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Abstract 

The basic reproduction number (R0) of an infection determines the impact of its control. For 

many endemic infections, R0 is often estimated from appropriate country-specific 

seroprevalence data. Studies sometimes pool estimates from the same region for settings 

lacking seroprevalence data, but the reliability of this approach is unclear.  Plausibly, indicator-

based approaches could predict R0 for such settings. We calculated R0 for rubella for 98 

settings and correlated its value against 66 demographic, economic, education, housing and 

health-related indicators.  We also trained a random forest regression algorithm using these 

indicators as the input and R0 as the output. We used the mean-square error to compare the 

performances of the random forest, simple linear regression and a regional averaging method in 

predicting R0 using 4-fold cross validation. R0 was <5, 5-10 and >10 for 81, 14 and 3 settings 

respectively, with no apparent regional differences and in the limited available data, it was 

usually lower for rural than urban areas. R0 was most correlated with educational attainment, 

and household indicators for the Pearson and Spearman correlation coefficients respectively 

and with poverty-related indicators followed by the crude death rate considering the Maximum 

Information Coefficient, although the correlation for each was relatively weak (Pearson 

correlation coefficient: 0.4, 95%CI: (0.24,0.48) for educational attainment). A random forest did 

not perform better in predicting R0 than simple linear regression, depending on the subsets of 

training indicators and studies, and neither out-performed a regional averaging approach. R0 for 

rubella is typically low and using indicators to estimate its value is not straightforward.  A 

regional averaging approach may provide as reliable an estimate of R0 for settings lacking 

seroprevalence data as one based on indicators.  The findings may be relevant for other 

infections and studies estimating the disease burden and the impact of interventions for settings 

lacking seroprevalence data. 
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Author Summary 

The basic reproduction number (R0) of an infection, defined as the average number of 

secondary infectious people resulting from the introduction of an infectious person into a totally 

susceptible, determines how easily the infection can be controlled.   For many established 

endemic infections, R0 is estimated using data describing the presence of antibodies in a 

population obtained prior to the introduction of vaccination in that population (prevaccination 

seroprevalence data). For countries lacking such data the estimation is often done by pooling 

estimates from their geographical region. We estimated R0 for rubella for 98 settings with 

existing prevaccination seroprevalence data and we investigated the effectiveness of using 

simple machine learning regression methods to predict R0 from 66 demographic, economic, 

education, housing and health-related indicators in those same settings. Our results suggest 

that the indicator data and prediction methods under investigation do not perform better than 

regional pooling. We discuss possible ways of improving the prediction accuracy. Since 

research on predicting R0 using socio-economic data is very scarce, our findings may also be 

relevant to estimating the disease burden and the impact of interventions in other pathogens. 
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Introduction 

The impact of an intervention against an infection greatly depends on the basic reproduction 

number (R0) of the associated pathogen, defined as the average number of secondary infectious 

people resulting from the introduction of a typical infectious person into a totally susceptible 

population[1]. For endemic vaccine-preventable infections, it is often estimated for a given setting 

from country-specific seroprevalence data collected before vaccination has been introduced[2], 

but it is unclear if estimates from one setting can be extrapolated to other countries.  An 

understanding of how the basic reproduction number differs between settings is important for 

studies which try to either estimate the burden of an infectious disease or to predict the impact of 

interventions for settings without pre-existing seroprevalence data.   

For settings without pre-vaccination seroprevalence data, studies sometimes base the pre-

vaccination epidemiology and therefore R0 on the regional average, calculated from the available 

data from all settings in the same geographical region[3-5].  It is also plausible that individual or 

combinations of socio-economic indicators could give insight into R0 for a given setting.  For 

example, the number of people that each person contacts might be expected to be correlated with 

factors such as the amount of crowding, which, in turn, is often correlated with other factors, such 

as poverty.   

To our knowledge, the extent to which the regional average or particular indicators might predict 

what R0 might be for a given setting has not been studied for any infection.  The only related study 

is that of Santermans et al[6], which studied how differences in R0 for varicella zoster for 9 

European countries might be explained by differences in demographic, socio-economic and 

spatio-temporal indicators.  The study found positive associations between R0 and factors such 

as infant vaccination coverage for different vaccines and childcare attendance and negative 

associations with wealth inequality and poverty.  As the study considered a small number of 
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European countries and one infection, it is unclear whether the findings are generalisable either 

to other continents or to other infections.  

In this study, we estimate the basic reproduction number for rubella for 98 settings from around 

the world and correlate its value against 66 demographic, economic, education, health and 

housing indicators.   In addition, we compare the performance of simple linear regression and 

random forest approaches in predicting R0 from these 66 indicators against R0 estimated using a 

regional averaging approach. 

 

Results 

Estimates of the basic reproduction number 

Fig 1 summarizes estimates of the basic reproduction number for each study.  The basic 

reproduction number was less than 5 for over half of the settings, with the point estimate being 

below 5 for 81 settings and the upper 95% confidence limit being below 5 for 62 settings 

respectively. The point estimate of the basic reproduction number was in the range 5-10 for 14 

settings and exceeded 10 for just 3 settings, namely rural Chile, East Germany, and the Czech 

Republic before 1967, although the confidence intervals were very wide for each setting.   

Fig 1: Estimates of the basic reproduction number for each of the studies.  The blue circles 

reflect the values calculated from country-specific seroprevalence data, the red circles 

reflect the default R0 estimates and the vertical markers reflect R0 estimated from the 

regional point estimate of the force of infection.  The bars reflect the 95% ranges of the 

estimates based on bootstrapping. 

