights with the fixed current extracted features as input to reach consistency

between its prediction and current estimated labels.

2.6 Matching clustering solutions

From our experience (Supplementary Note 1), the estimated K stays the same in most iterations. In

such cases, instead of replacing the last classification layer, we directly match the current clustering

solution with the one in the previous iteration. When there are multiple clustering solutions from the

same samples, the label of a specific cluster is not necessarily the same between different solutions.

For example, the same group of samples may be labeled as ‘1’ by one clustering solution and ‘2’

by another even if they result from the same clustering algorithm with exactly the same parameters.
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The inconsistency will cause strong instability during training (Supplementary Fig. 13). Therefore,

matching clustering solutions is necessary.

We formulate the problem of matching two clustering solutions as a maximum weighted bipartite

matching problem. First, we define a bipartite graph that consists of two disjoint and independent

sets. In our case, the two sets are the two clustering solutions from consecutive iterations. Then, we

define a cluster as a graph vertex and the number of overlapping samples in two vertices (one in each

of the two clustering partitions) as the graph edge weight. Maximum weighted bipartite matching

finds a subset of the edges where no two edges share a common vertex and maximizes the sum of

edge weights. In our case, the two sets have the same number of vertices (K) and each vertex has

precisely one edge in the optimal matching.

Let B be a Boolean matrix to represent the matching where Bi, j = 1 if cluster i in a is matched to

cluster j in b. The optimal matching is formulated by maximizing the objective function:

max∑
i

∑
j

Ai, jBi, j, i, j ∈ 1,2, ...,K, Ai, j = ∑
n

1{an = i∩bn = j}, n ∈ 1,2, ...,N, (4)

where A is the matching matrix (a.k.a. confusion matrix in supervised learning) between the two

solutions a and b, and 1{} is the indicator function.

In each iteration of DISCA, the estimated labels are assigned on model fitting solutions to Eq. 2.

Due to the reasons mentioned above, in DISCA, the clustering solution from one iteration needs to

be matched with the previous clustering solution to stabilize the training. We apply the Hungarian

algorithm [36] to optimize the objective function (Eq. 4), which is guaranteed to find a global

optimum in polynomial time. Then, the current labels are permuted according to the matching to

achieve the highest consistency with the labels in the previous iteration.
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2.7 Missing wedge effect

A major cryo-ET limitation, the missing wedge effect, must be considered when designing analysis

methods [37]. In cryo-ET imaging, cell samples are imaged through a series of tilt projections. The

tilt projections are subsequently fed into a reconstruction algorithm to produce a 3D tomographic

reconstruction. Because of the increasing effective sample thickness during tilting, to prevent exces-

sive electron beam damage to the cell sample, the tilt angle range is limited typically to ±60◦ with

a 1◦ step size. This results in a double V-shaped missing value region of Fourier coefficients of the

reconstructed tomogram in Fourier space. The missing wedge effect also produces image distortion

in the spatial domain; for instance, it may elongate features along the direction of the missing wedge

axis.

DISCA tackles the missing wedge effect from two aspects. First, in our previous work [38], we have

empirically demonstrated the robustness of CNN feature extraction to image distortions caused by

the missing wedge effect. Moreover, the robustness of YOPO feature extraction to image noise and

distortion is further improved by the Gaussian dropout layer. Second and most importantly, during

the data augmentation step, when a subtomogram is rotated, the direction of the image distortion

caused by the missing wedge effect rotates correspondingly. By enforcing the rotated copy to have

the same label and thus similar extracted feature vectors during YOPO training, we explicitly in-

crease the robustness of YOPO feature extraction to the missing wedge effect from various angles.

In Supplementary Note 1, we showed that DISCA can still perform well on simulated datasets of

large missing wedge (tilt-angle range ±40◦) and various SNR, thus demonstrating the robustness of

DISCA to the missing wedge effect.

The missing wedge effect can also be treated in other data processing steps. Before feeding into

DISCA, the tomograms can be reconstructed by algorithms compensating for the missing wedge

effect such as Weighted BackProjection. In the postprocessing step, subtomogram averaging using

RELION [39] involves missing wedge compensation from model estimation, whereas structural pat-
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tern re-embedding by Gum-Net [15] uses a spectral data imputation technique to reduce the missing

wedge effect on subtomogram alignment.

