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Abstract

Many vector-borne diseases are controlled by methods that kill the insect vectors responsible

for  disease  transmission.  Recording  the  age  structure  of  vector  populations  provides

information on mortality rates and vectorial capacity, and should form part of the detailed

monitoring that occurs in the wake of control programmes, yet tools for obtaining estimates of

individual  age  remain  limited.  We  investigate  the  potential  of  using  markers  of  gene

expression to predict age in tsetse flies, which are the vectors of deadly and economically

damaging  African  trypanosomiases.  We  use  RNAseq  to  identify  candidate  expression

markers,  and  test  these  markers  using  qPCR  in  laboratory-reared  Glossina  morstians

morsitans of known age. Measuring the expression of six genes was sufficient to obtain a

prediction of age with root mean squared error of less than 8 days, while just two genes were

sufficient to classify flies into age categories of ≤15 and >15 days old. Further testing of these

markers in field-caught samples and in other species will determine the accuracy of these

markers in the field. 
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1 Introduction

Vector-borne  diseases  represent  major  threats  to  health  and  livelihood  world-wide,  being

directly responsible for 680,000 deaths annually (Roth et al. 2018), as well as causing huge

economic damage to livestock (Eisler et al. 2003, Shaw 2004). Control of the vectors that

transmit these diseases is an integral tool for reducing disease burden  (Wilson et al. 2020).

The metric of success for these control programmes is a reduction in disease burden in the

host population. However, when vector control is accompanied by other interventions such as

screening and treating the host population for the disease, the contribution of vector control to

the subsequent reduction of disease can be hard to determine  (World Health Organization

2012).  Conversely,  while  the  impact  on  the  vector  population  may  not  bear  a  simple

relationship to disease burden, it is a direct outcome of vector control. Control efforts should

thus be accompanied by detailed monitoring of the targeted vector populations, to estimate

impact, to monitor population recovery and to understand the transmission dynamics of the

disease.  Mostly,  monitoring  currently relies  on counting  the  number  of  vectors  caught  in

sentinel traps, which can be greatly affected by trapping method, effort and efficacy, and may

only partly reflect the ability of the vector population to transmit disease (Wilson et al. 2015). 

One aspect of vector monitoring that has been particularly challenging is the quantification of

the age-distribution (demographics) of natural populations (Caragata et al. 2011, Cook et al.

2006, Sikulu et al. 2010). Estimating vector age is important for two reasons. First, it can

provide a measure of the effectiveness of vector control because increased adult mortality

should  lead  to  a  younger  population  age  structure.  Importantly,  this  measure  of  control

effectiveness is independent of catch size and trapping effort because only the distribution of

age needs to be known. Second, in most cases, the probability that an individual vector is

infectious for a given disease increases with age (Dye 1992, Woolhouse & Hargrove 1998).

Before transmitting the disease, vectors first need to have taken an infected blood meal, and

there is then typically a delay between acquisition of infection and onward transmission due

to the need for the pathogen to replicate and/or mature. Age grading is therefore useful to

determine the proportion of individuals old enough to transmit disease.   

Tsetse flies (genus  Glossina) are the vectors of Human African Trypanosomiasis (HAT, or

sleeping sickness) and Animal African Trypanosomiasis (AAT, or nagana). HAT is, without

treatment,  a fatal  disease endemic to sub-Saharan Africa  (Franco et  al.  2014), while AAT

presents a major economic burden to rural communities by affecting livestock  (Eisler et al.
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2003). Being a disease primarily of animals and with reservoirs across multiple species, AAT

cannot be controlled through treatment alone and is thus highly dependant on vector control

(Holmes 2013). G. morsitans morsitans is a major vector of AAT in East and Southern Africa

and can also transmit HAT (Dale et al. 1995). Catch rates of this species in the wake of vector

control can be extremely low  (Kgori et al. 2006, Vale et al. 1988, Van den Bossche 1997),

making it particularly challenging to conduct ongoing monitoring of important populations. It

is therefore all the more important to extract as much information as possible from the limited

number of flies obtained. 

