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Abstract 

The intersection of human genetics and brain transcriptomics promises to reveal the structural and 

cellular locus of brain diseases via selective co-expression of risk genes.  We find that adult brain-wide 

transcriptomic profiles of 40 human brain diseases identify four major transcriptional patterns, 

represented by tumor-related, neurodegenerative, psychiatric and substance abuse, and a mixed group 

of diseases, with some unexpected disease associations.   Based on differential co-expression using bulk 

transcriptomics, the majority of brain diseases exhibit unique regional transcriptomic signatures that 

strongly reflect neuronal versus non-neuronal divisions and variation in excitatory and inhibitory neurons 

across the brain.  Single cell transcriptomic data confirms and refines the relationship of different diseases 

to specific neuronal and non-neuronal subclasses.  Disease signatures are largely conserved between 

mouse and human at the higher cell class level, but with significant species differences emerging at the 

finer subclass level that may help explain human-specific disease susceptibility.  
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Introduction 

Brain diseases are increasingly recognized as major causes of death and disability worldwide (1-3).  These 

diverse and multifactorial diseases may be largely grouped into cerebrovascular, neurodegenerative, 

movement related, psychiatric disorders, developmental and congenital disorders, substance abuse 

disorders, brain tumors, and a set of other brain-related diseases (Institute for Health Metrics (IHME), 

healthdata.org). Phenotypic classification is challenging however and does not uniquely partition 

characteristics of disease manifestation, genetic risk, and treatment, and economic considerations differ 

substantially between disease classes, as reflected in the comprehensive Global Burden of Disease Study 

(4) (referred to as GBD classes in this study, Suppl. Figure 1).  

 

The etiology of brain-related diseases and their genetics is complex and widely studied (5-7). With the 

exception of Mendelian diseases arising from single gene mutations, most brain disorders present as a 

complex interplay between genetics and environment through interaction of the brain transcriptome and 

its regulatory network.  Transcriptomic based analysis of brain disease, through profiling of tissues, cells, 

and more recently at the resolution of single nucleus (8) addresses this complexity providing a means for 

population scale sampling to disentangle basic molecular and clinical relationships (9, 10). The approach 

is based on the hypothesis of regional vulnerability that postulates spatial and temporal co-expression 

across disease genes as indicative of a potential interaction between these genes (11, 12).  Studying brain 

samples from patient populations characterizing major transcriptomic relationships and expression 

patterns of disease-related genes in neurotypical brains at multiple scales promises important insight in 

developing future investigations in pathophysiology of brain disorders. 

 

Large transcriptome profiling of the human brain has produced useful resources for exploring the genetics 

of neurotypical and disease states (13-16) and for describing the larger scale relationship of brain diseases 

and the neuroanatomy of transcriptomic patterning (14, 17).  Here we investigate large-scale anatomic 

patterning of the transcriptional patterns for 40 brain-related disorders. Transcriptomic relationships at a 

mesoscale, intermediate between the largest brain structures (e.g. cortex, hypothalamus) and cellular 

resolution, provide a natural framework for classifying broad disease associations in comparison with 

common phenotypic grouping. Comparing disease gene expression from 104 structures from cortex, 

hippocampus, amygdala, basal ganglia, epithalamus, thalamus, ventral thalamus, hypothalamus, 

mesencephalon, cerebellum, pons, pontine nuclei, myelencephalon, ventricles, and white matter, from 

the  Allen Human Brain Atlas (human.brain-map.org, (13, 14),  with cell type data from the human and 
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mouse celltypes.brain-map.org (15, 18) provides a strategy for exploring the intersection of brain 

structure and cell type,  and indicates directions for further analysis as brain wide cellular data becomes 

available. 

 

Brain disorders and associated genes 

The diseases selected are representative of the seven major GBD classes above, excluding cerebrovascular 

due to limitations of representative endothelial or pericyte cell types in data sources. Suppl. Table 1 

contains definitions, gene sets, and metadata identifying each disease (Methods). To identify gene-

disease associations, we used the DisGeNET database (www.disgenet.org) (19-21) a platform aggregated 

from multiple sources including curated repositories, GWAS catalogues, animal models and the scientific 

literature. From an initial survey of the OMIM (www.omim.org) repository we identified 549 brain-related 

diseases (14) which were intersected with the DisGeNET repository. We required reported gene-disease 

associations be present in at least one confirmed curated source (See https://www.disgenet.org/dbinfo), 

and with a minimum of 10 genes per disease.  For each disease, the main variant of the disease was 

selected with rare familial and genetic forms not included in the analysis. Conservative selection resulted 

in 40 major brain disorders with 1646 unique associated genes (Suppl. Table 1).  Additionally, ten 

disorders of public health concern with limited associated genes (n > 5) including opioid-related disorders, 

sleep disorders, and post-partum depression were also compared.  The identified gene sets associated 

with brain disease range vary widely in size (range: opioid-abuse (g=5), schizophrenia (g=733) and 

distribute across GBD classes as (number, % unique to GBD class) psychiatric (1107, 0.723), 

neurodegenerative (257, 0.513), substance abuse (212, 0.320), brain tumors (168, 0.667), developmental 

disorders (139, 0.676), movement related (136, 0.272) and other brain-related (123, 0.414). By ontology 

analysis (22), using only those genes unique to each GBD class, known defining biological processes and 

molecular pathways of GBD disease classes emerge (Suppl. Fig. 2), and a detailed gene ontological analysis 

(www.toppgene.org) of individual 40 disease gene sets confirms specificity for each disease and related 

biological, cellular, and molecular processes (Suppl. Table 2).  

