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Abstract 

In Parkinson’s disease (PD), neurodegeneration of dopaminergic neurons occurs in the midbrain, 

specifically targeting the substantia nigra (SN), while leaving the ventral tegmental area (VTA) 

relatively spared in early phases of the disease. Although the SN and VTA are known to be 

functionally dissociable in healthy adults, it remains unclear how this dissociation is altered in 

PD. To examine this issue, we performed a whole-brain analysis to compare functional coupling 

in PD to healthy adults using resting-state fMRI data compiled from three independent datasets. 

Our analysis showed that across the sample, the SN had greater coupling to the precuneus, 

anterior cingulate gyrus, and areas of the occipital cortex, partially replicating our previous work 

in healthy young adults. Notably, we also found that, in PD, VTA-right cerebellum coupling was 

higher than SN-right cerebellum coupling, whereas the opposite trend occurred in healthy 

controls. This double dissociation may reflect a compensatory role of the cerebellum in PD and 

could provide a potential target for future study and treatment. 
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Abbreviations: PD: Parkinson’s disease, SN: substantia nigra, VTA: ventral tegmental area, 
ROI: region of interest, rs-fMRI: resting state functional magnetic resonance imaging, 
MPRAGE: magnetization prepared rapid gradient echo sequence, TR: repetition time, TE: 
echo time, FOV: field of view, BOLD: blood-oxygen level-dependent, EPI: echo planar 
imaging 
 

Introduction 

The pathological process underlying Parkinson’s Disease (PD) targets dopamine neurons 

in the midbrain. In early phases of the disease, neurodegeneration occurs in the dopaminergic 

neurons of the substantia nigra (SN), an area of the midbrain responsible for initiating movement 

through the nigrostriatal network. However, the dopaminergic neurons in the ventral tegmental 

area (VTA), a neighboring midbrain structure, are thought to be spared from the neuronal 

degradation in early stages of PD (Dagher & Robbins, 2009; Damier et al., 1999; Fearnley & 

Lees, 1991, Hirsch, Graybiel, & Agid, 1988). These neurons play a pivotal role in the 

mesocortical and mesolimbic pathways, functional networks responsible for executive function, 

reward signaling, and motivation. The lack of degeneration in the VTA may explain why PD 

patients display motor deficits like bradykinesia and tremors but maintain the ability to engage in 

motivated behavior (Dagher and Robbins, 2009). This differentiation in behaviors that are 

affected and remain intact in early PD are thought to result from the discrete patterns of 

connectivity arising from the SN and VTA areas of the dopaminergic pathways. However, 

neuroimaging work has yet to investigate the way the SN and VTA differentially interact with 

the rest of the brain in PD compared to controls. 

 Within the midbrain, the SN and VTA perform separate yet parallel functions ranging 

from attention to learning to action (Berridge et al., 2009, Salamone et al., 2007, Wise, 2004). 

Previous work from our lab provides evidence of reliable differences in two distinct functional 
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networks of the midbrain in controls (Murty, et al., 2014). The SN projected more strongly to 

sensorimotor areas of the cortex like the precentral gyrus while the VTA had greater connectivity 

to areas associated with reward and motivation such as the nucleus accumbens. The 

differentiation across these nuclei permits the ability for humans to perform motivated actions 

through widespread afferent and efferent circuits in the brain. Notably, other organizational 

schemas of the midbrain have challenged the notion of treating these two nuclei as distinct, but 

rather treat them as a unified structure varying across a continuous gradient (Bromberg-Martin et 

al., 2010; Düzel et al., 2009). However, PD is proposed to affect the SN to a greater extent than 

the VTA, highlighting a neurological condition that naturally draws a dissociation between these 

two networks.  

 A growing body of work has used resting-state functional magnetic resonance imaging 

(rs-fMRI) to study midbrain networks in PD, focusing on interactions of the SN with systems 

responsible for motor planning and execution (Hacker et al., 2012; Wu et al., 2012; Sharman et 

al., 2013. Previous work found that the SN has decreased functional connectivity to the 

supplementary motor area, default mode network, and dorsolateral prefrontal cortex in patients 

with PD, where in controls there is increased SN connectivity to these regions (Wu et al., 2012). 