2.8 Time cost and complexity analysis

Currently, there are more than 100 TB of cryo-ET data in public repositories such as EMDB [18],

ETDB [19], and EMPIAR [40]. With the fast accumulation of cryo-ET data, it is necessary to have

high-throughput analysis algorithms. We now show theoretically that DISCA can achieve an overall

time complexity of O(N), and therefore our framework scales well to large datasets. This leads to

the following theorem.

Theorem 1. When m, the number of iterations, K, the number of clusters, and P, the dimension of

the feature space, are held constant and are relatively small compared to N, the number of entries

in the dataset, the time complexity of DISCA is O(N).

Proof. In each of m iterations, the algorithm performs feature extraction by YOPO, estimates the

number of components, fits mixed multivariate Gaussian distributions to the extracted features,

matches clustering solutions, validates clustering solutions, and trains the YOPO network using

current estimated labels. The deep learning process to extract features takes time O(N). Estimating

K using BIC takes time O(K). Statistical model fitting takes time O(NKP2) using the FIGMN al-

gorithm [41]. In the matching stage, the Hungarian algorithm takes time O(K3) [36]. Finally, when

validating clustering solutions, calculating the distortion-based DBI takes time O(N).

Therefore, the total time complexity is O(m(N+K+NKP2+K3+N)), but because m, K, and P are

constant, the overall computational complexity of DISCA is O(N).

In terms of sample complexity, we leverage work by [42] that has shown that Θ̃(KP2/ε2) samples

are both necessary and sufficient for learning mixed multivariate Gaussian distributions with K com-

ponents in a P-dimensional feature space with up to ε error in total variation distance. This result

implies that learning reasonably accurate models that achieve a low, constant error ε requires rel-
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atively few samples in practice, as K and P are assumed to be small compared to N in large-scale

datasets.

Practically, on our computer with 4 GPUs and 48 CPU cores, the pre-processing template-free par-

ticle picking step takes less than 10 minutes to pick 50,000 to 100,000 subtomograms from a dataset

of 5 to 10 tomograms. Training DISCA from scratch to sort these subtomograms takes less than

5 hours. When our clustering model is properly trained, the prediction on new data is very fast,

which takes less than an hour to process millions of subtomograms. Before the subtomogram aver-

aging step, the cluster centers of extracted features can optionally be decoded to select interesting

clusters for thorough downstream analysis (Supplementary Note 3). The post-processing subto-

mogram averaging step using RELION [39] takes less than a day to achieve resolution better than

35 Å. Here, we use ‘subtomogram averaging’ to refer to the averaging process to recover a single

class and ‘subtomogram classification’ to refer to averaging and classification process to recover

multiple classes which is more time-consuming. By comparison, the template matching approach

on the same computer equipment would take roughly a month to complete, which requires visual

inspection by experts, computational template matching, and subtomogram classification.

Data source

The Rattus neuron dataset is obtained from [43]. The Synechocystis dataset is obtained from EMDB

[18] EMD-4603 and EMD-4604 [44]. The Cercopithecus aethiops kidney dataset is obtained from

[38]. The Murinae embryonic fibroblast is obtained from ETDB [19] with MefB cell line from O.

Loson in Chan Lab. The Mycoplasma pneumoniae dataset was acquired as described previously

[45]. Tomograms were reconstructed and filtered using Warp [46]. The original tilt-series data is

available via EMPIAR-10499.
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Figure S1: The DISCA workflow for cryo-ET structural pattern mining. Key steps are numbered. The pre-
processing and postprocessing steps are included here for an overview of the processing pipeline. They are
not part of the proposed method DISCA.

S2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.444381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.444381


Input subtomograms

Backpropagation

Estimated labels

Convolutional neural network Model selection

I III, IV

V

II

Statistical model fitting

I

Feature vectors

Feature space

...