 

The proportion of shared genes between diseases is known to be correlated with phenotypic similarity       

(𝜌 = 0.40, 𝑝 = 6.0 × 10−3) based on clinical manifestations (23, 24).  The comorbidity of psychiatric 

diseases and substance abuse is well established (25) and Supp. Fig. 3A shows the largest gene set 

intersection (g=132) between GBD classes psychiatric and substance abuse, with 62% of substance abuse 

genes also associated with psychiatric disorders.  Movement disorders are also commonly found in 
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neurodegenerative diseases (26), with GBD neurodegenerative sharing 30% (g=41) of movement related 

genes, while GBD tumor based and development sharing the least with other classes (2.5%, 2.6% 

respectively).  The 40 diseases and disorders clustered on relative pairwise gene set intersection (Jacard) 

shows variable agreement with GBD phenotypic groupings (Supp. Figure 3B), with the highest mean 

percentage of shared genes among psychiatric disorders 7.64%   (p=1.55 × 10−4), followed by substance 

abuse 6.33% (p=2.82 × 10−4), and brain tumors 5.43% (p=8.35 × 10−3).  (Significance measures 

represent likelihood of observed percentage corrected for GBD class size.)  

 

Structural transcriptomic profile of brain diseases 

Expression profiles from the Allen Human Brain Atlas (AHBA, https://human.brain-map.org) for genes 

associated with the 40 diseases were obtained from 6 neurotypical donor brains and summarized in an 

ontology of 104 structures (Suppl. Table 3) including cortex (CTX, 8 structures), hippocampus (HIP,7), 

amygdala (AMG,6), basal ganglia (BG,12), epithalamus (ET,3), thalamus (TH,12),  hypothalamus (HY,16), 

mesencephalon (MES, 11), cerebellum and cerebellar nuclei (CB,4), pons and pontine nuclei (P,10)  

myelencephalon (MY, 12), ventricles (V,1), white matter (WM,2). We obtain a mean transcriptomic 

disease profile by averaging expression for genes associated with each of 40 diseases across the 104 

structures and z-score normalizing (Figure 1, Suppl. Table 4). Hierarchical clustering with Ward linkage is 

subsequently performed using Pearson correlation and removing genes common to each pair of diseases 

so that similarities are driven by independent sets of genes (Methods). While anatomic signatures are 

complex, this organization results in four primary anatomic disease groups (ADG 1-ADG 4) generally 

interpretable with respect to GBD classification (Fig. 1A, left color bar) as tumor related (ADG 1), 

neurodegenerative (ADG 2), psychiatric, substance abuse, and movement disorders (ADG 3), and a mixed 

group without tumor diseases (ADG 4).  By averaging gene expression within ADG groups across the 104 

brain structures we obtain an anatomic representation of this transcriptomic patterning (Fig. 1B) whose 

major anatomy (Suppl. Fig. 4) may be described as ADG 1: thalamus, brain stem, ventricles, white matter, 

ADG 2: cortico-thalamic, brain stem, white matter, ADG 3: (telencephalon) cortex, thalamus, 

hippocampus, amygdala, basal ganglia, and ADG 4: (diencephalon) thalamus, ventral thalamus, 

hypothalamus, basal ganglia, and mesencephalon, brain stem. ADG transcriptome signatures are 

consistent across subjects as individual brain holdout analysis (Supp. Figs. 5,6, Methods) finds that both 

the correlation of expression relationships across structures and differential relationships between ADG 

groups at a fixed structure are preserved between the AHBA brains. 
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The association of diseases within ADG groups often differs from their GBD phenotype classification.  

Examples include multiple sclerosis, migraine disorders, and dementia grouped with tumor-based glioma 

diseases in ADG 1, and developmental Williams syndrome and spastic paraplegia, hereditary grouped with 

the neurodegenerative diseases Alzheimer’s and ALS in ADG 2, while other neurodegenerative diseases 

Huntington’s disease and amnesia of ADG 4 having a distinct structural profile. Although ADGs reflect the 

broadest transcriptome patterning there is considerable variation within the groups.  For example, 

substantia nigra (SNC, SNR) and ventral tegmental area (VTA) enrichment is seen in genes associated with 

dementia, Parkinson’s and related disorders (27), basal ganglia and forebrain involvement in movement 

disorders and dystonia (ADG 4) (28), ventral thalamus expression in neurodegenerative diseases (29),  

mamillary body (MB) of the hypothalamus expression in (ADG 2) neurodegenerative altered 

metabolism(30), and low expression of genes in epithalamus for all but ADG 1 tumor-based diseases.  The 

distinction between ADG 1 and ADG 2 here is subtle with significant variation (Fig 1C, row 1-2) only in CTX 

(4.96 × 10−3), hippocampus (HIP, 1.49 × 10−3), and epithalamus (ET, 4.79 × 10−3) and further analysis 

without removing common genes (Suppl. Fig. 7) and leveraging cell type data (Fig. 3) will distinguish these 

groups.  

 

To compare the ADG signatures of Fig. 1A we combine ANOVA for mean differences in expression across 

ADG groups at each fixed structure (BH corrected p-values, top panel, Fig. 1.), with paired corrected t-

tests (Fig. 1C) between groups showing the most significant expression differences. Particularly striking in 

Fig. 1A is the white matter signature of tumor and neurodegenerative diseases (ADG 1-2), effectively 

absent in psychiatric disorders and diseases of addiction (ADG 3-4) (31), and substantial enrichment of 

telencephalon expression (CTX, HIP, AMG, BG) in ADG 3 (32, 33).  There is significant variation across ADG 

groups in (BG) globus pallidus (GP, 𝑝 < 7.88 × 10−10), cerebellar nuclei (FAS, 2.74 × 10−7), substantia 

nigra, pars compacta (SNC, 2.87 × 10−7), basal forebrain olfactory tubercle (MES) (Olft, 3.07 × 10−7), 

and (WM) cingulum bundle (cgb, 4.01 × 10−7), whereas variation is not significant in the thalamus (TH, 

0.417), myelencephalon (0.271), and cerebellum (CB, 0.146). Comparing individual pairs of ADG groups 