As is the case for all insect vectors, a means to accurately determine the age of tsetse flies is a

valuable but elusive goal,  and current methods have many shortcomings. Laborious ovary

dissections can be used to age females up to their fourth ovarian cycle (Hargrove 2012), but

this  technique requires specialist  dissection skills  and cannot  be applied to males,  despite

males being at least as competent at transmission as females, and perhaps more so (Dale et al.

1995, Maudlin et  al.  1990).  Estimates of age based on wing damage  (Hargrove 1990) or

analysis of pteridines have also been used (Langley et al. 1988, Lehane & Hargrove 1988),

but  experience  in  practical  applications  has  shown  that  measurements  in  the  field  vary

enormously (for example in mosquitoes: (Lardeux et al. 2000, Penilla et al. 2002)) and cannot

be used to reliably estimate age on an individual basis (Hargrove 2020). 

Here we explore  the  value  of  using  gene  expression  to  estimate  age  in  tsetse  flies.  This

method has previously been tested in mosquitoes  (Caragata et al. 2011, Cook et al. 2006),

with encouraging results, but has yet to be applied in  tsetse. We use laboratory-reared  G.

morsitans as a proof of concept, and show that measuring the expression of just six genes can

estimate the age of both male and female tsetse flies with a root mean squared error of less

than 8 days. We also trained models to classify tsetse into those younger or older than 15

days, since flies younger than 15 days are unlikely to harbour a mature trypanosome infection

(Dale et al. 1995), and found that just two genes are sufficient for 95% accurate classification.

2 Methods

2.1 Sample collection and RNA extraction

G. morsitans morsitans individuals were collected from colonies maintained at the Liverpool

School of Tropical Medicine. Colonies are kept in meshed boxes (cages) at 26°C ± 2 ºC and

72 ± 4% humidity, with a 12hr light-dark photoperiod, and fed three times per week using

4

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443792doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443792
http://creativecommons.org/licenses/by/4.0/


defibrinated horse blood (TCS Biosciences Ltd., Buckingham, UK) provided through silicon-

membrane feeders. Pupae are regularly collected and allowed to emerge to form new cages.

Each fly cage contains flies which eclosed over a 2-3 day window, and thus the age of all flies

in the cage are known to a precision of either 2 or 3 days. The ages reported here are the

middle of the age range (eg: a fly aged 13-15 days or 13-16 days is reported as 14 days old).

The age of the samples ranged from 2 to 62 days. While reproductive status of females was

not measured precisely, we tried to include a range of physiological states (based on visual

inspection of the size of the abdomen) within each age group, so that genes could be identified

that are predictive of age in spite of variation caused by the ovarian cycle. Overall, 505 flies

were collected (301 female and 204 male, Supplementary Data S1). 

For sample collection, fly cages were briefly transferred to a cold room (4 ºC) where flies to

be collected were removed from the cage once quiescent and decapitated. Heads were placed

into  RNAlater  and stored  at  -20  ºC.  In  case  repeated  exposure  to  the  cold  room created

alterations in gene expression, we minimised this exposure by never collecting flies from a

given cage more than three times over the course of the experiment. No more than two flies

were collected from a cage on a given day, for three reasons. Firstly, we wanted to make sure

that flies were obtained from a range of different cages in order to avoid issues of results

being confounded by cage of origin (such as an infection specific to one cage of flies). We

therefore  never  obtained  more  than  six  flies  from a  single  cage  over  the  course  of  the

experiment.  Second,  we wanted  to  minimise  the  time that  samples  spent  at  temperatures

above -20 ºC after death, limiting the number of samples that could be collected in a single

sitting.  Third,  all  flies  were collected  at  the  same approximate  time of  day (morning)  to

minimise gene expression variation due to circadian cycles  (Rund et al. 2011), limiting the

number of collections that could be performed on the same day. 

RNA was extracted from individual fly heads. Single heads contain enough material for RNA

sequencing and can easily be removed without the need for precise dissection, providing a

quick and convenient tissue for sampling. We avoided the abdomen because of the important

effect that sex and the ovarian cycle would have on gene expression in these tissues. RNA

extractions  were  performed  using  PicoPure  kits  (Arcturus),  increasing  the  volume  of

extraction buffer and alcohol to 120μl. cDNA libraries were prepared using SuperScript III

Reverse Transcriptase (Invitrogen).
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2.2 Sequencing

cDNA libraries from 22 male and 28 female individual flies ranging in age from 2 to 62 days

post-eclosion (Fig. 1, Supplementary Data S1) were sent to the Liverpool Centre for Genomic

Research (CGR) for  150bp paired-end sequencing on an Illumina  HiSeq 4000 sequencer.