For most of the settings for which data were available for both urban and rural areas from the 

same year, the basic reproduction number was lower for urban than for rural areas, although the 
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95% confidence intervals sometimes overlapped.  For urban and rural Peru before 1967, for 

example, it was 3.7 (95% CI: 3.3-4.4) and 2.2 (95% CI: 1.9-2.4) for respectively, and 6.5 (95% CI: 

5.4-7.8) and 2.3 (95% CI 2.1-4.0) for urban and rural Uruguay before 1967 respectively.  

Exceptions to this pattern included Chile from before 1967 for which the basic reproduction 

number was 3.9 (95% CI: 3.5-5.2) and 16.5 (95% CI: 12.8-25.2) for urban and rural areas 

respectively. 

In general, the value for the basic reproduction number that would have been estimated for each 

setting using the default method was approximately 2.3-3.3 for countries in the African, American, 

Eastern Mediterranean, Western Pacific and South East Asian regions, and around 2.7-3.8 and 

3.7-6.7 for countries in the Americas, Europe respectively.  The 95% range of the estimates based 

on the default approach, however, was very wide, with the upper limit of the 95% range reaching 

over 30 for several studies.  The corresponding mean square error, calculated over all the studies, 

of R0 for each setting based on the default approach compared to R0 calculated using country-

specific seroprevalence data was approximately 7, meaning that on average, estimates of R0 of 

4, for example, could be predicted to be as low as 1.5 or as high as 6.5.  However, the error varied 

between regions (Table S5, Supplement), with the lowest MSE of around 1 being predicted for 

the African and Western Pacific regions, intermediate values of 5 predicted for the Eastern 

Mediterranean and South East Asian regions, and high values of 9 and 23 predicted for the 

Americas and Europe.  The range of the MSE was also very wide and differed between regions, 

with a 95% range of 1-16 and 13-695 from Africa and Europe respectively (Table S5, 

Supplement). 

The same general patterns in the basic reproduction number were estimated for the alternative 

assumptions about contact between children and adults (Fig S2, Supplement), with R0 being 

below 10 for most settings.  For pessimistic assumptions about contact between children and 

adults, very high values for R0 of above 20 were estimated for two settings, namely rural Chile 
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and the Czech Republic before 1967.  For both assumptions about contact, estimates of R0 using 

the regional point estimate of the force of infection were usually smaller and led to a larger mean-

square error than the default R0 (Fig 1, Fig S2 and Table S5, Supplement).  

 

Correlation between R0 calculated using country-specific seroprevalence data and 

indicators 

In general, the indicators with which R0, as estimated using country-specific seroprevalence data, 

was most correlated depended on the correlation coefficient and, when the correlation was 

calculated considering all 98 seroprevalence datasets, the correlation was generally weak (Table 

1, Fig 2 and Table S6, Supplement).  For the Pearson correlation coefficient, the greatest 

correlation was obtained between the basic reproduction number and the educational attainment 

among people aged 25+ years (0.4 95% CI: 0.24, 0.48).  For the Spearman correlation coefficient, 

three housing-related indicators had the highest correlation with the basic reproduction number, 

with the number of physicians per 1000 population having the next greatest correlation (0.32, 95% 

CI: 0.22,0.37).  Considering the MIC, the basic reproduction number had the greatest correlation 

with two poverty-related indicators, namely Poverty gap at $1.90 a day (0.37, 95% CI: 0.21,0.34) 

and Poverty headcount ratio at $5.50 a day (0.36, 95% CI: 0.22,0.37).  

Fig 2: Indicators in each category with the largest Spearman correlation with R0 

(correlation value and CI in red font). The Pearson correlation regression line is plotted in 

red. 
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Table 1: Summary of the top ten correlation coefficients and MIC for the association between the basic reproduction number and the indicators, obtai 
ned considering estimates of the basic reproduction number for all countries.  The columns labelled “CC” hold the coefficient, with the 95% range 
obtained by bootstrapping; the column labelled “N” holds the number of data points used to calculate the coefficient.   

 

Rank 

Pearson Spearman MIC 

Indicator CC N Indicator CC N Indicator CC N 

1 Educational attainment, 

at least completed upper 

secondary, population 

25+, total (%) 

(cumulative) 

0.4 

(0.24, 

0.48) 

88 Number of households 5 

persons - Proportion over 

All households 

-0.45 

(-0.5,   

-0.36) 

56 Poverty gap at $1.90 a 

day (2011 PPP) (%) 

0.37 

(0.21, 

0.34) 

92 

2 Educational attainment, 

at least completed upper 

secondary, population 

25+, female (%) 

(cumulative) 

0.4 

(0.25, 

0.47) 

88 Number of households 5 

persons - Per capita 

-0.41 

(-0.46, 

-0.32) 

56 Poverty headcount ratio 

at $5.50 a day (2011 PPP) 

(% of population) 

0.36 

(0.22, 

0.37) 

92 

3 Educational attainment, 

at least completed upper 

secondary, population 

25+, male (%) 

(cumulative) 

0.39 

(0.22, 

0.47) 

88 Number of households 6  

persons and over - Per 

capita 

-0.33 

(-0.41, 

-0.22) 

53 Crude death rate per 

1000 population 

0.35 

(0.2, 

0.37) 

