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1 Abstract 

2 Pelagic Chlorophyll-a concentrations are key for evaluation of the environmental status and 
3 productivity of marine systems. In this study, chlorophyll-a concentrations for the Helgoland 
4 Roads Time Series were modeled using a number of measured water and environmental 
5 parameters. We chose three common Machine Learning algorithms from the literature: Support 
6 Vector Machine Regressor, Neural Networks Multi-layer Perceptron Regressor and Random 
7 Forest Regressor. Results showed that Support Vector Machine Regressor slightly 
8 outperformed other models. The evaluation with a test dataset and verification with an 
9 independent validation dataset for chlorophyll-a concentrations showed a good generalization 

10 capacity, evaluated by the root mean squared errors of less than 1 µg L-1. Feature selection and 
11 engineering are important and improved the models significantly, as measured in performance, 
12 improving by a minimum of 48% the adjusted R2. We tested SARIMA in comparison and found 
13 that the univariate nature of SARIMA does not allow for better results than the Machine 
14 Learning models. Additionally, the computer processing time needed was much higher 
15 (prohibitive) for SARIMA.

16 Introduction

17 Pelagic Chlorophyll-a concentrations (chl-a) are a common indicator of primary production and 

18 key to evaluation of the health and productivity of marine and freshwater systems [1],[2]. It is 

19 therefore of crucial importance to accurately measure/ predict chlorophyll from proxy 

20 parameters in such systems [3]. Accelerated global warming is exacerbating climate change 

21 and unsettling ecosystems processes, while the impacts directly affect the marine primary 

22 production triggering an upwards transfer of effects which reach humans. Thus, the importance 

23 of modelling model chlorophyll is emphasized in environments undergoing change resulting 

24 from global warming [4].

25 Prediction of chlorophyll-a time series data is a challenge due their complexity and nonlinearity, 

26 and indeed, conventional approaches show limitations with prediction of unobserved data 

27 [5],[6]. To date, all conventional approaches including factors based on single measurements 

28 are limited with regard to prediction accuracy of Chlorophyll-a concentrations [7]. A few 

29 previous studies have tried to implement various machine learning techniques to predict 
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30 chlorophyll concentrations, mainly in fresh water systems, with a few in marine regions 

31 [8],[9],[10],[11].

32 Machine Learning (ML) techniques constitute a set of tools belonging to the field of Computer 

33 Science and Artificial Intelligence. The versatility of these techniques allow the successful 

34 application in many fields of science and to a great variety of problems. The focus is often 

35 placed on tackling pattern recognition problems and on the construction of predictive models 

36 to make data-driven decisions [12]. According to [13], the general benefits of ML algorithms 

37 for time series prediction over classical methods include the ability of supporting noisy features, 

38 noise and complexity in the relationships between variables and in the handling of irrelevant 

39 features.

40 State-of-the-art ML algorithms for time series regression include Random Forest Regressor 

41 (RF), Support Vector Machine Regressor (SVR) and Neural Networks Multi-layer Perceptron 

42 Regressor (MLP). All of these have been used to some degree in the literature for the prediction 

43 of chlorophyll-a concentrations in aquatic systems, and achieve significantly accurate results in 

44 both error and goodness of fit metrics [3],[11],[14]. These are studies based in chl-a time series 

45 either with short length and daily frequency or long term low frequency sampling time series, 

46 using different ML methods to best predict chl-a behavior. The features applied as predictors 

47 in these studies are limited to just a few, but it must be considered that the dynamics in lacustrine 

48 systems are distinct from the ones presented in marine systems. Here we extend these ideas and 

49 test these methods on a good quality long-term time series, the Helgoland Roads Time Series, 

50 evaluating the prediction using unseen data. With the purpose to compare ML methods with a 

51 classical statistical regression model, we included an improved Autoregressive Integrated 

52 Moving Average (ARIMA) model, called Seasonal ARIMA (SARIMA), which includes 

53 seasonal parameters to support data with a seasonal component [15]. 