I

II

E-step

E-step

M-step

M-step

M-step

E-step

Figure S2: Conceptual explanation of DISCA. The numbers correspond to key steps in Fig. S1. The input
is a set of subtomograms extracted from tomograms using template-free picking methods. CNN features
extracted (step I) from subtomograms are statistically modeled (step II) to estimate the cluster labels (step
II and IV). The CNN is in turn trained (step V) using the current estimated labels in order to learn better
features iteratively.
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Figure S3: The architecture of YOPO (You Only Pool Once) model. Each colored box denotes one layer in
the neural network. ‘GaussianDropout (0.5)’ denotes a dropout layer with dropout rate of 0.5 and multiplica-
tive 1-centered Gaussian noise. ‘Conv 128-3x3x3-1 ‘valid” denotes a convolutional layer with 128 channels,
kernel size 3 × 3 × 3, strides of size 1, and valid padding (no padding). ‘Concatenate’ denotes concatenated
feature outputs. ‘Dense K (Softmax)’ denotes a fully connected layer with K neurons. The extracted features
are the output from the ‘Dense 1024’ layer.
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Supplementary note 1: validation of the feature learning and modeling

ability of DISCA

To validate DISCA’s ability to learn to extract and model 3D transformation-invariant features, we

conducted several experiments on realistically simulated datasets, which have pre-specified ground

truth labels to quantitively assess the performance of DISCA and existing methods.

To test the accuracy of DISCA in simultaneously estimating the number of clusters K and structural

class labels, we simulated subtomogram datasets of various SNR and tilt-angle ranges. We used a

standard subtomogram simulation procedure [1,2] and took into account the tomographic reconstruc-

tion process with missing wedges and a contrast transfer function. The simulated imaging condition

is similar to real experimental settings [3] with voltage 300 KeV, defocus -5 µm, and spherical aber-

ration 2.7 mm. We chose five representative macromolecular structures: RNA polymerase (1I6V),

rotary motor in ATP synthase (1QO1), proteasome (PDB ID: 3DY4), ribosome (4V4A), spliceo-

some (5LQW). Real cryo-ET data typically have an SNR below 0.1 [4] and a tilt-angle range around

−60◦ to 60◦. For each macromolecular structure, we simulated 400 subtomograms at each SNR (0.1,

0.03, 0.01, 0.003, and 0.001) and tilt-angle range (±60◦ and ±40◦) to demonstrate the robustness of

DISCA to the image noise and the missing wedge effect.

Estimating K and labels

We performed DISCA on each of the simulated dataset. We evaluated the results by three criteria: (1)

the estimated K with candidate K ranging from 2 to 20; (2) the homogeneity score measuring how

homogeneous each cluster is according to the ground truth labels. We note that the homogeneity

score does not require equal number of clusters to the ground truth; (3) the prediction accuracy

measuring the percentage of correctly labeled subtomograms. The prediction accuracy can only be

calculated when K is estimated correctly. The results from Table S1 show that DISCA correctly

estimated the true K for eight of the ten datasets except at SNR 0.003 and 0.001 of tilt-angle range

±40◦. As expected, the homogeneity scores gradually decreased with lower SNR and smaller tilt-

angle range. However, in all settings, we achieved good results with homogeneity scores higher than
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0.8, which means that the resulting clusters are generally homogeneous. We have conducted the

experiments using randomly initialized models multiple times. The results were similar with ±5%

margin, which ensured the reproduciblity of our method.

We additionally performed template matching and autoencoder clustering for comparison. For tem-

plate matching, even though we incorporated prior domain knowledge of known structural templates

and thus K, the results are still worse than DISCA because template matching is not robust to noise.

Under SNR lower than 0.01, template matching failed with accuracy close to random guess (20%).

We previously proposed the first unsupervised deep learning model to cryo-ET data [5], a convolu-

tional autoencoder that coarsely groups and filters raw subtomograms. In that paper, we proposed a

pose normalization step to normalize the orientation and displacement of structure inside a subtomo-

gram for better structural grouping. Compared with DISCA, the convolutional autoencoder can only

perform coarse grouping with homogeneity score lower than 0.55. This is mainly because DISCA is

a significantly more sophisticated method which involves iterative feature learning and modeling in

order to recognize the fine structure differences between different types of macromolecules.