98 

4 Number of households 5 

persons - Proportion over 

All households 

-0.34 

(-0.42, 

-0.19) 

56 Physicians (per 1,000 

people) 

0.32 

(0.22, 

0.37) 

98 Life expectancy at birth 

(both sexes) 

0.34 

(0.2, 

0.33) 

98 
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Table 1 (continued) 

Rank Indicator CC N Indicator CC N Indicator CC N 

5 Physicians (per 1,000 

people) 

0.33 

(0.16, 

0.41) 

98 Prevalence of 

underweight, weight for 

age (% of children under 

5) 

-0.31 

(-0.34, 

-0.21) 

94 Poverty gap at $3.20 a 

day (2011 PPP) (% of 

population) 

0.34 

(0.22, 

0.36) 

92 

6 Proportion of the 

population aged 65+ 

0.32 

(0.2, 

0.51) 

98 Immunization, measles 

(% of children ages 12-23 

months) 

0.3 

(0.22, 

0.36) 

98 Poverty headcount ratio 

at $1.90 a day (2011 PPP) 

(% of population) 

0.34 

(0.22, 

0.36) 

92 

7 Number of households 5 

persons - Per capita 

-0.28 

(-0.35, 

-0.1) 

56 Number of households 6  

persons and over - 

Proportion over All 

households 

-0.29 

(-0.37, 

-0.18) 

53 Poverty gap at $5.50 a 

day (2011 PPP) (% of 

population) 

0.33 

(0.23, 

0.37) 

92 

8 Proportion of the 

population aged 0-14 

-0.27 

(-0.39, 

-0.14) 

98 Health expenditure, total 

(% of GDP) 

0.28 

(0.21, 

0.35) 

98 Poverty headcount ratio 

at $3.20 a day (2011 PPP) 

(% of population) 

0.33 

(0.22, 

0.37) 

92 

9 Population living in slums 

(% of urban population) 

-0.27 

(-0.32, 

-0.13) 

75 Urban population (% of 

total) 

0.28 

(0.2, 

0.34) 

98 Proportion of the 

population aged 0-4 

0.32 

(0.27, 

0.38) 

98 

10 Number of households 6  

persons and over - 

Proportion over All 

households 

-0.26 

(-0.34, 

-0.14) 

53 Educational attainment, 

at least completed upper 

secondary, population 

25+, total (%) 

(cumulative) 

0.27 

(0.2, 

0.35) 

88 Physicians (per 1,000 

people) 

0.31 

(0.25, 

0.37) 

98 
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When the simple linear regression was repeated by region, economic indicators were the most 

correlated with the basic reproduction number in Africa (Table 2).  For the Americas, health-

related indicators, for example, the percentage of children who were aged under 6 months who 

were breast-feeding, the percentage of the population that was urban and several poverty-

related indicators were most correlated with the basic reproduction number (Table 2).  For 

several indicators, the size of the correlation with R0 was larger when they were calculated on a 

regional, compared to a global basis (Table 1, Table 2 and Fig 2).  For the remaining regions, 

the small number of studies complicated the interpretation of the findings from linear regression 

(findings not shown). 
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Table 2: Summary of the top five correlation coefficients and MIC for the association between the basic reproduction number and the indicators, 
obtained considering estimates of the basic reproduction number just for countries in the African region or the Americas.  The columns labelled “CC” 
hold the coefficient, with the 95% range obtained by bootstrapping; the column labelled “N” holds the number of data points used to calculate the 
coefficient.   

 

Rank 

Pearson Spearman MIC 

Indicator CC N Indicator CC N Indicator CC N 

African region 

1 Unemployment, total (% 

of total labor force) 

(national estimate) 

0.35 

(0.09, 

0.48) 

24 Poverty headcount ratio 

at national poverty lines 

(% of population) 

-0.4 

(-0.46, 

-0.18) 

24 Number of households 3 

persons - Proportion over 

All households 

1.0 

(0.19, 

1.0) 

6 

2 Poverty headcount ratio 

at national poverty lines 

(% of population) 

-0.33 

 (-0.44, 

-0.08) 

24 Income share held by 

highest 10% 

0.38 

(0.17, 

0.5) 

24 Number of households 4 

persons - Proportion over 

All households 

1.0 

(0.19, 

1.0) 

6 

3 Income share held by 

highest 10% 

0.31 

(0.09, 

0.54) 

24 Health expenditure, total 

(% of GDP) 

0.38 

(0.19, 

0.52) 

24 Immunization, measles 

(% of children ages 12-23 

months) 

0.55 

(0.23, 

0.65) 

24 

4 Poverty gap at $1.90 a 

day (2011 PPP) (%) 

-0.3 

(-0.36, 

-0.08) 

24 Income share held by 

highest 20% 

0.33 

(0.15, 

0.51) 

24 Unemployment, total (% 

of total labor force) 

(national estimate) 

0.52 

(0.28, 

0.59) 

24 

5 Poverty gap at $3.20 a 

day (2011 PPP) (% of 

population) 

-0.29 

(-0.34, 

-0.06) 

24 Educational attainment, 

at least completed upper 

secondary, population 

25+, male (%) 

(cumulative) 

-0.32 

(-0.45, 

-0.06) 

19 Physicians (per 1,000 

people) 

0.49 

(0.27, 

0.57) 

24 
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Table 2 (continued) 

 

Rank 

Pearson Spearman MIC 

Indicator CC N Indicator CC N Indicator CC N 

Americas 

1 Exclusive breastfeeding 

(% of children under 6 

months) 