Administration of Levadopa partially normalized these differences, indicating dopamine’s role in 

regulating connectivity (Wu et al., 2012). Others suggest that SN connectivity is reduced to the 

thalamus, globus pallidus, and the putamen (Sharman et al., 2013). Futher investigation of the 

striatum indicated decreased striatal connectivity with the midbrain, however the SN and VTA 

were not studied individually (Hacker et al., 2012). This research with rs-fMRI focused on larger 

networks that contribute to motor functioning without examining the more granular interactions 

of sub-regions. Namely, this work did not include the VTA and its projections to mesocortical 
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and mesolimbic systems, thus leaving open questions about how interactions between the SN and 

VTA may be altered by changes in dopaminergic tone. 

 The goal of the present study was to investigate dissociations between dopaminergic 

midbrain networks in patients with PD and healthy controls. The few studies that have examined 

this question used relatively small sample sizes (Hacker et al., 2012; Wu et al., 2012; Sharman et 

al., 2013), which may affect reproducibility of findings. Thus for the present study, we combined 

three open datasets of rs-fMRI data in order to obtain robust results. We first conducted a whole-

brain analysis to analyze functional connectivity to the SN and VTA, which were defined by 

probabilistic atlases (Murty et al., 2014). Connectivity values were compared across these seed 

regions in whole-brain analyses to examine the differences between the two networks. We 

focused on the group by region of interest (ROI) interaction for network-specific effects of PD. 

To preview our findings, we find that PD differentially affects the two dopaminergic networks in 

the midbrain. 

Methods 

Datasets 

Resting state functional magnetic resonance imaging (rs-fMRI) data were aggregated 

from three publicly available sources: 27 PD patients and 16 healthy controls from the 

NEUROCON project (Badea, et al., 2017), 20 PD patients and 20 controls from the Tao Wu 

group (Badea, et al., 2017), and 14 de novo PD patients and 14 controls from Tessa and 

colleagues. (Tessa, et al., 2019). In total, there were 111 participants: 61 PD patients and 50 

healthy controls.  

Pre-registration 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.443998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443998
http://creativecommons.org/licenses/by/4.0/


 6 

The study was pre-registered using AsPredicted (https://aspredicted.org/blind.php?x=vs5zn6). 

There were slight deviations in our methods from the pre-registration. Using whole-brain 

analysis deviated from the pre-registration, which indicated that an ROI-based analysis would be 

used. Given that this sample was made up of older adults—some of whom were diagnosed with 

PD—there may be different localizations of cortical ROIs due to cortical atrophy or thinning. 

Therefore the cortical ROIs from previous work in young adults were not used, and instead a 

whole-brain analysis was performed to ensure that no areas of significant connectivity were 

missed in the analysis.  

Image Acquisition 

Dataset 1 (Badea, et al., 2017):  Neuroimaging data were collected using a 1.5 Tesla Siemens 

Avanto MRI scanner. Anatomical images were collected using a magnetization prepared rapid 

gradient echo sequence (MPRAGE) [Repetition time (TR): 1940 ms, Echo time (TE): 3.08 ms, 

voxel size: 0.97 x 0.97 x 1 mm, inversion time: data not available (N/A), field of view (FOV): 

N/A, matrix size: N/A]. Resting state images sensitive to blood-oxygen level-dependent (BOLD) 

contrast were collected using an echo planar imaging (EPI) sequence [TR: 3480 ms, TE: 50 ms, 

flip angle: 90 degrees, voxel size: 3.8 x 3.8 x 5 mm (without slice gaps), matrix size: 64 x 64, 

number of slices: 27, FOV: N/A, volumes: 137 (8.05 min)]. 

Dataset 2  (Badea et al., 2017): Neuroimaging data were collected using a 3 Tesla Siemens 

Magnetom Trio scanner. Anatomical images were also collected using MPRAGE [TR: 1100 ms, 

TE: 3.39 ms, voxel size: 1 x 1 x 1 mm, inversion time: N/A, FOV: N/A, matrix size: N/A]. 