(Fig. 1C), the most significant differences are telencephalic between tumor-based (ADG 1) and psychiatric 

and substance groups (ADG 3): hippocampus (HIP, 1.29 × 10−8), amygdala (AMG, 7.51 × 10−8), and 

cortex (CTX, 8.93 × 10−6), and between neurodegenerative-based ADG 2 and ADG 3 groups (HIP, 

1.30 × 10−6), ventral thalamus (VT, 1.60 × 10−6), (AMG, 1.30 × 10−6), and in  white matter (WM, 

8.56× 10−5).  
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Figure 1. Transcriptome patterning of major brain diseases. A) Mean gene expression profiles for genes associated 

with 40 major brain diseases and disorders profiled over 104 anatomic structures from 15 major regions cortex (CTX), 

hippocampus (HIP), amygdala (AMG), basal ganglia (BG), epithalamus (EPI), thalamus (TH), ventral thalamus (VT), 

hypothalamus (HY), mesencephalon (MES), cerebellum (CB), pons (P), pontine nuclei (PN), myelincephalon (MY), 

ventricles (V), white matter (WM) and z-score normalized. Hierarchical clustering based on disjoint gene sets 

between pairs and z-score normalized yields four primary groups ADG 1 – ADG 4. Row annotation left, GBD 

classification. Column annotation is ANOVA for expression values at a fixed structure grouped by ADG. Row 
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annotation right, percentage exact match in other AHBA brains (Methods.) B) Anatomic patterning of classes ADG 

1-4. C) Corrected pairwise t-tests for ADG differences across brain structures. D) Reproducibility of disease 

transcriptomic profiles. Left: (solid) frequency over six brains that disease in a given ADG group is most closely 

correlated with profile of the same ADG in other AHBA subjects (decreasing frequency.) (open) Frequency exact 

disease is identified in other subjects. Right: similar for diseases by GBD group.    

 

While the expression of disease genes may vary considerably in a population (34, 35), the anatomic 

expression signature of each disease in an individual brain is most closely correlated with a disease in the 

same ADG group (ADG 1-4: 97.7, 72.5, 95.9, 90.8 %), and typically identifies the exact disease in other 

subjects (Fig. 1D, Methods. In particular, the expression pattern defining each of the ADG 3 group diseases 

ataxia, language development disorders, temporal lobe epilepsy, obsessive compulsive disorder, and 

cocaine-related disorder most closely correlates with these same diseases in each of the AHBA subjects. 

Similarly, ADG 4 diseases Parkinsonian disorders, amnesia, narcolepsy, neuralgia, and tobacco use 

disorder exhibit highly unique profiles due to consistent, complex and differentiated expression in the 

basal ganglia, hypothalamus, and myelencephalon. Conversely, ADG 2 Alzheimer’s disease and 

amyotrophic lateral sclerosis, and ADG 3 bipolar disorder, autistic disorder, and schizophrenia while 

having consistent ADG profiles are less unique to that disease.  This identifiability shows a disease 

dependent level of specificity in transcriptomic signature beyond ADG grouping. With respect to 

phenotypic GBD classification, diseases of movement and substance abuse have the most identifiable 

signatures across AHBA subjects (94.6,89.0%) respectively, while psychiatric diseases map within group 

least (55.5%). Ten additional diseases with limited gene sets (5-10) are presented in Suppl. Fig. 8, with 

their relationship to ADG groups.  

 

Reproducible transcription patterns of brain diseases 

The finer anatomic structure of transcription patterns of brain diseases can be directly studied through 

conserved differential expression relationships providing a bridge to implicated cell types.  Differential 

stability (DS), quantified as the mean Pearson correlation ρ of expression in a fixed set of anatomic regions 

between pairs of brain specimens (14) measures the fraction of preserved differential relationships 

between anatomic regions over subjects, with a bias for stronger differentials and structural markers.  The 

gene GABBR2 identified in temporal lobe epilepsy (ADG 3) (Figure 2A) has a highly reproducible brain wide 

expression profile across AHBA subjects (DS=0.904), with consistent expression in telencephalon and 
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highest in thalamus. Abnormal gamma-aminobutyric acid B receptors (GABBR1, GABBR2) can provoke 

seizures in mesial temporal lobe epilepsy (36).  

 

Although there is no significant difference in their expression levels (Suppl. Figure 9), and DS for disease 

genes is uncorrelated with the number of associated genes (ρ=0.035), GBD classes exhibit a significantly 

higher percentage (Figure 2B) of differentially stable genes, particularly for substance abuse, (mean 

DS=0.702, p<4.7 × 10−21), psychiatric (DS=0.675, p<3.17 × 10−17), and movement disorders (DS=0.635, 

p<9.1× 10−17In particular, the stability of ADG 3 (median 0.683, p<4.24 × 10−10), and ADG 4 (0.698, 

6.91 × 10−10) genes are markedly higher than ADG 1 (0.589, p<0.0028) and ADG 2 (0.57,p<0.0087), ).  

indicating a higher percentage of transcriptomic structural markers for diseases in these groups.   Figure 

2C shows the distribution of DS for the 40 brain diseases with minimum and maximum DS genes and 

details the consistency ranking of anatomic signatures described in Fig.1. 
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Figure 2. Reproducible transcription patterns in human brain diseases. A) Expression profile for gene GABBR2 with 

error bars (human.brain-map.org.) Differential stability measures reproducible expression patterns from the Allen 

Human Brain Atlas (AHBA). B) Distribution of DS by major Global Burden of Disease classes. Horizontal bar mean 

ρ=0.521 of 17,348 genes, with p-values shows significance (corrected for class size) of GBD mean differing from 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443911doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443911
http://creativecommons.org/licenses/by/4.0/


global mean. C) Disease gene stability sorted by median DS; colors are GBD classification. Minimum and maximum 

stable genes for each disease are shown. GO analysis (toppgene.cchmc.org) reveals that higher DS genes are orders 

of magnitude more significant in biological process (e.g. anterograde trans-synaptic signaling, low 4.93 × 10−4, high 

1.80× 10−12) molecular function (ion channel activity, 0.59, 1.35× 10−6), drug targets (dopamine, 2.02× 10−3, 

1.80× 10−12), and pathways.  D) Map of canonical expression modules M1-M32 to diseases. Associated genes for 

each disease are correlated with each module eigengene independently (Methods.) Row ordering is as identified in 

Fig. 1 clustering. Modules are ordered based on their neuronal, astrocyte, oligodendrocyte content.  Bar below 

heatmap highlights modules that occur with unexpected frequency compared with genome wide distribution (Suppl. 