0.45 

(0.3, 

0.52) 

23 Urban population (% of 

total) 

0.61 

(0.53, 

0.69) 

26 Immunization, DPT (% of 

children ages 12-23 

months) 

0.58 

(0.36, 

0.63) 

26 

2 Immunization, DPT (% of 

children ages 12-23 

months) 

0.45 

(0.19, 

0.51) 

26 Exclusive breastfeeding 

(% of children under 6 

months) 

0.59 

(0.52, 

0.65) 

23 Exclusive breastfeeding 

(% of children under 6 

months) 

0.55 

(0.42, 

0.6) 

23 

3 Unemployment, total (% 

of total labor force) 

(modeled ILO estimate) 

-0.42 

(-0.5, 

-0.28) 

26 Prevalence of 

underweight, weight for 

age (% of children under 

5) 

-0.57 

(-0.67, 

-0.47) 

26 Poverty gap at $3.20 a 

day (2011 PPP) (% of 

population) 

0.53 

(0.41, 

0.53) 

26 

4 Educational attainment, 

at least completed upper 

secondary, population 

25+, total (%) 

(cumulative) 

0.42 

(0.21, 

0.51) 

24 Unemployment, total (% 

of total labor force) 

(modeled ILO estimate) 

-0.57 

(-0.62, 

-0.48) 

26 Poverty headcount ratio 

at $3.20 a day (2011 PPP) 

(% of population) 

0.53 

(0.41, 

0.53) 

26 

5 Urban population (% of 

total) 

0.42 

(0.28, 

0.51) 

26 Immunization, DPT (% of 

children ages 12-23 

months) 

0.49 

(0.39, 

0.59) 

26 Adjusted net enrollment 

rate, primary (% of 

primary school age 

children) 

0.48 

(0.32, 

0.57) 

25 
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Comparison between R0 predicted using simple linear regression and random forest 

regression  

Fig 3 compares the performance of simple linear regression, random forest and the default 

method for calculating R0, as quantified by the MSE over the 4-fold cross-validation experiments, 

of the value predicted by these methods compared to that calculated using country-specific 

seroprevalence data.  In general, the prediction error associated with using the default approach 

for calculating R0 is comparable and in many instances slightly lower than the corresponding linear 

regression and random forest error, although the range of the error sometimes overlapped. 

Fig 3: Mean value (blue and orange dots) and minimum-maximum value range (blue and 

orange line) of the MSE of the predicted R0 over the 10 repetitions of the 4-fold cross-

validation experiment using the A. non-imputed and B. Imputed datasets. The blue color 

corresponds to the 66 linear regression results (one for each indicator) and the orange 

color to the 5 random forest results (one for each subset of indicators).  The green dots 

indicate the average MSE for R0 as calculated using the default approach compared to that 

calculated using country-specific seroprevalence data. 

When the missing indicators were not imputed (Fig 3 A), the error associated with predictions 

based on linear regression differed between indicators. For most indicators, the MSE values 

range from approximately 7.5 to 9. The smallest error (MSE=2.73) was associated with a poverty-

related indicator (“Poverty gap at national poverty lines (%)”). The errors associated with four 

indicators related to schooling, undernourishment, breastfeeding and living in slums were also 

considerably lower than most, with a MSE of 5.35-5.5. The errors associated with the indicators 

for the number of doctors' consultations, number of people per room and all the indicators related 

to number of households with various numbers of persons are higher than all the rest, ranging in 

values of 11 and upwards. The min-max range of the error is fairly narrow and the minimum MSE 
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in badly performing indicators is generally higher than the maximum MSE of better performing 

indicators. 

In the random forest non-imputed results, the lowest average MSE equals 6.88 for the random 

forest trained and tested using the 63 indicators that have up to 70 missing values and the highest 

average MSE is equal to 13.8 for the random forest trained and tested using the 50 indicators 

with up to 40 missing values.  

In contrast, in the imputed data results (plotted in Fig 3 B) the MSE for all linear regression, 

random forest and default methods is similar at around the value of 8. 

As shown in Fig S3 (Supplement) much of the variation in the performance of the indicators in the 

simple linear regression and random forest analyses disappears once the two studies which have 

much higher values for R0 than the other studies, namely, the Czech Republic and Chile (rural) 

(R0=19.97 and R0=16.53 respectively) are omitted from the experiments.  The individual prediction 

error of those two studies drives the overall MSE of the 4-fold cross validation experiment 

upwards. As can be seen in Table S7 in the supplementary material, the best performing indicator 

is the only one having a missing value for both those studies.  In addition, the difference in the 

MSE between the default approach for predicted R0 and simple linear regression and random 

forest methods reduces once these two studies are omitted from the experiments.  Further details 

of the effect of the presence or absence of these two studies in the folds are provided in section 

S6 of the Supplement.  

Random forest parameter tuning 

In general, optimising the set of parameters used for the random forest algorithm for predicting 

R0 led to a small reduction in average MSE, from 9.87 for the default set of parameters to 8.86 in 

the optimised case (these values correspond to the average of the MSE for the 10 repetitions 
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plotted in Fig 4).  In addition, the latter of those values was still higher than that associated with 

the default approach used for calculating R0, for which the MSE was 6.97 (as plotted in Fig 3). As 

shown in Fig 4, the optimal value for the MSE obtained with the nested-optimisation method  for 

the random forest algorithm did not vary considerably across the 10 repetitions, although the 

minimum to maximum range of the MSE across the 96 different sets of parameters varied. A more 

detailed exposition of the nested cross-validation optimisation results is given in section S7 of the 

Supplement. We note that the minimum end of the performance range (blue bars in Fig 4) is lower 

than the MSE error of the nested optimisation results in some of the 10 experiment repetitions. 