Table S1: Performance of three methods on simulated datasets. In each cell, the first row denotes the esti-
mated K for unsupervised methods. The second row denotes homogeneity score compared to ground truth.
The third row denotes prediction accuracy.

Dataset
Simulated ±60◦ Simulated ±40◦

SNR 0.1 0.03 0.01 0.003 0.001 SNR 0.1 0.03 0.01 0.003 0.001

Template Matching
-

0.7013
83.95 %

-
0.4709

69.75 %

-
0.1496

45.35 %

-
0.0136

25.25 %

-
0.0032

20.95 %

-
0.5543

76.25 %

-
0.3336

61.15 %

-
0.0655

36.60 %

-
0.0062

23.80 %

-
0.0012

21.20 %

Autoencoder
K = 5
0.3843

56.75 %

K = 4
0.4539

-

K = 5
0.3613

53.45 %

K = 5
0.4915

64.80 %

K = 3
0.3881

-

K = 6
0.5227

-

K = 5
0.3470

53.35 %

K = 3
0.3735

-

K = 3
0.3878

-

K = 3
0.3874

-

DISCA
K = 5
0.9878

99.70 %

K = 5
0.9373

97.80 %

K = 5
0.8746

94.80 %

K = 5
0.8712

94.25 %

K = 5
0.8719

94.50 %

K = 5
0.9568

98.70 %

K = 5
0.8020

90.35 %

K = 5
0.8344

91.80 %

K = 6
0.8366

-

K = 6
0.8323

-

In addition, we provided a summary index, modified from the Davies-Bouldin Index (DBI) [6], as an

indicator measuring the cluster tightness relative to cluster separation. Rather than using Euclidean

distance in the feature space, we used a distorted measure of the distance which takes each cluster’s

covariance into account. We mathematically formulate the proposed distortion-based DBI (DDBI)
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as:

D =
1
K

K

∑
i=1

max
j 6=i

ti + t j

di j +d ji
j ∈ 1,2, . . . ,K, (S1)

where ti measures the tightness of ith cluster (same for t j) and di j measures the separation between

cluster i and j:

ti =
1
|Ci| ∑

xn∈Ci

(xn− ci)
T

Σ
−1
i (xn− ci), (S2)

di j = (ci− c j)
T

Σ
−1
i (ci− c j), (S3)

where Ci denotes the subtomograms xn in the ith cluster and ci denotes its centroid.
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We further conducted several experiments and demonstrations using simulated dataset SNR 0.01 and

tilt-angle range ±60◦, which is closest to the image condition of real datasets as measured on the

Synechocystis cell [7] and Rattus neuron [3] tomograms. In Fig. S4, K was estimated at 4 for early

iterations, where some clusters were not separated well. Extracted features gradually separated out

through the iterative learning process. We achieved lowest DDBI at iteration 15, which was kept as

the final result.

Estimated K: 4, DDBI: 0.430 Estimated K: 4, DDBI: 0.157

Estimated K: 5, DDBI: 0.187 Estimated K: 5, DDBI: 0.099

Figure S4: T-SNE [8] embedding of extracted features in different iterations. Each dot denotes one sample
with its color indicating its structural class.
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Progressively improved performance with larger sample size

To demonstrate the learning ability of DISCA with respect to different sample size, we conducted

experiments varying input subtomogram number from 50 (10 subtomograms of each structural class)

to 10,000 (2,000 subtomograms of each structural class). The results are shown Fig. S5.

Figure S5: Accuracy of template matching and DISCA with respect to different sample sizes. The accuracy
of DISCA improves progressively with larger sample size. The accuracy of template matching stays the
same because it does not involve a learning process.
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Transformation-invariant feature extraction

To verify that the trained YOPO model extracts 3D features that are transformation-invariant to a

large extent, we randomly chose one subtomogram from each class and generated 1,000 randomly

rotated and translated copies. The extracted features are visualized in Fig. S6. We can see that

features extracted from transformed copies are very similar to each other as compared to transformed

copies of subtomograms of other classes.