Fig. 14)    E) Canonical eigengenes over 62 anatomic regions shown for M1 telencephalic (language development, 

epilepsy) and M12 substantia nigra (Parkinson’s disease, dementia), with mean Pearson correlation for 

representative genes.  Boxes indicate representative modules of Suppl. Fig 11. 

 

 

A characterization of the reproducible gene co-expression patterns (14) in Allen Human Brain Atlas using 

the top half of DS genes (DS > 0.5284, g = 8,674) previously identified 32 primary transcriptional patterns, 

or modules, each represented by a characteristic expression pattern (i.e. eigengene) across brain 

structures. Fig 2E illustrates two representative modules M1 and M12: Module M1 is telencephalic having 

strong expression in the hippocampus, in particular dentate gyrus, and representative genes include 

GRIA2 (correlation to eigengene, ρ=0.907), and DLG3 (ρ=0.896). Alterations in glutamatergic 

neurotransmission have known associations with psychiatric and neurodevelopmental disorders and only 

mutations in GRIA2 and GRIA3 have been related with these disorders (37). Analysis of the 157 M1 

correlated genes of the present study (Methods) reveals neurotransmitter gated ion channel (q-value, 

7.33 × 10−18), glutamatergic synapse (4.14 × 10−35) activity and strong association with ADG 3 diseases: 

bipolar disorder (q-value, 6.92 × 10−30), schizophrenia (1.23 × 10−23), and autism (1.26 × 10−15). 

Module M12 exhibits unique expression in the substantia nigra, pars compacta and pars reticulata, and 

ventral tegmental area, the source of dopamine generation and dysregulation in Parkinson’s disease and 

Parkinsonian disorders (2.07 × 10−6) (37). Dopamine transporter gene SLC6A3 (ρ=0.967), a strong marker 

for this pattern, is considered as a candidate risk factor for dopamine or other toxins in the dopamine 

neurons (38, 39)  Another well-known marker, aldehyde dehydrogenase-1 (ALDH1A1), whose 

polymorphisms are implicated in alcohol use disorders, is strongly associated with M12 (ρ=0.949) (40). 

Other key disease related modules are shown in Suppl. Figure 10.  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443911doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443911
http://creativecommons.org/licenses/by/4.0/


We map brain-related diseases to the canonical patterns by finding the closest correlated module 

eigengene for each disease gene (Supp. Table 5, Methods). Figure 2D shows the mean correlation of the 

40 disease associated gene sets with the module M1-M32 eigengenes ordered by ADG 1-4 as in Fig.1. The 

basic cell class composition neuronal, oligodendrocyte, astrocyte of AHBA tissue samples was determined 

by earlier single cell studies (14)  and the modules M1-M32 ordered by decreasing proportion of neuron-

enriched membership. Fig. 2D clarifies the cell type composition and distinction between ADG groups in 

Fig. 1. In particular, primarily tumor-based ADG 1 maps to modules M21-M32 having enriched glial 

content (p<2.413× 10−15), while ADG 3 psychiatric and substance abuse related diseases map to 

neuronal enriched patterned modules M1-M10 (2.2× 10−16).  By contrast the neurodegenerative 

disorders of ADG 2 including Alzheimer’s, Parkinson’s, ALS, and frontotemporal lobe degeneration show 

more uniform distribution across the modules, clearly separating this group from ADG 1 (1.55× 10−15). 

ADG 4 has lower expression in neuronal modules M1-12 than ADG 3 (1-sided, p<3.84× 10−13) and is 

enriched in isolated structural markers M10 (striatum, narcolepsy, marijuana abuse), M11 (thalamus, 

Parkinsonian disorders) M12 (substantia nigra, dystonia), and M16 (dentate gyrus, amnesia, tobacco use). 

The canonical module distribution of Figure 2D further validates the clustering of Fig. 1B, improves the 

unique disease identification for ADG and GBD groupings (Suppl. Figs. 11,12) and provides a bridge to 

understanding their cell type content.   

 

Amongst disease genes several modules were found represented at unexpected proportions (Suppl. 

Figure 13) including M1 (Fig. 3A, telencephalon, higher frequency, psychiatric) functionally connected 

with synaptic transmission and plasticity (𝑝 < 1.04 𝑥 10−10), M10 (striatum, higher frequency, 

movement disorders, addiction related) with GPCRs and dopamine receptor signaling (7.27 𝑥 10−5), 

primarily glial M19 (thalamus, cerebellar nuclei, brainstem, lower, Alzheimer’s) in mitochondrial pathway 

dysfunction (5.50 𝑥 10−82) and M30 (white matter, ventral thalamus, globus pallidus lower, 

neurodegenerative) for myelination and axon ensheathment (5.63 𝑥 10−9).  Disease genes are correlated 

with neuronal-based modules more frequently than expected, and with glial modules less than expected 

(p=0.0003).   
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Disease genes and cell types of middle temporal gyrus 

Brain structure-level analysis describes global anatomic relationships of transcriptomic patterns, however 

it is limited in its ability to implicate specific cell types in diseases ((11, 12). We used human single nucleus 