Resting state images sensitive to BOLD contrast were collected using an EPI sequence [TR: 2 s, 

TE: 40 ms, flip angle: 90 degrees, voxel size: 4 x 4 x 5 mm, matrix size: 64 x 64, number of 

slices: 28, FOV: 256 x 256 mm, volumes: 239 (8 min)]. 
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Dataset 3 (Tessa et al., 2019): Neuroimaging data were collected using a 1.5 Tesla Siemens 

Magneto Avanto MRI scanner. Anatomical images were collected using MPRAGE [TR: 1900 

ms, TE: 3.44 ms, inversion time: 1100 ms, filp angle: 15 degrees, voxel size: 0.859 x 0.859 x 

0.86 mm, FOV: 220 x 220mm, matrix size: 256 x 256]. Resting state fMRI images were 

collected using a T2-weighted EPI sequence [TR: 2130 ms, TE: 40 ms, flip angle: 90 degrees, 

voxel size: 4 x 4 x 5 mm, FOV: 256 x 256 mm, matrix size: 64 x 64, number of slices: 32, 

volumes: 230, interleaved slice acquisition]. 

Neuroimaging Preprocessing 

All three datasets were downloaded from their respective sources in BIDS format and 

were preprocessed using fMRIPrep version 1.2.6-1, an image processing pipeline based on 

Nipype 1.4.2 (Esteban et al., 2019; Gorgolewski et al., 2011; Gorgolewski et al., 2017). The 

details below were adapted from the fMRIPrep preprocessing details with extraneous details 

being omitted for clarity. Importantly, data from all datasets were preprocessed using the same 

pipeline. 

The T1w image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008), 

and used as T1w-reference throughout the workflow. Skull-stripping was then performed on the 

T1w-reference using a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), with OASIS30ANTs as the target template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using fast (FSL 5.0.9, Zhang, Brady, and Smith 2001). Volume-based spatial normalization 

to MNI152NLin2009cAsym standard space was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the 
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T1w template. To this end, the ICBM 152 Nonlinear Asymmetrical template version 2009c 

(Fonov et al. 2009) template was selected for spatial normalization. 

For each of the BOLD runs contained per subject, the following preprocessing steps were 

performed. First, a reference volume and its skull-stripped version were generated using a 

custom methodology of fMRIPrep. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) were 

estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). 

BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox 1996; Cox and 

Hyde 1997). Based on the estimated susceptibility distortion, a corrected EPI reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson and 

Smith 2001) with the boundary-based registration (Greve and Fischl 2009) cost-function. Co-

registration was configured with nine degrees of freedom to account for distortions remaining in 

the BOLD reference. The BOLD time-series (including slice-timing correction when applied) 

were resampled onto their original, native space by applying a single, composite transform to 

correct for head-motion and susceptibility distortions. These resampled BOLD time-series will 

be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD 

time-series were resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space.  

Automatic identification of motion artifacts using independent component analysis (ICA-

AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI space time-

series after removal of non-steady state volumes and spatial smoothing with an isotropic, 

Gaussian kernel of 6mm FWHM (full-width half-maximum). AROMA motion components were 
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subsequently included as regressors in our analyses (see below). Additional confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD) and three 

regional signals (cerebral spinal fluid, white matter, and grey matter). FD was computed using 

the relative root mean square displacement between affines (Jenkinson et al. 2002). The three 

global signals are extracted within the CSF, the WM, and the whole-brain masks. Although, we 

note that FD was not used for “scrubbing” (Power et al., 2012; Power et al., 2014). All 

resamplings were performed with a single interpolation step by composing all the pertinent 

transformations (i.e., head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). 

We removed subjects based on the Entropy Focus criterion (efc), Foreground to 

Background Energy Ratio (fber), Temporal Signal to Noise Ratio (tsnr), average framewise 

displacement (fd_mean), and Ghost to Signal Ratio in the Y direction (gsr_y) Image Quality 

Metrics (IQMs) from MRIQC (Esteban, et al., 2017). Outlier runs were defined as runs with efc, 

fd_mean, or gsr_y values exceeding 1.5 times the inter-quartile range above the 75th percentile, 

as well as those with fber and tsnr values lower than 1.5 times the lower bound minus the 25th 

percentile (i.e., a boxplot threshold). Using these parameters, 8 subjects were excluded for a total 

sample of 103 participants: 55 PD patients and 48 healthy controls. 

First-level Analysis 

Whole-brain analysis was performed across the three datasets using the FMRI Expert 

Analysis Tool (FEAT) from the FMRIB Software Library (FSL) to determine differences in 

functional coupling of midbrain regions between healthy controls and PD patients. Seed regions, 
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including the substantia nigra (SN) and ventral tegmental area (VTA), were defined using 

probabilistic atlases from previous work (Murty, et al., 2014). These regions were then 

resampled to fit the dimensions of each of the 3 datasets using AFNI’s 3dResample (Cox, 1996).  