Strand-specific library preparation was performed using NEBNext poly A selection and Ultra

Directional  RNA library preparation kits,  producing an average of 23.8 million reads  per

sample.  Reads were then trimmed as part  of the CGR's genomic pipeline using Cutadapt

version 1.2.1  (Martin  2011) with option -O 3 to  remove Illumina adapter  sequences,  and

Sickle  version  1.2  (https://github.com/najoshi/sickle/releases/tag/v1.2)  with  a  minimum

window quality  score of 20.  Reads shorter  than 20 bp after  trimming were removed and

subsequently  unpaired  reads  were  excluded.  Data  were  quality  checked  using  FastQC

(Andrews 2010) before analysis.

2.3 RNAseq analysis

Trimmed reads were aligned to the GmorY1.9 genome using STAR aligner version 2.7.0

(Dobin et al. 2013) using the --quantMode GeneCounts option to obtain mapping counts for

each gene. 

Differential expression analysis was performed using the R package EdgeR (Robinson et al.

2010),  with  library  size  normalisation  performed  using  Trimmed  Mean  of  M-values

6

Figure 1: Number of samples used for RNAseq (top; total = 50) and qPCR (bottom; total =
498), split by age category (2 - 62 days old). Individual female and male flies shown as blue
triangles and orange circles respectively. 
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(Robinson & Oshlack 2010) and dispersion calculated with trended and tag-wise estimates.

Genes with fewer than 10 reads across all 50 samples were excluded from the analysis. All

plotting figures show expression measured as reads per million reads (RPM) from normalised

library sizes. Association of gene expression with age and sex was tested using generalised

linear modelling (glm) implemented in  edgeR,  with age coded as a continuous variable and

sex as a categorical variable. Preliminary analysis found little evidence of an important effect

of the number of times a colony was exposed to the cold room on gene expression, but there

was  a  significant  effect  of  the  number  of  days  since  flies  had  received  a  blood  meal

(Supplementary Data S2). We therefore controlled for days since receiving a blood meal by

including it as a fixed continuous factor in the glm. False discovery rate control was set at 1%

using the R package fdrtool (Klaus & Strimmer 2015).

Gene  clustering  analysis  was  performed  with  the  WGCNA package  in  R  (Langfelder  &

Horvath 2008), using the normalised read counts generated by edgeR and keeping only the

5000 genes with the highest variance in expression.  We used the hybrid module merging

algorithm with a deep split value of 4, a minimum cluster size of 30 and a power parameter of

8, followed by module merging using the absolute value of the correlation coefficient between

eigengenes as a distance matrix and a merging threshold of 0.2. 

Prediction of age based on normalised read counts from the RNAseq data was performed

using lasso regression implemented with the glmnet package in R (Friedman et al. 2010). As

the aim was to find genes with consistently high predictive value for age, we explored a range

of  lasso  parameters.  This  exploratory  procedure  is  recorded  in  detail  in  the  R  script

“02_lasso.r” provided on GitHub (https://github.com/EricRLucas/TsetseAgeMarkers).

2.4 Primer design and qPCR

Based on the results of the RNAseq analysis, 16 genes were short-listed to be tested as qPCR

markers  of  age  in  G.  morsitans,  with  two  further  genes  being  identified  as  suitable

housekeeping genes for our purposes (i.e.:  showed minimal variation in expression in the

conditions included in our study and no evidence of association with age).  Primers  were

designed for these genes based on the GmorY1.9 genome using NCBI Primer blast (Ye et al.

2012). Where possible, amplicons were designed to span exon junctions. Based on testing

amplification efficiency using 1:3 serial dilutions, the 10 best primer pairs for age-predictive

genes, and the two primer pairs for housekeeping genes, were kept for use in the study and

applied to 499 samples (298 females and 201 males), including 44 of the samples used for
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RNAseq (the remaining 6 samples had too little cDNA left to be included in the qPCR study).