RNA-seq data from eight donor brains (15,928 nuclei) from the middle temporal gyrus (MTG) (15)  (Figure 

3A) where 75 transcriptomically distinct cell types were previously identified, including 45 inhibitory 

neuron types and 24 excitatory types. All inhibitory types express the GABAergic interneuron maker GAD1 

implicated in bipolar disorder (41) depression (42), and schizophrenia (43) and excitatory types express 

the vesicular glutamate transporter SLC17A7, associated with learning and memory disorders (44) (as well 

as psychiatric diseases), and 6 non-neuronal cell types that express the glutamate transporter SLC1A3; 

autism (45)  and epilepsy (46). A set of 142 genes are used to differentially characterize the MTG clusters 

(15). Structurally these form a very high differentially stable group (DS=0.734, p<8.66E-07, all disease 

genes, DS=0.630), 30 of which are among the disease genes, and several are uniquely associated with a 

disease (Suppl. Table 6).  
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Figure 3. Disease genes and cell types of middle temporal gyrus. A) Reference plate from the Allen Human Brain 

Atlas (http://human.brain-map.org.) containing middle temporal gyrus region B) Cell type specificity measure τ (tau)  

derived as the concentration of expression among 75 cell types from (15)(Methods). Distribution of τ for brain 

disease associated, non-brain disease, and unassociated genes (14). C) Specificity measure τ averaged over disease 

(Suppl. Fig. 14) and then by GBD class. D) Mean cell type expression (fpkm) of 40 brain diseases over 75 types 

identified in (Hodge et al., 2019), clustered removing common genes with fixed taxonomic order (Hodge et al., 2019). 

Top annotation: major cell class; excitatory, inhibitory, non-neuronal, and ANOVA at fixed cell type colored by 

subclass level; inhibitory (Lamp5, Sncg, Vip, Sst Chodl, Sst, Pvalb), excitatory (L2/3 IT, L4 IT, 5 IT, L6 IT, L6 IT Car3, L5 

ET, L5/6 NP, L6 CT, L6b), non-neuronal (OPC, Astrocyte, Oligodendrocyte, Endothelial, Micro-glial/perivascular 

macrophages.) Hierarchical clustering resolves into four groups CTG 1-4. Left annotation: ADG grouping consistent 

with Fig. 2, and GBD classification. E) Corrected t-tests between CTG 1-4 at fixed cell type with subclass and layer 

annotation.  F) Consensus UMAP combining cell type and structural disease relationships.  Numbers indicate ADG 

group (Methods). 

 

To assess the tendency for disease gene co-expression to concentrate in a specific cell type, we used the 

Tau-score (τ) defined in (47) (Methods). While the distinction in fpkm values between brain and non-brain 

disease genes is not significant (p=0.021) (Supp. Fig 14), the τ specificity difference between brain disease 

genes and no disease is significant (8.92 𝑥 10−8) and more remarkably for brain disease and non-brain 

disease genes (2.2 𝑥 10−16) indicating potential cell type specific involvement in genes associated with 

brain diseases (Figure 3B). Averaging tau over sets of genes representing a given disease, we obtain a 

measure of cell type specificity of each disease within MTG (Supp. Fig 15). Pooling to the 7 GBD categories, 

the classes psychiatric (6.7 𝑥 10−43), movement (1.5 𝑥 10−10), and substance abuse disorders 

(2.1 𝑥 10−16) show high cell type specificity, while tumors, developmental disorders and 

neurodegenerative diseases show less. (Figure 3C). GBD brain-related category is a mismatch with the 

structural approach likely due to non-MTG related cell type expression. 

 

A cell type disease-based clustering was performed over the 75 MTG cell types, again removing common 

genes similarly to Fig. 1 presents the clustering of the mean expression profiles across the 40 studied brain 

diseases. This approach also identifies four major groups: (CTG 1) diseases with strong non-neuronal 

enrichment, mainly tumors (ADG 1), (CTG 2) predominant enrichment in inhibitory neurons and 

specialized non-neuronal enrichment, associated with neurodegenerative diseases (ADG 2), (CTG 3) 

strong enrichment in both inhibitory and excitatory neurons for major psychiatric (48) and substance 
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abuse disorders (49)  (ADG 3,4), and (CTG 4) primarily neuronal and strongly in excitatory cell types, 

representing movement, substance and developmental disorders (ADG 3,4). Grouping of cell types for 

disease genes is seen both at the major class (inhibitory, excitatory, non-neuronal) as well the subclass 

level of the ontology (Supp. Fig 15). There is notable clustering of diseases within GBD classes including 

psychiatric (e.g. schizophrenia, bipolar, autistic disorders) and substance abuse (e.g. amphetamine and 

cocaine related, substance withdrawal), and neurodegenerative (e.g. Alzheimer’s, ALS, amnesia, 

frontotemporal dementia).  

 

Analysis of variance at fixed cell types (Fig. 3D, annotation) shows that the highest variation between CTG 

groups occurs for non-neuronal, followed by VIP, SNCG interneurons, and groupwise CTG comparisons 

(Fig. 3E) highlight significant variation between neuronal subtypes, in particular excitatory (L2/3 - 5 IT, L6 

CT). There is surprising consistency between the structural and cell type analysis in transcriptomic 

proximity between diseases and their grouping by GBD class, despite data being limited to nuclei from a 

single cortical area (Suppl. Fig. 16).  Comparing structural and single cell data connects these scales and 

provides a more detailed molecular map of brain diseases and associated cell types. By combining the 

correlation matrices for these approaches (Methods) a UMAP can be derived illustrating a consensus 

disease map, highlighting ADG-CTG consistency, its relationship to GBD phenotypic groupings and major 

cell types (Fig. 3F, Suppl. Fig. 16B).  