This is in accordance with previous theoretical and empirical comparison results between nested 

and non-nested optimisation methods[7]. 

Fig 4: Performance (as quantified by the MSE in each of the 10 splits to folds) of the default 

set of parameter values used in the random forest (yellow x) compared to the optimal 

parameters for the random forest identified through nested optimisation (blue circle). Blue 

lines are the MSE minimum to maximum range for the 96 points of the parameters grid 

(hence this minimum is the optimal result of the non-nested optimization method). 

 

Discussion 

Our analyses found that the basic reproduction number for rubella is typically low and under 5 for 

many settings, which is consistent with the view that rubella is less infectious than other childhood 

immunizing infections, such as measles and mumps.  We also found that in many cases, the 

basic reproduction number was lower for rural than areas but that the correlation between R0 and 

indicators was not straightforward.  In general, the performance of a regional averaging approach 

to estimate the basic reproduction number was often better than that using linear regression and 

random forest approaches.  
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This is the first study to attempt to correlate the basic reproduction number for rubella in different 

time periods globally against different indicators. The only other related study to date, by 

Santermans et al considered varicella zoster and considered nine European settings[6].  The 

study found positive associations between R0 and factors such as infant vaccination coverage for 

different vaccines and childcare attendance and negative associations with wealth inequality and 

poverty.  As shown in our analyses, the correlation between indicators and R0 for rubella is not 

straightforward, with the indicator with which R0 had the greatest correlation depending both on 

the correlation statistic used and the region.  In addition, the size of the correlation depended on 

the region considered, and was weaker when all study settings were considered than when the 

correlation was conducted on a regional basis.  The size of the correlation in the latter case was 

comparable to that seen in Santermans et al[6].  

The correlation between the basic reproduction number and several indicators was in the opposite 

direction from that expected.  For example, in the simple linear regression analyses considering 

all countries, the basic reproduction number went down as the proportion of households which 

comprised 5 people increased and it increased as the number of physicians per 1000 population 

increased.  This may have been due to other unknown factors confounding the observed 

relationship between R0 and crowding indicators.  It is also plausible that some outliers may have 

affected our results, but the extent to which this was the case is unclear.  For example, considering 

Singapore, the estimated R0 was low but the population density was much higher than in other 

settings. 

Our finding that the basic reproduction number was typically higher in urban than in rural areas 

(Fig 1) is consistent with the fact that the people in urban areas are more likely to contact others 

than people in rural areas.  One of the exceptions to this was Chile from before 1967, for which 

R0 in rural areas was several times greater than that in rural areas.  An unexpectedly high estimate 

in rural areas might occur if, for example, the seroprevalence data had been collected shortly after 
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an epidemic had occurred, resulting in unusually high levels of seroprevalence.  Small differences 

in the R0 between urban and rural areas may also occur if rural residents often visit urban areas, 

because of work or other reasons.   

To our knowledge, our analyses are the first to assess the performances of regional averaging 

(default), simple linear regression and random forest approaches in predicting R0.  Although the 

latter two approaches are technically more sophisticated than the default approach it is interesting 

that, when all studies were considered, they were often out-performed by the default approach, 

based on regional averaging.  However, we also note that the latter two approaches were 

sensitive to inclusion of two datasets with particularly high R0 values and once they were 

excluded, the performance of the three approaches was similar.  These findings suggest that for 

studies of the disease burden or the impact of interventions against rubella, indictor-based 

approaches are unlikely to improve upon using a regional averaging approach for settings lacking 

seroprevalence data.  

There are several limitations of our analyses, which could have contributed to the indicator-based 

approaches under-performing when predicting R0.  For example, for simplicity, the value for the 

indicator used when correlating the basic reproduction number was taken from the year in which 

the study was conducted.  In practice, the seroprevalence in the study year results from the 

exposure to rubella infection over the lifetime of the study population.  In addition, when calculating 

the basic reproduction number, we just used one assumption for the contact between adults and 

children.  Whilst that assumption is based on estimates from social contact studies from the past 

decade, it is plausible that for some of the settings in our study, such as those from many years 

ago, the amount of contact between people would have been different compared to that in recent 

years.  In addition, due to the limitations of the seroprevalence data, which typically comprised 

convenience samples covering three or four age groups, we used a crude age stratification when 

calculating R0, just considering two broad age groups.    
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Our estimates of R0 using the default approach involved taking the median of R0 values as 

calculated using bootstrap-derived estimates of the force of infection from all studies in the same 

World Health Organization region.  The performance of this approach may have been 

overestimated given that bootstrap-derived estimates used to calculate the median would have 

included those from each of the studies being used to evaluate the performance.  In practice, the 

overestimate is likely to have been relatively small, given that at least 10 studies would have 

contributed to the bootstrap samples in each region.  In this context, we note that in analyses of 

the global burden of CRS, which included the datasets using the one in this study, excluding a 

single seroprevalence dataset had little impact on estimates[4].   