One of the samples failed to produce a Ct value for several genes and was therefore excluded

from subsequent analysis, leaving 498 samples (Fig.  1). All primers used in this study are

listed in Supplementary Data S3. 

qPCR was run on a AriaMX RealTime PCR instrument in a total volume of 20 μl, containing

10 μl of SYBR 2x MM, 1.2 μl of forward primer (5μM), 1.2 μl of reverse primer (5μM), 6.6

μl of nuclease-free water and 1 μl of genomic DNA. Reaction conditions: one cycle of 95°C

(3 minutes), 40 cycles of 95°C (10 seconds) and 60°C (10 seconds), one cycle of 95°C (1

minute), 55°C (30 seconds) and 95°C (30 seconds, 5 seconds soak time).

Missing raw Ct values for age-predictive genes (where the signal never reached the threshold

even  after  40  cycles)  were  replaced  with  the  maximum  value  of  40.  ΔCt  values  were

calculated using the mean Ct of the two housekeeping genes. Where Ct values were missing

for either housekeeping gene, normalisation was impossible and the normalised aging gene

value was recorded as missing (NA). All samples were run in two technical replicates and the

final  ΔCt was taken as  the mean of  the two replicates.  Gene GMOY005321 consistently

showed variable  ΔCt values between technical replicates, possibly due to low expression of

this  gene,  and  these  values  were  kept  unchanged.  For  all  other  genes,  any  gene-sample

combinations whose ΔCt differed by more than 1 between technical replicates were rerun for

a third technical replicate, along with both housekeeping genes, providing a third ΔCt. In most

cases, this third ΔCt was very close to one of the first two and very different from the other,

indicating which of the first two technical replicates was wrong. The final ΔCt was thus taken

as the mean of the third replicate and whichever of the first two replicates it was closest to. 

2.5 Predicting tsetse age from qPCR data. 

Machine learning predictions of tsetse age from qPCR data were performed using the caret

package in R (https://cran.r-project.org/package=caret).  The  ΔCt values for each of the 10

study  genes  were  used  as  continuous  predictor  variables,  and  sex  was  included  as  a

categorical  predictor  variable  since  some of  the  genes  showed  sex-dependent  expression.

Samples were randomly split into training set (75% of samples) and test set (25% of samples),

stratified by sex and age to ensure equal representation of these two variables in the two sets.

Due to rounding of sample numbers within each stratification layer, the final numbers in the

train and test sets were 380 (76%) and 118 (24%) samples respectively. Model training was

performed using three rounds of 10-fold cross-validation. For regression models, whose aim

8

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443792doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443792
http://creativecommons.org/licenses/by/4.0/


is to estimate age as a continuous variable, partial least squares regression (PLS), random

forest and extreme gradient boosting (XGB) models were all trained on the data and their

predictive accuracies  compared. Categorical  models were trained to categorise individuals

into  ≤15  and  >15  days  old.  Simple  decision  tree,  random forest  and  XGB models  were

compared for these categorical models. 

The minimum number of expression markers (genes) required to obtain accurate predictions

of age was determined by training the models with different numbers of loci. For each of the

random  forest  and  XGB  models,  the  ten  genes  were  ranked  according  to  their  variable

importance in the full  model  training described above (sex was found to have a  variable

importance of 0 in both cases, and was therefore excluded from these models). The models

were then trained with all ten genes, the top nine genes, the top eight genes, and so on. For

each set of genes, 20 models were trained with a different random split of training and test

sets, to account for stochastic variation in model accuracy.  

All  statistical  analysis  was  conducted  in  R  version  3.4.4  (R  Core  Team 2015).  Analysis

scripts,  qPCR  raw  data  and  RNAseq  read  counts  are  available  on  GitHub

(https://github.com/EricRLucas/TsetseAgeMarkers).  Raw  sequencing  will  be  submitted  to

ENA shotgun sequencing archive upon final acceptance of the paper for publication.

3 Results

We collected 301 female and 204 male  G. morsitans  flies of known age from laboratory

colonies, ranging in age from 2 to 62 days old. An initial RNAseq analysis of 28 female and

22 male samples showed that gene expression in these samples was primarily affected by age,

rather than sex or days since last blood meal (Fig.  2, Supplementary Fig. S1), although this

9

Figure  2:  Gene  expression  clusters  primarily  by  age.  Principal  component  analysis  of
RNAseq data, coloured by age (left) or days since blood meal (right).
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was primarily due to the strong changes in gene expression found during the first 15 days of

life, with older individuals clustering primarily by sex (Supplementary Fig. S2). 