  

Brain diseases in mouse and human cell types 

Single cell profiling now enables the alignment of cell type taxonomies between species, analogously to 

homology alignment of genomes between species. To examine conservation of disease based cellular 

architecture between mouse and human, we used the alignment of transcriptomic cell types obtained in 

(15) of human MTG to two distinct mouse cortical areas: primary visual cortex (V1) and a premotor area, 

the anterior lateral motor cortex (ALM) (18). This homologous cell type taxonomy is based on expression 

covariation and alignment shows a largely conserved cellular architecture between cortical areas and 

species identifying 20 interneuron, 12 excitatory, and 5 non-neuronal types (Figure 4A.) We use this 

alignment to study species specific cell type distribution over the 40 disease groups and at two levels of 

resolution: broad cell type class (N=7, e.g. excitatory), and subclasses (N= 20, as in Fig. 3) where non-

neuronal cell types were common between the two levels of analysis. 
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To identify cell types showing enriched gene expression associated with brain disorders in mouse and 

human cell types we used expression-weighted cell-type enrichment (EWCE) analysis (48). Briefly, EWCE 

compares expression levels of a set of genes associated with a given disease to the genomic background, 

excluding disease-related genes, by performing permutation analysis (Methods) thereby defining the 

probability for the observed expression level of the given gene set compared with random sets of genes. 

In contrast to the tau measure (Fig. 3B,C) which examines each gene separately and measures only 

divergence of cell type expression from uniformity, EWCE evaluates all genes in a disease simultaneously 

and identifies concentration of cell-type expression..  The correlation of EWCE values aligned between 

mouse and human is ρ=0.621, p<2.2 𝑥 10−16,  reflective of broadly conserved expression patterns (14, 

15) with no significant difference in EWCE distribution (Suppl. Fig. 17, K-S test, p=0.126).  Further, 

simultaneous clustering of EWCE mouse and human aligned cell types (Figure 4C, orange (mouse), 

blue(human)) demonstrates a highly conserved cell type signature at the subclass level across species for 

many diseases (median ρ=0.645). 

  

Despite distributional similarities there are notable species differences in cell type enrichments.   The 

EWCE outliers of Fig. 4A (pie charts) are dominated by ADG 4 GBD substance abuse (cocaine, tobacco 

abuse) and brain-related (neuralgia, narcolepsy) categories.   Figure 4D presents a more detailed view of 

mouse and human cell type enrichments. While there are no significant neuronal enrichments in either 

species for tumor based CTG 1 (ADG 1), non-neuronal include known associations of endothelial cells (50), 

human specific oligodendrocyte precursor cells (OPC) identified as a potential origin of glioblastoma 

(p<0.003) (51),  and migraine disorder where genetic malfunction of astrocytes is implicated 

(52)(p<0.0009). Unique human microglia/PVM enrichment for Alzheimer’s disease (p<0.0012), and 

oligodendrocytes in hereditary spastic paraplegia (p<0.0008), (53) are seen and there are no significant 

non-neuronal enrichments among ADG 2-4. GBD classes psychiatric and substance abuse (ADG 3-4) 

dominate cell type enrichments for both inhibitory (64%) and excitatory (70%) types. However, at the 

subclass level these are primarily inhibitory types in both mouse and human (Fig 4D, top), in particular 

Sncg, Vip, and Sst Chodl, and significant excitatory types are found in psychiatric disorders, e.g. depressive 

disorder L2/3 IT (p<0.0015), L5 ET (p<0.00153), and bipolar disorder L6 IT Car (p<0.004).   In summary, 

although distribution of disease implicated cell types is conserved Fig. 4D identifies a number of species-

specific differences. 
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Figure 4. Disease based cell type expression in mouse and human. A) Aligned transcriptomic taxonomy of cell types 

in human MTG to two distinct mouse cortical areas, primary visual cortex (V1) and a premotor area, the anterior 

lateral motor cortex (ALM) from (15) allows comparison of cell type enrichments between species. B) Scatterplot of 

disease-subclass EWCE values for mouse and human colored by CTG 1-4.   Pie chart insets show percentages of CTG 
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and GBD classes of top 10% outliers from the regression line, represent most significant EWCE differences.   C) 

Simultaneous clustering of mouse and human EWCE disease signatures at subclass level (orange: mouse, 

blue:human).  Annotation top major cell classes, side disease GBD and CTY membership.   D)  Significant species 

EWCE by disease and cell type with similar color code, black: both species. Disease clustering is as in Fig. 3 with GBD 

annotations. Top barplot:  number of cell type enrichments. * indicates surviving multiple hypothesis testing B-H 

q<0.01.  

 

 

Discussion  

We presented a brain-wide molecular characterization of common brain diseases from the perspective of 

neuroanatomic structure and cell type specificity, striving to describe relationships between multiscale 

approaches and key associations. Combining structural patterns with cell type-specific analyses allows an 

identification of major disease groups and brain-wide and cell type specific transcriptomic signatures of 

common brain diseases. Such analysis may potentially indication clinically actionable strategies, as shared 

cellular and mesoscopic expression patterns hint at potential interactions between genes across regions 

of the brain.  Precise phenotypic classification of diseases is challenging due to variations in manifestation, 

severity of symptoms, and comorbidities (54).  We chose for a high-level phenotypic categorization from 

the Global Burden of Disease study from the Institute for Health Metrics and Evaluation as this is a 

continuously updated, comprehensive, and data-driven resource.  For associated genes, DisGeNet is one 

of the largest resources integrating human disease genes and variants from curated repositories and 

provided a standard approach to select genes for the study. Determining implicated genes in disease 

states presents considerable uncertainty, and any study is likely to miss important associations. In 

particular, notably absent from our analysis are cerebrovascular diseases that account for the largest 

global burden of disability (55), and this limitation is due to relative under-sampling of rare vascular cell 

types in the Allen Human Brain Atlas. However, the approach presented is flexible and data driven and 

can be immediately updated with other diseases of interest or associated genes.  