Figure S6: t-SNE embedding of extracted features from randomly transformed subtomogram copies (1,000
copies per subtomogram). Each dot denotes one copy with its color indicating its structural class.
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Supplementary Note 2: detailed results

Fig. S7 compares example raw tomogram slices and the corresponding re-embedding annotations of

discovered patterns from a set of 65 Mycoplasma pneumoniae cellular tomograms [9]. The voxel

size of this tomogram is 6.802 Å and the resolution measured on the ribosome pattern is 14.17

Å. For comparison, we applied template matching, manual curation, subtomogram classification

by RELION [10] to recover the ribosome structure, which is referred to hereafter as the template

matching approach. We consider two detections as overlapping if their Euclidean distance is smaller

than 8 nm. Under this criterion, 96.9% of the 18,987 ribosomes detected by template matching are

included in the 198,715 subtomograms extracted by template-free particle picking.

c

Ribosome

Plasma membrane

d

Ribosome
(template matching & 

manual curation)

b

100 nm

a

100 nm

Figure S7: Example unsupervised annotation on a Mycoplasma pneumoniae cell tomogram [9]: a. slice of
the original tomogram. b. discovered patterns re-embedded to the original tomogram space. c. iso-surface
visualization of discovered patterns identified (generated from subtomogram averaging). d. iso-surface
visualization of the ribosome structure using the template matching approach.

DISCA clustered the 198,715 total extracted subtomograms into ten clusters where one cluster cor-

responds to ribosome structures and one cluster corresponds to membrane structures. Among those

ribosomes detected by template matching, 85.0% of them overlap the ribosome clusters and consist

of 22,875 subtomograms. On the other hand, 70.4% of the 22,875 ribosomes detected by DISCA

overlap with the template matching results. As shown in Fig. S7 c and d, the template-and-label-free

result from DISCA resembles the template matching result with correlation coefficient 0.995.
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We further investigate the 6,768 ribosomes uniquely detected by DISCA. To assess how many of

them are truly ribosomes, we used RELION subtomogram classification function to classify them

into 4 classes. We note that we did not apply the traditional template matching method to iden-

tify them because these ribosomes were missed by the template matching approach. As shown in

Fig. S8, class 1, 2, and 3 clearly correspond to the ribosome structure, whereas class 4 cannot be

identified. Therefore, the 4,645 subtomograms in class 1, 2, and 3 are likely to be true-positives

missed by the template matching approach. For comparison, there are 2,843 ribosomes uniquely

detected by the template matching approach. Since this number if about half of the 6,768 ribosomes

uniquely detected by DISCA, we classified them into 2 classes using the same RELION procedure.

The results shown in Fig. S8 confirmed that they are truly ribosomes. Therefore, we empirically

determined that DISCA has a false-positive rate of 9.3% and a false-negative rate of 15.0% (3.1%

due to the particle picking preprocessing step). Moreover, DISCA detected about 20% of ribosomes

missed by the template matching approach. There are 23,592 true ribosomes detected by DISCA and

template matching in total, which corresponds to our estimated number of all ribosomes in these 65

Mycoplasma pneumoniae cellular tomograms. Overall, DISCA detected more true ribosomes than

template matching (20,749 vs 18,987).

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2

View 1

View 2

Subtomogram classification of uniquely detected ribosomes

By DISCA By template matching & 
manual selection

Figure S8: RELION subtomogram classification of uniquely detected ribosomes by the two approaches.
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Fig. S9 shows the comparison of example raw tomogram slice and corresponding re-embedding an-

notation of discovered patterns from a set of seven Rattus neuron tomograms [3]. The identified

clusters consist of 12,229 subtomograms from 38,292 total extracted subtomograms. The voxel size

of this tomogram is 13.68 Å and resolution measured on the ribosome pattern (averaged from 3,708

subtomograms) is 27.36 Å. The original article (Figure 2 in [3]) recovered three macromolecu-

lar complexes by manual curation, template matching, and subtomogram classification: ribosome,

proteasome, and TRiC, which were validated by our results.