First, the eigenvariate of BOLD signaling for a single time series was extracted for each 

seed ROI within each subject, using a weighted average based on each probabilistic atlas. Then, 

FEAT was used to create a general linear model (GLM) with local correction for autocorrelation 

and regressors for the SN and VTA. This GLM created brain maps of FC within each subject for 

voxels predicted by the regressors of the following of contrasts of interest: SN > baseline, VTA > 

baseline, SN > VTA, and VTA > SN. The GLM also accounted for confound regressors of WM 

and CSF signal, non-steady-state volumes, cosine basis functions (to highpass filter with 128s 

cutoff), and ICA-AROMA motion.   

Higher-level Analyses 

For subjects of the NEUROCON dataset with two imaging runs, a second analysis was 

performed using a fixed effects model to create average BOLD maps across the runs for each 

subject. All brain maps were then used in a higher level random effects GLM analysis to 

compare functional coupling of the entire sample across multiple regressors: group (con > PD, 

PD > con), ROI (SN > VTA, VTA > SN), and group by ROI interactions (Woolrich et al., 2004). 

This analysis utilized the Randomise function of FSL (Winkler et al., 2014) with Threshold-Free 

Cluster Enhancement (TFCE). To facilitate integration across datasets, our group-level model 

also included covariates for age, sex, dataset, efc, fber, tsnr, fd_mean, and gsr_y.  

Any clusters of significant functional coupling from the group by ROI interaction were 

further investigated by calculating an average value of functional coupling across time points (t-
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stat) from both ROIs to that cluster in each subject. Then, two-tailed paired sample t-tests were 

run using R version 4.0.3 and RStudio (RStudio Team, 2020, version 1.3.1093) to determine 

within-group and within-ROI effects. For all statistical analyses, a significance threshold of p < 

0.05 was used. For clusters in the cerebellum, a flat-map was created using the spatially unbiased 

atlas template of the cerebellum and brainstem (SUIT) toolbox (Diedrichsen & Zotow, 2015). 

The anatomical location of the clusters could then compared to the functional boundaries defined 

in recent work to infer its contributions to functioning (King et al., 2019). Any clusters were also 

input to LittleBrain to further interpret functional implications (Guell et al., 2019). 

Results 

First, we wanted to determine the differences in functional coupling of the SN compared 

to the VTA, collapsing across group. Whole-brain analysis showed a significant effect of ROI (p 

< 0.05, whole-brain corrected), such that the SN had greater coupling than the VTA to various 

regions throughout the cortex, including the precuneus, anterior cingulate gyrus, and areas of the 

occipital cortex, partially replicating previous results (Figure 1; Table 1; Murty et al., 2014). 

However, unlike prior reports in younger adult populations, the reverse contrast of VTA greater 

than SN did not show any significant differences at our correction threshold.  
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Figure 1. Whole-brain connectivity analysis reveals a main effect of SN>VTA. Image is thresholded at p < 0.05 

Coordinates correspond with peak activation of the largest cluster, in the precuneus cortex. 

Region Voxels Peak activation x y z 

Precuneus Cortex (left) 2056 0.981 -18 -44 50 

Brain-stem (right SN) 291 1 12 -24 -20 

Brain-stem (left SN) 241 1 -10 -20 -16 

Cingulate Gyrus, anterior 
division (left) 235 0.981 -4 -8 30 

Lateral Occipital Cortex, 
superior division (right) 173 0.973 18 -76 54 

Supramarginal Gryus, 
posterior division/Angular 
Gyrus (right) 

100 0.967 48 -42 24 

Supramarginal Gyrus, anterior 
division (right) 65 0.964 68 -26 34 

Angular Gyrus (left) 53 0.962 -44 -56 16 

Lateral Occipital Cortex, 
superior division (left) 34 0.955 -32 -60 54 
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Cerebral White Matter (left) 20 0.964 -16 -14 28 

Lateral Occipital Cortex, 
superior division (right) 12 0.954 46 -72 18 

Superior Frontal Gyrus (left) 12 0.955 -14 -10 68 

Cingulate Gyrus, anterior 
division (right) 10 0.956 6 4 30 

Lateral Occipital Cortex, 
superior division (left) 10 0.953 -26 -64 46 

 

Table 1. Voxel clusters where connectivity is greater to SN than VTA. The table lists region name, amount of 

voxels, peak activation, and coordinates in MNI space for clusters significant at a p < 0.05 threshold. Clusters of less 

than 10 voxels (8 clusters) were removed from the table. 