We identified a set of genes that was likely to provide strong age prediction by looking for

genes  that:  1.  Were  strongly  correlated  with  age,  or  2.  consistently  performed  well  in

prediction of age using lasso regression and 3. where possible, belonged to different gene

clusters as defined by weighted gene network clustering analysis. We particularly looked for

genes showing strong expression changes in older individuals by identifying the genes most

differentially expressed when considering only individuals older than 15 days, but even these

showed relatively slight changes with age compared to some of the changes seen in the first

15 days of life (Fig.  3, Supplementary Fig. S3). Using our criteria, and after testing qPCR

primer efficient, we manually picked 10 genes associated with age, and 2 genes with very

little variation across samples to serve as housekeeping genes (Figs. 3 and 4). 

10

Figure  3: Expression of  ten age-related genes and two housekeeping genes  from RNAseq
data, ordered according to the variable importance in the XGB model (Fig. 4). Very strong
early-age expression changes in some genes (eg: GMOY005321, GMOY002920) allow good
discrimination  among young individuals,  but  show little  change in  later  life.  Genes  with
continuous changes (eg: GMOY003371, GMOY000749) are more gradual and offer more
consistent, but less powerful, discrimination at all ages.
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11

Figure 4: Ten age-related genes and two housekeeping genes (denoted with *) were used for
qPCR  analysis.  Gene  descriptions  are  taken  from  the  Contig  names  in  the  GmorY1.9
proteome. Top Drosophila BLAST hits obtained by blasting the GmorY1.9 proteome against
the D. melanogaster swissprot proteome. Variable importance of each gene shown for XGB,
random forest (RF) and XGB classifier models trained with all predictor variables. 

Figure 5: Prediction accuracy of the XGB model was highest (RMSE lowest) for individuals
under 15 days old (2.59), and highest when all individuals were considered (6.81). Females
are shown as blue triangles and males as orange circles. Purple line shows idealised perfect
prediction. 
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We obtained qPCR measurements of expression for these genes from 297 females and 201

males (Fig.  1). As expected, expression of all 10 age-related genes was strongly correlated

with  age  (Supplementary  Fig.  S4)  and  with  the  RNAseq  data  (Supplementary  Fig.  S5).

Principal component analysis of these age-related genes showed that age dominated the first

principal component of the data. In particular, samples clustered strongly into those younger

and older than 15 days (Supplementary Fig. S6)

The qPCR expression data produced strong overall predictions of age, with predictions being

much  more  accurate  in  young  flies  (15  days  or  younger)  compared  to  older  flies.  For

regression models,  PLS provided the poorest  predictions of age,  while random forest  and

XGB models performed equally well (Fig. 5, Supplementary Fig. S7). Taking the XGB model

as an example, the overall root mean squared error (RMSE) for the final model was 6.74 days,

but was 2.96 for individuals ≤15 days old. Variable importance for each gene in the random

forest and XGB models are shown in Fig.  4. Training the model separately for males and

females did not improve prediction accuracy (Supplementary Fig. S8). 

Models also performed well at classifying samples into age categories of ≤15 and >15 days

old (Supplementary  Fig.  S9).  The  XGB  model  performed  best  in  this  task,  accurately

classifying 117 out of 118 samples in the test set. 

For both the random forest and XGB regression models, prediction accuracy showed little

decrease when the variables of least importance were dropped from the models (Fig.  6). In

both cases, accuracy remained comparable to that with all 10 genes when only 6 genes were

included, with RMSE changing from 7.3 to 7.7 (random forest) or from 7.3 to 7.8 (XGB). In

contrast,  when moving to  5 genes instead of 6,  RMSE changed from 7.7 to  8.4 (random

forest)  or from 7.8 to 9.3 (XGB). Interestingly, the same 6 genes proved to be sufficient for

both  model  types  (GMOY005321,  GMOY002920,  GMOY003090,  GMOY003588,

GMOY001603, GMOY003371). For the classification models, even fewer genes were needed

(Fig.  6), with just two genes being sufficient for XGB classification accuracy consistently

better than 95% (GMOY002920, GMOY009908). 