 

Transcriptomic patterns of brain diseases cluster structurally into four major disease groups (ADG 1-4), 

largely recapitulated using cell type data from a single cortical area.  ADG 1 consists primarily of glial 

diseases including most brain tumors, multiple sclerosis, migraine and certain dementias and are 

transcriptomically distinct (ADG 1).   Most neurodegenerative diseases (ADG 2) involve common neuronal 

(particularly cortex and hippocampus) and strong glial patterning (Fig. 2D and 3D) effectively 
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distinguishing them from largely glial based ADG 1. ADG 3 shows the strongest neuronal patterning of all 

four disease groups with pronounced expression within the telencephalon, while glial content is minimal. 

This group mainly consists of psychiatric and substance abuse disorders, and epilepsies, recapitulating the 

known close genetic relationship between these disease groups (56).  Finally, ADG 4 represents a 

combination of GBD diseases with modest cortical expression, enriched in glutamatergic cell types, and 

with a larger number (26%) of anatomic structural markers in basal ganglia, hypothalamus, and lower 

brain structures.  The general association of these disease groups is reproduced both in cell type specific 

analysis and corroborated by association in the mouse.  

 

Diseases with diverse phenotypes and clinical presentations have shared anatomic expression patterns, 

and this may provide insight into disease mechanisms and frequency of comorbidity.  For example, autism, 

OCD and epilepsy are phenotypically diverse, yet all belong to ADG 3, and cell type analysis in Fig. 3D 

illustrates a correlated cell type signature with strong IT neuron subclass expression. While these are 

broad categorizations, there is highly reproducible structure to anatomic disease profiles illustrated 

through differential expression stability analysis and through correspondence between mouse and human 

cell type profiles (Fig. 4C). This potentially provides a novel approach to utilize brain wide relationships to 

study and characterize brain disorders, especially as large-scale cell type studies become available, 

supplying spatially localized expression of disease genes and details of coregulation.  The general 

correspondence of structural and cell type approaches even restricted to a single cortical area, the middle 

temporal gyrus, while an imperfect association indicates a consensus organization and encourages 

examining these results in other areas using cell type data.   

 

This work is complementary to studies on shared genetic heritability of common disorders of the brain. 

The Brainstorm consortium studied a large cohort GWAS meta-analysis demonstrating that common 

genetic variation contributes to the heritability of brain disorders, and showing that psychiatric disorders 

share common variant risk, while other neurological disorders appearing more distinct from one another 

and psychiatric disorders (57). This result is also seen in the present study, with a lower transcriptional 

variance in both structural and cell type profiling between schizophrenia, bipolar and autistic disorders 

compared with a wider range of anatomic patterning in other neurological disorders (ADG 4.)  A striking 

finding is the enrichment of inhibitory neurons in psychiatric diseases and substance use disorders, and 

notable species-specific expression differences in these classes. For example, microglial involvement in 

Alzeimer’s disease is well established and seen in Fig 3D and uniquely human enriched (Fig. 4A). While 
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there are several lines of evidence that inhibitory cell types are impaired in psychiatric disorders (58)  (e.g. 

depression, bipolar disorder and schizophrenia, (59), there are, however, limitations to a cell type 

enrichment approach. In particular, some diseases may involve gene pathways shared across cells rather 

than involvement of subsets of cell types or brain regions, and we find that cell type enrichment of disease 

genes here does not necessarily match cell types with expression differences in disease vs. control tissue. 

Exploring the transcriptomic architecture of these disorders is a fully new field that has been 

underexplored and these findings support the transcriptomic hypothesis of vulnerability that in polygenic 

disorders, genes that are co-expressed in a certain brain region or cell type are much more likely to 

interact with each other than those that do not follow such a pattern (11, 12). 

  

While previous work has shown conservation of neuronal enriched expression patterning between the 

mouse and human (14), a recent novel alignment of mouse and human cell types in middle temporal gyrus 

(15) now allowed for a more specific analysis. Here we show that the mouse appears to be evolutionarily 

sufficiently close to identify potentially relevant cell types and a striking conserved signature across 

subclass cell types for many diseases. While homology alignment of cell types between mouse and human 

may provide insight into convergent mechanisms based on species-specific differences, further human 

data is needed to implicate disease genes with cell function.  We are aware of the different sampling 

protocols and numerous complications of cross-species comparison and our work addresses broad trends 

across diseases and cell types as opposed to differential expression of specific genes. Our results describe 

the structural and cellular transcriptomic landscape of common brain diseases in the adult brain providing 

an approach to characterizing the cellular basis of disorders as brain-wide cell type studies become 

available. 

  

Methods 

 
Disease genes. To obtain the gene disease associations, we used the DisGeNET database, a discovery 

platform with aggregated information from multiple sources including curated repositories, GWAS 

catalogues, animal models and the scientific literature. DisGeNET provides one of the largest gene-disease 

association collections. The data was obtained from the April 2019 update, the latest update related to 

the gene-disease association at the time of analysis.  An original list of 500 diseases with connection to 

the brain were intersected with the provided repository at the DisGeNET. For each disease the main 

variant was selected, and rare familial/genetic forms were not included in the analysis. For this study, we 
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included genes with  gene-disease association reported at least in one confirmed curated (i.e. UNIPROT, 

CTDTM, ORPHANET, CLINGEN, GENOMICS ENGLAND, CGI, PSYGENET) (for details see 

https://www.disgenet.org/dbinfo). Since the goal of the study is to investigate the similarities and 

distinctions between brain-related disorders, disorders with less than 10 genes associated with them for 

the analysis were excluded. Finally, 15 disorders of peripheral nervous system or a second level 

association to the brain (e.g. retinal degeneration) were removed. This procedure resulted in 40 brain 

disorders with their corresponding associated genes. Finally, for these 40 disorders, we performed a 

literature review of the current GWAS studies to add all the missing genes from the DisGeNET dataset.  