Mitochondrial 
membrane

Ribosome

Proteasome

TRiC

a cb

100 nm 100 nm Calcium 
phosphate

Figure S9: Example unsupervised annotation on a Rattus neuron tomogram [3]: a. slice of the original
tomogram. b. discovered patterns re-embedded to the original tomogram space. c. iso-surface visualization
of discovered patterns identified (generated from subtomogram averaging).
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Fig. S10 shows the comparison of example raw tomogram slice and corresponding re-embedding

annotation of discovered patterns from a set of two Synechocystis cell tomograms [7]. The identified

clusters consist of 4,804 subtomograms from 12,912 total extracted subtomograms of voxel size

13.68 Å. Since this is a small dataset with two tomograms, the ribosome pattern (averaged from 680

subtomograms) is not as ideal as other datasets. Nevertheless, DISCA validated the ribosome and

thylakoid-attached phycobilisome array structures recovered by manual curation and subtomogram

classification as in the original article [7].

Ribosome

Membrane

Phycobilisome 
array

a b c

100 nm 100 nm

Figure S10: Example unsupervised annotation on a Synechocystis cell tomogram [7]: a. slice of the original
tomogram. b. discovered patterns re-embedded to the original tomogram space. c. iso-surface visualization
of discovered patterns identified (generated from subtomogram averaging).
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Fig. S11 compares example raw tomogram slices and corresponding re-embedding annotations of

discovered patterns from a set of two Cercopithecus aethiops kidney cell tomograms [5]. The iden-

tified clusters consist of 2,219 subtomograms from 10,444 total extracted subtomograms of voxel

size 14.20 Å. Since this is a small dataset with two tomograms, the ribosome pattern (averaged from

1,277 subtomograms) is not as ideal as other datasets. The original article [5] reported coarse discov-

ery of globular and surface pattern using an autoencoder clustering model on this dataset. However,

the ribosome-like globular pattern is of very low resolution, which is probably due to the impurity

of the resulting clusters. DISCA showed notable improvement on this dataset as compared to Fig.

11 and S5 of the original article [5].

100 nm 100 nm

Figure S11: Example unsupervised annotation on a Cercopithecus aethiops kidney cell tomogram [5]:
a. slice of the original tomogram. b. discovered patterns re-embedded to the original tomogram space. c.
iso-surface visualization of discovered patterns identified (generated from subtomogram averaging).
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Fig. S12 compares example raw tomogram slices and corresponding re-embedding annotations of

discovered patterns from a set of twenty Murinae embryonic fibroblast tomograms obtained from

ETDB [11]. The identified clusters consist of 11,471 subtomograms from 54,684 total extracted

subtomograms. The voxel size of this tomogram is 15.48 Å and resolution measured on the ribosome

pattern is 33.77 Å (averaged from 2,459 subtomograms).

ba c

Ribosome

Membrane

Fiducial

100 nm 100 nm

Figure S12: Example unsupervised annotation on a Murinae embryonic fibroblast cell tomogram [11]:
a. slice of the original tomogram. b. discovered patterns re-embedded to the original tomogram space. c.
iso-surface visualization of discovered patterns identified (generated from subtomogram averaging).
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Supplementary note 3: Fast visualization of cluster centers through a

decoder

To validate that the learned features encode essential structural information of the input subtomo-

grams, we trained a decoder using the Rattus neuron cryo-ET dataset [3] as an example. The input to

the decoder is the learned features from DISCA and the output is the reconstruction of the input 3D

subtomograms. Similar to [5], we then decoded the cluster centers, arithmetic averages of all feature

vectors in a cluster, into reconstructed 3D images. Alternatively, instead of cluster center, features

closest to each cluster center can also be decoded, which yield similar results. As shown in Fig. S13,

center decodings of identifiable clusters resemble the type of structures contained, which validates

the essential structural information effectively learned by the extracted features. Center decodings

of non-identifiable clusters mostly resemble a tiny globular structure, which likely to indicates that

most subtomograms contained in these clusters are either noises or structures too small. Therefore,

DISCA can be used to efficiently filter out false-positive particles picked by template-free particle

picking methods.