Next, we wanted to determine differences in coupling between PD patients and the 

healthy controls, collapsing across seed ROIs. Again, a whole-brain analysis was performed to 

identify regions whose coupling differed across the two groups. There were no main effects of 

group, such that collapsed across ROI, functional coupling did not differ when comparing the PD 

group to the controls.  

Finally, we wanted to determine if there were any significant interactions between group 

and ROI to investigate whether PD had a region-specific effect on functional coupling. Whole-

brain analysis was performed, which indicated a significant group by ROI interaction in the right 

cerebellum (p<0.05, whole-brain corrected; Figure 2A-B). Post-hoc analyses revealed that in PD 

patients, the VTA had enhanced functional coupling with a region in the right cerebellar cortex 

(e.g. VIIB and VIIIA) compared to the SN (t = -5.20, p < 0.001, 95% CI = [-0.80, -0.36]), while 

in healthy controls there was greater SN than VTA coupling with the right cerebellar cortex (t = 

4.69, p < 0.001, 95% CI = [0.31, 0.77]; Figure 2C). In the SN, contralateral and ipsilateral 
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connectivity to the right cerebellar cortex were not significantly different. Effects of laterality 

were not investigated in the VTA due to its medial location in the brain. 

 

Figure 2. Whole-brain connectivity analysis reveals group by ROI interaction in right cerebellum. A. Axial view of 

brain showing cerebellar cluster, thresholded at p < 0.05. B. The same cluster as in A., but flat-mapped, shows that 

the region corresponds to VIIB and VIIIA regions of the cerebellum; and  C. Dotplot reveals direction of interaction, 

where the PD group had greater VTA than SN coupling with the right cerebellum and the control group had greater 

SN than VTA coupling to the right cerebellum. (p < 0.001 ***) 

Discussion 

Using three publicly available rs-fMRI datasets, we provide novel evidence of differential 

connectivity of the SN and VTA in Parkinson’s disease. Namely, we find that SN functional 

coupling with motor and pre-motor cortical networks remains intact across PD and control 

groups. However, we were surprised to find a prominent double disassociation of the midbrain 

connectivity with the right cerebellum, such that in Parkinson’s, there was greater VTA-right 

cerebellum coupling as compared to the SN-right cerebellum—while in healthy controls, there 
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was greater SN-right cerebellum coupling as compared to VTA-right cerebellum. Together, these 

findings suggest an important differentiation of connectivity of the dopaminergic midbrain with 

the cerebellum, when taking into account functional heterogeneity across the midbrain. 

Although the cerebellar findings were unexpected, they are not without precedent. 

Projections from the deep cerebellar nuclei to the VTA are monosynaptic and bidirectional. 

D’Ambra and colleagues (2021) showed that microstimulation of the deep cerebellar nuclei in 

mice modulated nucleus accumbens spiking activity, both excitatory and inhibitory, depending 

on the particular location recorded from within the nucleus accumbens (D'Ambra et al., 2021). 

Another study found that optogenetic stimulation of cerebellar-VTA axons dramatically altered 

goal-oriented behavior (Carta et al., 2019). In humans, this circuit is considered to be part of a 

larger, highly integrated learning system (Caligiore et al., 2019). In PD, the role of the 

cerebellum is relatively unclear, however Wu & Hallett (2013) suggest that the structure has both 

pathological and compensatory effects. These compensatory effects are thought to help maintain 

both motor and cognitive function to make up for the degeneration of dopaminergic neurons in 

the SN (Wu & Hallett, 2013). Therefore, increased VTA-cerebellum coupling may be the result 

of the cerebellum overcompensating for neurodegeneration in the SN, while the relatively 

decreased SN-cerebellum coupling in PD could be indicative of a pathological effect. In line 

with this interpretation, reward magnitude has been shown to correlate with cerebellar activity in 

PD, while correlating with activity of prefrontal and rhinal cortices and the thalamus in controls 

(Goerendt et al., 2004). Thus, these findings correspond with motivated learning being mostly 

spared in PD while motor function deteriorates (Dagher and Robbins, 2009).  