Several further refinements of both the default and indicator-based approaches for predicting R0 

are potentially feasible, although the effect on their performance is unclear.  First, the default 

approach could be refined to use alternative methods for grouping the countries, such as those 

developed for Global Burden of Disease analyses, which are based on both epidemiological 

aspects and geographical location.  However, application of this method for grouping countries is 

complicated by the fact that some groupings include only a few countries each of which may have 

no pre-vaccination seroprevalence data.   

Second, the parameter optimisation experiment that we ran on the random forest regression 

algorithm was limited to only 6 parameters and to 2 or 3 values for each of those parameters.  A 

search over a more extensive parameter grid (even though much more computationally intensive) 

could result in a reduction of the expected prediction error of the random forest algorithm. 

However, the small scale parameter optimisation conducted here suggests that the prediction 

results obtained with the random forest prediction method are close to the optimum and that not 

much further improvement can be expected by a finer or wider parameter grid search.    

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443953
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Third, the effect of different methods for imputing missing values could be explored.  As presented 

in the results, treating missing values with median value imputation has a significant effect on the 

prediction performance (Fig 3) and the effect of different methods of imputation on the prediction 

performance could be investigated.  

Fourth, the prediction methods that we considered are unable to incorporate the uncertainty 

inherent in our data, which is present both in the indicator data that we use as input and in the 

estimated R0 values that we use as the ground truth.  Considering input data, the uncertainty can 

be quantified as the number of years of difference between the seroprevalence and the indicator 

data and this could also be modelled to fold in the case of missing data. In the case of the output 

the uncertainty can be quantified by the bootstrap-derived data distribution for different values of 

the contact parameter k. A Gaussian process methodology could be employed to incorporate 

those measures of uncertainty in the regression problem. The main advantage of such a method 

would be that it can provide a measure of uncertainty of the predicted results.  For the prediction 

to be improved, it would be important for these measures of uncertainty to overcome one of the 

limitations of each of the prediction methods, namely that they are unable to correctly predict the 

very high values of R0 for some settings (particularly for those in which R0>10). 

In conclusion, our analyses confirm the view that the basic reproduction number for rubella is low 

and that an approach based on regional averaging for settings lacking prevaccination 

seroprevalence is likely to perform as well as, if not better, than indicator-based approaches 

involving simple linear regression or random forest regression algorithms.  It is unclear whether 

refinement of these methods could lead to an improvement in their performance.  Whilst our 

analyses have focused on rubella, these findings are likely to be relevant for studies of the disease 

burden or the impact of interventions for other infections. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443953
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Methods 

Data sources 

Seroprevalence data 

The analyses use force of infection estimates (defined as the rate at which susceptible people are 

infected) for 98 rubella seroprevalence datasets that were identified in a systematic review and 

had been used previously in estimates of the global burden of Congenital Rubella Syndrome 

(CRS) and the impact of measles-rubella vaccination[4, 5].  The seroprevalence datasets are 

listed in Table S1 of the Supplement and were collected from 24, 26, 13, 13, 13 and 9 settings 

from the Africa, the Americas, Eastern Mediterranean, Europe, South East Asia and Western 

Pacific World Health Organization regions respectively before the introduction of rubella 

vaccination. 

Demography 

The age distribution considering single year age bands  of each of the countries used in 

calculating the basic reproduction number was based on UN population data[8] for the year in 

which the study was conducted or the publication year, if the study year was unavailable.  For 

instances in which the number of people aged 80 years and over is not stratified into single year 

age bands, we calculated this stratification using UN population data on the number of survivors 

by age.   

  

Indicators 

For each of the 98 seroprevalence studies, we extracted 66 demographic, economic, education, 

health and housing indicators for the year in which the study was conducted, where possible.  The 

indicators expand on 39 indicators used by Santermans et al in their study of R0 for varicella-

zoster[6] and are summarized in Table S2 of the Supplement.   For studies for which the study 

year was not known, the indicator was extracted for the year in which the data were published.  If 
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the value of the indicator for the actual study year was not available, the indicator was extracted 

for the year closest to the study year. Educational and employment were extracted from World 

Bank sources[9].  Economic and health-related indicators were extracted mainly from World Bank 

sources[9] but also from United Nations, International Monetary Fund , Organisation for Economic 

Co-operation and Development, World Health Organization and other sources[10-14]. 

Demographic data were extracted from United Nations population data and World Bank 

sources[8, 9]. Housing data were extracted from World Bank and United Nations Statistics 

Division sources[9, 15, 16].  Table S2 in the Supplement lists the data source for each indicator 

and it summarizes the completeness of data on the indicators for the studies and the number of 

studies for which values for the indicators in question were available within 5 years, 5-10 and >10 

years of the study year.  The number of indicator values available for each study are provided in 

Table S3.   Values for the indicators were available for almost all of the studies, except for many 

of the housing-related indicators, which were not available for approximately 45% of the study 

settings. Values for all but one of the demographic indicators were available within 5 years of the 

study being conducted for all settings, and values for some of the economic indicators were only 

available more than 10 years after the study was conducted for 50% of the studies.   

 

Estimating the basic reproduction number 

For each of the 98 seroprevalence studies, estimates of the force of infection among those aged 

<13 and 13 years, as published elsewhere[4, 5],  were used to calculate the basic reproduction 

number, as the dominant eigenvalue of the Next Generation Matrix[1].  The forces of infection for 

each study are summarised in Fig 5. The matrix of Who Acquires Infection from Whom was 

assumed to have the following structure: 

(
𝛽1 𝑘𝛽2
𝑘𝛽2 𝛽2

) 
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Fig 5: Summary of the force of infection estimates used to calculate the basic reproduction 

number for each study in each region.  The bars reflect the 95% ranges based on 

bootstrapping. 