Center decoding of non-identifiable clusters

Center decoding of identifiable clusters

Ribosome Proteasome TRiC Membrane Calcium Phosphate

Figure S13: Example decodings of cluster centers from the Rattus neuron dataset.

In addition, it is very useful to quickly identify interesting clusters for downstream analysis before

doing the computationally intensive subtomogram averaging step. The training of the decoder from

scratch on this dataset of 36,377 subtomograms took less than 10 minutes. Therefore, the decoding
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of cluster centers can be used for such identification purpose, especially for structural clusters that

can be easily recognized such as ribosome, surface patterns, and fiducial markers.
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feature  1 feature 2

label 1 label 2

0.3

0.8 0.9

0.4

feature 1 feature 2

label 1 label 2

0.9
(+0.6)

0.4
(-0.4)

0.3
(-0.6)

0.8
(+0.4)

feature 1 feature 2

label 1 label 2

0.3

0.8 0.9

0.4

feature 1 feature 2

label 1 label 2

0.3
(0)

0.8
(0)

0.9
(0)

0.4
(0)

Iteration m Iteration m+1

Backpropagation 
training

Backpropagation 
training

Without matching 
clustering solutions

With matching 
clustering solutions

Figure S14: We assume the last fully connected layer for classification has two input feature nodes and
two output label nodes. And we assume the clustering solution has two clusters 1 and 2 with labels flipped
from iteration m to iteration m+1. Without matching clustering solutions, the backpropagation training needs
to re-learn (large changes in weights) the already optimized weights to correctly output the flipped labels.
This will cause strong instability during training. However, with matching clustering solutions, the already
optimized weights no longer need to be re-learned (no change in weights).
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Supplementary note 4: Implementation details

The neural network model YOPO was implemented in platform Keras [12] with Tensorflow backend

[13]. No external pre-trained models or additional supervision were used. All models were trained

on a computer with 4 NVIDIA GeForce Titan X Pascal GPU instances and 48 CPU cores. The sta-

tistical model fitting used functions in Python package numpy and sklearn. The implementation of

the Hungarian algorithm used functions in Python package scipy. The data augmentation used ran-

dom 3D rotation functions implemented in AITom [14]. During the YOPO model training, the label

smoothing factor gradually decreases by a factor of 0.9 in each iteration as we expect the amount

of mislabeled data to decrease over time, and therefore YOPO becomes more certain about its pre-

diction over time. During the Gaussian mixture model fitting, the extracted features are dimension

reduced by PCA to length of 32 as an optional step for faster clustering. To measure the convergence

of DISCA, a generalized EM framework, we set two convergence criteria: (1) the estimated K and

the vast majority (99%) of the estimated labels stay the same for three consecutive iterations, or (2)

the maximum number of iterations has been reached.

Preprocessing

For template-free particle picking, we applied the 3D Difference of Gaussians (DoG) [15] volume

transform algorithm implemented in AITom. 3D DoG first computes a map IDoG by subtracting

two Gaussian blurred versions of the input tomogram v using the Gaussian function I with different

standard deviations σ1 and σ2, where, without loss of generality, σ1 > σ2. The 3D DoG map is

computed on tomogram v as IDoG = Iv(σ1)− Iv(σ2).

Local maxima are detected to extract a set of subtomograms S from v as:

S =

{
s ∈ v

∣∣∣∣ dIDoG(s)
ds

= 0,
d2IDoG(s)

ds2 < 0, IDoG(s)>C
}
, (S4)

where s is a 3D location in IDoG and C is a threshold applied for selecting local peaks. In our
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implementation, we ensured a minimum distance of 15 voxels between two peaks by filtering out

peaks with low values.

Postprocessing

For subtomograms in each structurally homogeneous subset obtained from DISCA, iterative 3D

averaging was performed using RELION 3.0. As a template-and-label-free framework, we did not

use any external structural templates in the averaging process. The initial averages were obtained

by our unsupervised deep learning based subtomogram alignment method Gum-Net (implemented

in AITom) [14,16]. After the iterative 3D averaging process, the subtomogram averages were re-

embedded into the original tomogram by Gum-Net for visualization purposes.
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