 The specificity of midbrain-cerebellar connectivity may give insight into the functional 

implications of our findings. Dissociations in midbrain connectivity with the cerebellum spanned 
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cerebellar lobules VIIB and VIIIA. Based on the functional boundaries defined by King et al. 

(2019), a study of cerebellar contributions to cognition, these clusters correspond to executive-

function related regions of the cerebellum that are known to contribute to divided attention (King 

et al., 2019). Similarly, using LittleBrain, we found that the clusters correspond to cerebellar 

voxels that project to dorsal and ventral attention networks at rest, critically reflecting that the 

cerebellar region is involved in cognitive, not motor processes (Guell et al., 2019).  Given that 

executive functioning is spared in the early phases of PD, cerebellar engagement with the VTA 

may represent how the cerebellum maintains executive functioning through a goal-oriented 

compensatory mechanism. However, future studies relating these connectivity profiles with 

executive function deficits are necessary to confirm these hypotheses. Furthermore, late-stage 

executive deficits in PD may reflect the inability of the cerebellum to keep up with dopaminergic 

degradation. Ultimately, these results indicate the cerebellum as a possible target of treatment for 

PD in the future and support further investigation into how cerebellar subregions are impacted by 

dopaminergic degeneration.  

 Our findings failed to replicate many of the findings previously shown regarding SN 

connectivity using rs-fMRI in PD. Namely, we did not find deficits in SN connectivity to 

supplementary motor area, dorsolateral prefrontal cortex, thalamus, default mode network nodes, 

or striatal structures in PD, as have previous groups (Hacker et al., 2012; Wu et al., 2012; 

Sharman et al., 2013). In fact, we found a similar pattern of connectivity of the SN when 

compared to the VTA with motor and pre-motor cortical regions that did not differ across 

groups. One factor that could explain this lack of replication is medication status. Wu and 

colleagues (2012) showed that deficits between the SN and cortical targets in motor and 

executive regions were ameliorated with Levadopa administration (Wu et al., 2012). In our 
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study, we collapsed across three datasets in which PD patients were un-medicated or medicated 

with L-Dopa. Medication status was not evenly distributed across our samples, and thus we 

could not effectively control for this factor in our analysis. Despite controlling for dataset as a 

confound in our GLM, these medication differences may have influenced results; specifically, 

Levadopa administration may have compensated for any SN connectivity deficits. Future 

research should study how Levadopa affects the dissociation between the VTA and SN networks 

in PD. 

Outside of group-related differences, when collapsing across the entire sample, SN 

connectivity was higher than VTA connectivity to the precuneus, anterior cingulate gyrus, and 

portions of the occipital cortex. This finding, in part, replicates SN connectivity from a previous 

study in our lab conducted in a younger adult population (Murty et al., 2014). Unlike our prior 

study, however, the VTA did not show enhanced connectivity with the nucleus accumbens and 

subgenual cingulate when compared to the SN, conflicting with previous findings. One reason 

we may have failed to replicate these findings may be the differences in age across samples. Our 

original study was conducted in a sample of younger adults aged 18 to 25, whereas our current 

sample represents older adults aged 36 to 86. Critically, prior research across rodents and 

humans has shown decreases in dopaminergic neuromodulation throughout aging, which could 

alter the connectivity of the VTA at the population level (Bäckman et al., 2006, Dreher et al., 

2008).  

 Overall, we provide corroborating evidence that there are two dissociable midbrain 

networks, stemming from the SN and VTA, respectively. Not only does the dissociation provide 

a better understanding of PD, it also implies that these two regions contribute to cognition and 

behavior differently via their distinct connections throughout the brain. This observation has 
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implications for other disorders like schizophrenia, substance abuse, ADHD, and depression, 

disorders in which the pathophysiology is related to dopamine dysfunction. We also provide 

evidence that the cerebellum may play a significant role in regulating these pathways, consistent 

with recent work in mice (D’Ambra et al., 2021) and therefore in the development of 

neuropsychiatric conditions. A growing body of work links mood disorders such as depression to 

dysregulated functional connectivity within the cerebellum (Frazier et al., 2021; Tepfer et al., 

2021). Of note, depression is common in PD (Reijnders et al., 2008); whether this can be linked 

to common pathways is a question for future research. Overall, our study provides a foundation 

for future translational work by furthering our understanding of the midbrain’s role in cognition 

and motor control and characterizing how dysregulated cerebellar connectivity contributes to PD.   
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