The effective contact rate differs between <13 and ≥13 year olds, with its relative size between 

children and adults, compared to that between adults (k), assumed to equal 0.7, based on contact 

survey data[17].  In sensitivity analyses, we explored the effect of using pessimistic assumptions 

about mixing between younger and older people on estimates of the basic reproduction number, 

using a value of 0.3 for k. The age distribution of the population used in calculating the basic 

reproduction number was based on UN population data[8] for the year in which the study was 

conducted or the publication year, if the study year was unavailable.  The 95% range for the basic 

reproduction number for each study was calculated using 1000 bootstrap-derived samples for the 

force of infection, calculated as described in[4].   

 

Previous studies have approximated the epidemiology of rubella in settings lacking 

seroprevalence by using a regionally averaging approach, using 1000 bootstrap-derived samples 

of the forces of infection compiled from all the studies from the same World Health Organization 

region[4, 5].  To evaluate this approach, we calculated what the median R0 in each of the 98 

settings and its 95% range would have been estimated to be from these 1000 bootstrap-derived 

samples and we refer to this median R0 as the “default R0” below.   The error associated with the 

default R0 and that calculated using seroprevalence data from the actual setting was quantified 

as the mean square error (MSE).  The 95% range of the MSE was calculated using 1000 

bootstrap-derived estimates of the MSE computed from the corresponding R0 estimates that were 

computed from 1000 bootstrap-derived force of infection. 
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In sensitivity analyses, we also calculate what R0 for a given setting would have been estimated 

to be using a point estimate of the age-dependent force for the region, which has previously been 

used to obtain an approximate estimate of the average CRS incidence for countries lacking 

seroprevalence data[5, 18].  This regional point estimate of the force of infection was taken as the 

value which led to the median burden of CRS out of the 1000 bootstraps in the absence of 

vaccination (see supplement in ref[5]).   

 

Measures of relation between indicators and R0 estimates 

The Pearson and Spearman correlation coefficients and the Maximum Information Coefficient 

(MIC) were calculated for the correlation between the basic reproduction number for each study 

and each of the 66 demographic, economic, education, health and housing indicators extracted 

for each study.  The MIC has been used elsewhere in similar analyses for varicella zoster[6] and 

quantifies the correlation between two statistics when they may be non-linearly related[19].  The 

95% range of the correlation coefficients were calculated using the 1000 bootstrap-derived values 

for the basic reproduction number. In the first instance, the correlation coefficients were calculated 

considering the basic reproduction numbers for all countries. In sensitivity analyses, the 

regression was repeated on a regional basis. In the results we present which rank the level of 

relation between the different indicators and R0 from highest to lowest, we rank lowest all the 

indicators for which the 95% CI overlaps zero (i.e. the 2.5% and 97.5% percentiles of the bootstrap 

values are of opposite sign). 

 

Out-of-sample prediction 

Overview 

We explored whether the basic reproduction number for a given setting could be predicted using 

either simple linear regression on any of the 66 indicators or a Random Forest regression 

algorithm trained on different subsets of the indicators.  We used 4-fold cross-validation[20] to 
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score both approaches and explored the effect of imputation. Further details of the cross-

validation and imputation are provided below. 

 

Four-fold cross-validation 

The 4-fold cross-validation process was similar for both the simple linear regression and random 

forest algorithms. A detailed description of the process (“experiment”) is provided in section S3 of 

the Supplement and we summarize it briefly here. 

 

First, the values for R0 that had been estimated using country-specific seroprevalence data for 

the 98 studies, along with their indicators, were split into 4 partitions (“folds”).  Next, for the case 

of simple linear regression and for a given indicator, the values in three of the folds were used as 

the training dataset to establish a relationship between the point estimate of R0 that had been 

estimated using seroprevalence data, and that indicator. The values in the fourth fold were then 

used as the test dataset, whereby the value of the indicator for each study was used to predict 

what R0 might be expected to be in that study using the linear regression model that had been 

estimated using the training dataset. We then calculated the mean square error (MSE) for the test 

dataset in these predicted R0 values compared to those estimated using seroprevalence data.  

These steps were repeated using each fold in turn as the test dataset and the remaining three as 

the train dataset, and we computed the average MSE for the four folds.  These steps were 

repeated for each of the indicators in turn.   

 

The four-fold cross- validation was repeated using 10 randomly generated splits of the 98 R0 

estimates to 4 folds, resulting in one value of the average MSE for each split and in the final stage 

of this process, we computed the average, minimum and maximum of those 10 average MSE 

values of the predicted R0 compared to that calculated from study-specific seroprevalence data.   
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We discarded splits to folds that had insufficient numbers of indicator values in each fold to train 

and test the linear regression algorithms (see further details below).  

 

We used the steps and the same splits to folds as described above for estimating the performance 

of the random forest regression algorithm, except that subsets of indicators (rather than a single 

indicator at a time) are used train and test the random forest regression algorithm, as described 

below. 

 

Dealing with missing values in the indicator data 

Most of the 98 studies lacked values for some of the indicators (see Table S3 in the Supplement) 

and we explored the effect of both not imputing the missing values and of imputing them as 

follows.  

 

A. Non-imputation approach 

Not imputing the missing values has implications in the 4-fold cross-validation experiments. 