These 40 diseases include brain tumors, substance related, neurodevelopmental, neurodegenerative, 

movement, and psychiatric disorders (Supp. Figure 1). 

 

Dataset description. Anatomic based gene expression data was extracted from 6 post-mortem brains 

(13). The extracted samples were divided into 132 regions based on the anatomical/histological extraction 

regions. These 132 regions were further pooled/aggregated into 104 regions including cortex (CTX,8), 

hippocampus (HIP,7), amygdala (AMG,6), basal ganglia (BG,12), epithalamus (ET,3), thalamus (TH,10), 

ventral thalamus (VT,2), hypothalamus (HY,16), mesencephalon (MES, 11), cerebellum (CB,4), pons (P,8), 

pontine nuclei (PN,2), myelencephalon (MY, 12), ventricles (V,1), white matter (WM,2) (Suppl. Table 3). 

The resulting gene by region matrix was further averaged between subjects to produce one representative 

gene expression by region matrix. Each gene expression profile was further normalized across the brain 

regions.  Cell type data in human is snRNA-seq from middle temporal gyrus (MTG) largely from 

postmortem brains (15). Nuclei were collected from eight donor brains representing 15,928 nuclei passing 

quality control, including those from 10,708 excitatory neurons, 4,297 inhibitory neurons and 923 non-

neuronal cells.  Cell type data from the mouse represents 23, 822 single cells isolated from two cortical 

areas (VISp, ALM) from the C57GL/6J mouse (18).   

 

Cell-type specificity.  Calculated based on the Tau-score defined in (47). This measure has previously been 

employed using the same dataset (15). Briefly, Cell-type specificity 𝜏is defined as: 

 𝜏 =
∑ (1−𝑥(𝑖))𝑁

1

(𝑁−1)
 

where, x(i) is the gene expression level in each cell-type for a given gene normalized by the maximum cell-

type expression of that gene, and N is the number of the cell-types in the analysis.  
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Disease-Disease similarity index. In order to calculate the similarity between each pair of disorders we 

used the gene expression patterns across 104 brain structures, removing overlapping genes from each 

pair of disorders during clustering.  In presenting heatmaps the full set of genes in each disease are 

averaged.  Distance metric between diseases is 1 - 𝛒 where 𝛒 is Pearson correlation between structure or 

cell type profile also removing common genes. The procedure for disease similarity using cell-type data 

used the gene expression pattern across the 75 cell-types (instead of brain regions) in human cells 

extracted from MTG. For clustering in both cases we used agglomerative hierarchical clustering with Ward 

linkage algorithm (i.e. Ward.2 in R hclust function, R version 3.6.3 ) 

 

Gene Expression Differential stability (DS).  Gene expression differential stability was calculated for each 

gene as the similarity of its expression pattern across 6 post-mortem brains. For each pair of brains, the 

correlation of expression pattern across overlapping brain structures was calculated. The mean 

correlation over these 15 pairs was used as the differential stability for the given gene. (For more details 

see (14).  

 

Disease-module association. For each gene the relationship between gene expression for each gene and 

module is calculated as explained in (14) (i.e. each gene expression pattern is correlated with eigengene 

pattern from modules across within each of 6 postmortem brains). These correlation values are then 

normalized using Fisher r-to-z transform and averaged across brains. For each module the gene 

associations were then standardized (mean=0, sd=1). Finally, these values are averaged across genes 

associated with each disease to calculate the disease module association. 

 

Disease related gene expression within cell-types. We used expression-weighted cell-type enrichment 

(EWCE) analysis (https://bioconductor.riken.jp/packages/3.4/bioc/html/EWCE.html; (48) to identify cell 

types showing enriched gene expression associated with each of the 6 brain disorders. Briefly, EWCE 

compares the expression levels of the genes associated with a given disease to the background gene 

expression (all genes, excluding the disease-related genes) by performing permutation analysis and 

defining the probability for the observed expression level of the given gene set compared against a 

random set of genes. We used N=100,000 as the permutation parameter and performed the analysis at 

two cell-type category levels. The two levels included broad cell-types (N=7) and cell-subclasses (N= 20). 

The non-neuronal cell types were common between the two levels of analysis. These two levels were 

selected due to the availability of the homologous cell types in mouse and human cell dataset. Finally for 
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each disease, we used false discovery rate (FDR) correction (60) for multiple comparisons for disease-cell 

type associations. 

 

Consensus Representation.  Consensus UMAP was constructed by taking pairwise disjoint gene set 

correlation matrices for structural and cell type data, normalizing 2D UMAP embedding to maximum 

distance and averaging coordinates.   

 

Statistical Analysis. All statistical analysis and visualization were conducted in R (www.r-project.org), a 

Jupyter notebook reproduces all analysis. To examine the differences in mean expression level between 

ADG groups we performed ANOVA tests. This was followed by direct comparisons between ADG pairs 

using unpaired t-test. All results were corrected for multiple comparisons using Benjamini-Hochberg 

correction controlling the false discovery rate. To examine the stability of the gene expression profiles, 

we repeated our analysis across 6 brains and searched for the matching pattern in other subjects for any 

given brain across ADG and GBD disease groups. The gene expression DS within each GBD group was 

compared to the general DS of all other genes in the dataset using independent t-tests.  

 

Data Availability. All data used in this manuscript are publicly available. The gene disease association data 

can be downloaded from https://www.disgenet.org/. The large-scale anatomic transcriptional patterns 

can be downloaded from http://human.brain-map.org/ and cell type data is available at 

http://celltypes.brain-map.org/.  

 

Code Availability 

The script alongside a notebook file and all necessary data files for producing the figures are provided at 

https://github.com/yasharz/human-brain-disease-transcriptomics .  
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