4 Discussion

We have identified a set of gene expression markers that can be used to predict the age of G.

morsitans tsetse flies in the laboratory. Importantly, this method can be applied to both males

and females, providing accurate estimates of age in male tsetse. This is particularly important
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since not only do both male and female tsetse flies transmit trypanosomes, but males appear

to be more likely to develop transmissible infections (Dale et al. 1995, Maudlin et al. 1990).

Our  genetic  markers  were  also  unaffected  by  time  since  an  individual's  last  blood  meal,

making them more robust for use on wild-caught individuals, where such factors cannot be

controlled. Further work is nevertheless required to test the applicability of these markers in

field conditions, since other environmental variables may still affect expression. For example,

temperature  and  humidity  were  constant  in  our  rearing  conditions,  and  all  samples  were

collected  around the  same time of  day,  leaving the  possibility  that  these factors  may yet

influence the expression of our markers.

Like other methods for estimating the age of vectors, prediction accuracy decreases at older

ages (Brei et al. 2004, Cook et al. 2006, Cook & Sinkins 2010, Gerade et al. 2004, Liebman et

13

bennett

Figure 6: Predictive power of XGB and random forest models plateaus after the top 6 genes
are included in the models (left). Accuracy of classification models plateaus after top 3 genes
are included, with >95% accuracy achievable with only two genes (right). Small points show
models run on independent test-train splits of the data (20 replicates per gene number); large
points show the mean for each category. Points are jittered on the x axis to show overlapping
data. 
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al. 2015, Penilla et al. 2002, Sikulu et al. 2010). In our data, this was because the change in

expression with age was much greater in younger compared to older individuals, suggesting

that the overall physiology of tsetse changes slowly after a certain life stage, and that there is

thus little to detect that can be used for age grading. While we found genes that continued to

change in older ages, the rate of change relative to the variance within age groups was not

sufficient to achieve the same prediction accuracies as found in younger individuals. While it

is  likely  that  more  accurate  old-age  predictions  would  be  achievable  using  whole-

transcriptome methods such as RNAseq, this is too costly to be applied at the scales required

for training predictive models. In mosquitoes, spectroscopy-based methods used to estimate

age initially suffered from a similar loss of precision at  older ages  (Liebman et al.  2015,

Mayagaya et al. 2009, Sikulu et al. 2010, Sikulu-Lord et al. 2016), but recent studies using

machine learning prediction methods have improved prediction accuracies  (Lambert  et  al.

2018, Milali et al. 2019). Whether similar performance can be achieved with tsetse should be

explored. 

While we used ten genes in our study, we found that using only the six genes most predictive

of age still provided high prediction accuracy, and only two genes were needed for classifying

individuals  into age groups of  ≤15 and >15 days  old.  By removing four  genes  from the

analysis,  qPCR time and costs  can  be  reduced by 1/3  (eight  qPCR reactions  per  sample

instead of twelve), while removing eight genes will reduce costs by 2/3. We thus suggest that

further studies testing the applicability of these markers in the field restrict themselves to

either six or two genes, depending on how precisely age needs to be estimated. Such studies

are needed to determine the applicability of these markers in the field, but it would also be

interesting to measure the expression of these genes in age-controlled samples of other species

of tsetse to determine whether these markers have widespread applicability. Once the field

applicability of these markers is confirmed, the technique can be rolled out in the context of

monitoring of tsetse control campaigns by comparing the age distribution before and after

interventions to confirm that a resulting shift in the population age distribution is observed. In

particular,  in the wake of a 100% effective campaign,  no flies older than the start  of the

campaign should be found. The resulting data on age structure both before and after control

campaigns  can  then  also  be  used  to  inform  epidemiological  models  of  trypanosomiasis

transmission. 

In conclusion, our study provides a new method for estimating the age of tsetse flies which

does not require specialist dissection skills and can be applied to males. The problem remains
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of finding methods for more accurately estimating age in older individuals. This may involve

identifying senescent changes whose rate is steady and consistent enough to be generalisable

to any individual in the population. 
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