Considering the situation for simple linear regression, we note that the situation may arise where 

for a given indicator and a given split of the 98 studies to 4 folds, the training dataset has valid 

values for only one or none of the studies in it. In such cases it is not possible to fit a regression 

line. To address this, we generated a series of splits to folds and we kept the first 10 splits for 

which each indicator had at least one study with a valid value in each of the 4 folds (see section 

S3 of the Supplement for further details). This guarantees that for all folds and all indicators there 

are at least 3 studies with valid values in the training dataset which is sufficient for fitting a 

regression line and that there is at least one study with a valid value in the test dataset. With this 

arrangement, a study that has a valid value for a given indicator is used exactly once for testing 

and three times for training the linear regression model corresponding to that indicator in each of 

the 10 repetitions of the 4-fold cross-validation experiment.   
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For consistency, we used the same 10 splits to folds for the random forest 4-fold cross-validation 

experiments. Since random forest regression algorithms use all available indicators to train and 

predict the outcome of interest, rather than just one, as is the case for simple linear regression, 

the treatment of the missing data was different from that used for simple linear regression. Instead, 

we considered the following 5 different subsets of indicators and we ran a separate cross-

validation experiment for each subset: 

- The 25 indicators that have no missing values at all, i.e. all 98 studies have values for 

those indicators. 

- The 43 indicators that have up to 10 missing values. There are 69 studies which have 

values for each of those 43 indicators. 

- The 46 indicators that have up to 20 missing values. There are 52 studies which have 

values for each of those 46 indicators. 

- The 50 indicators that have up to 40 missing values. There are 32 studies which have 

values for each of those 50 indicators. 

- The 63 indicators that have up to 70 missing values. There are 20 studies which have 

values for each of those 63 indicators. 

 

We list the number of studies in the training and testing subsets for all 10 splits to 4 folds for both 

the linear regression and the random forest models in Table S4 in the Supplement. 

 

B. Imputation approach 

In the second approach we use imputation and we replaced all missing values (if any) of each 

indicator with the median value of the existing values among the 98 studies for that particular 

indicator. The imputation is applied once to the whole dataset prior to splitting to folds and all 

other parts of the cross-validation. With this approach there are no missing values in the imputed 
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dataset and we were able to conduct all training and testing parts of the 4-fold cross-validation 

experiments as usual. For consistency purposes we used the same choice of 10 4-fold splits of 

the non-imputed experiments that is described above. 

 

Comparison of the linear regression, random forest R0 predictions against those from the default 

method 

To assess whether the linear regression and random forest approaches performed better in 

predicting R0 across the settings than using the default R0 estimate, we computed the average, 

minimum and maximum values of MSE over the same test folds of the 10 cross-validation splits 

described above for the default R0 estimate compared to R0 estimated using country-specific 

seroprevalence data.  The resulting MSE values were compared against those calculated 

considering the R0 for the linear regression and random forest approaches.  As described above, 

R0 calculated using the default approach is taken as the median R0 calculated from 1000 

bootstrap-derived samples of the forces of infection compiled from all the studies from the same 

World Health Organization region. 

 

Random forest optimisation 

Unlike the fitting of a linear regression model, which is solely a function of the training dataset, 

the process of training a random forest prediction model is also a function of the choice of hyper-

parameters of the random forest. For the prediction performance comparison results that we 

described above we used the default parameter values of Python’s scikit-learn toolbox. Further 

to that, we also present results of a separate small-scale parameter optimisation run.  For that 

parameter optimisation experiment we used the same 10 cross-validation splits to 4 folds 

described above and the first indicators’ subset listed above, i.e. the one comprising the 25 

indicators that have no missing values. We present non-nested optimisation results as well as 
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nested cross-validation optimisation results (see references[7, 21]). The former method amounts 

to simply selecting the parameter setup which achieves the lowest average MSE for a given split 

to folds. That method effectively violates the out-of-sample principle and can give over-optimistic 

estimates of the expected prediction performance in previously unseen test data. The latter case 

amounts to the results obtained when a separate inner-loop cross-validation experiment is run for 

each cross-validation fold and it is considered a more valid method to estimate the generalisation 

of the prediction performance in previously unseen test data. 

 

Software 

All computations were carried out in a reproducible manner using the corresponding methods and 

functions of Python’s scikit-learn package[21]. The 10 splits to folds were obtained by use of the 

‘sklearn.model_selection.KFold’ class by setting the ‘random_state’ parameter which 

corresponds to the seed of the pseudorandom generator to increasing integer values starting from 

0.   The values corresponding to folds that were used in the results are given in Table S4 in the 

Supplement. The linear regression and random forest prediction results were obtained with the 

methods of the ‘sklearn.linear_model.LinearRegression’ and 

‘sklearn.ensemble.RandomForestRegressor’ classes. The missing values imputation described 

in the ‘Imputation approach’ section was implemented using the ‘sklearn.impute.SimpleImputer’ 

class. For the random forest parameter tuning results we used a 6-parameter grid comprising 96 

parameters’ choices (details are given in section S5 of the supplementary material). 

 

We note that due to the missing values in the dataset we could not use the higher-level methods 

of the scikit-learn package (e.g. ‘sklearn.model_selection.cross_val_score’) and that for all the 

results we had to write code that implements the complete cross-validation methodology. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443953
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 

Fig 1
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Fig 2 
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Fig 3 A 
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Fig 3 B
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Fig 4 
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Fig 5 
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