54 The objective of this work is to evaluate the accuracy of Machine Learning algorithms for the 

55 estimation of Chlorophyll-a concentration, using in situ high resolution long term datasets. We 
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56 (1) assess three ML algorithms – Random Forest, Support Vector Regressor and Neural 

57 Networks Multi-layer Perceptron Regressor– for Chlorophyll-a concentration estimation; (2) 

58 examine the importance of feature selection and engineering in the different models and (3) 

59 compare with and evaluate a univariate SARIMA classical regression model.

60 Methods

61 All the ML models used in this study were implemented applying the ‟Scikit-Learn package”, 

62 which is an open-source Python module project that integrates a wide range of common ML 

63 algorithms [16],[17], while the SARIMA model was implemented with the statsmodels package 

64 [18]. The pre-processing was also implemented in the Python environment, using the well-

65 known packages Pandas, Numpy and Scipy [19].

66 Datasets
67

68 The Helgoland Roads is a long term pelagic monitoring site (54°11.3’ N, 7°54.0’ E) about 60 

69 km off the German coast and represents a marine transition zone between coastal waters and 

70 open sea (Fig 1) [20]. Since 1962, surface water samples are collected on working days, taken 

71 with a bucket lowered from a research vessel. Secchi depth and water temperature (SST) are 

72 measured in situ and the water samples analyzed in the laboratory for nutrients (nitrate, 

73 phosphate and silicate), and salinity. Chlorophyll-a concentration measurements started in the 

74 end of 2001, acquired in laboratory by FluoroProbe (bbe Moldaenke GmbH, Kiel, Germany) 

75 [21] and since 2004 have been complemented with High Performance Liquid Chromatography 

76 analysis (HPLC) [22],[23].

77 Fig 1. Helgoland Roads monitoring site position (black triangle) in the German Bight, between 

78 the Helgoland (H) and Dune (D) islands.
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79 Sunshine duration, wind speed and direction [24],[25],[26], North Atlantic Oscillation (NAO) 

80 daily index (NOAA ESRL Physical Sciences Laboratory, Boulder, Colorado, USA, 2020) and 

81 zooplankton abundance [27], were added to the Helgoland Roads parameter matrix for this 

82 work (Table 1). As indicated in the literature [28],[29],[30] and also from working experience, 

83 the included parameters are environmental variables which determine algal verdure and thus 

84 modulate chlorophyll-a concentrations in marine systems.

85 Table 1. Statistical description of parameters used as determinants to predict chlorophyll-a 

86 concentration (target) after linear interpolation (std, min and max are standard deviation, 

87 minimum and maximum values) respectively.

Parameters Units Counts Mean std min max Median

Secchi depth m 4920 3.70 1.80 0.20 12.00 3.67

SST °C 4920 10.64 5.00 1.10 20.00 10.30

Salinity
_

4920 32.31 1.06 26.71 36.11 32.42

SiO4 µmol L-1 4920 6.49 5.04 0.01 37.20 5.26

PO4 µmol L-1 4920 0.56 0.41 0.01 3.98 0.53

NO3 µmol L-1 4920 10.19 9.82 0.10 77.38 7.12

Sunlight Duration h 4920 4.78 4.52 0.00 16.60 3.60
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NAO index
_

4920 -9.44 121.55 -564.29 351.95 -0.52

Wind Direction Degrees [°] 4920 203.09 74.71 20.00 353.00 212.00

Wind Speed m s-1 4920 8.23 3.28 1.60 20.80 7.80

Zooplankton Abundance individuals m-3 4920 3164.70 4450.64 5.00 75364.50 1676.21

Chlorophyll-a µg m-1 4920 2.40 2.86 0.00 45.45 1.48
88

89 Data Pre-processing
90

91 The raw data of Helgoland Roads is characterized by long term measurements on work-daily 

92 frequency, with missing values during weekends and extreme bad weather days. When merged 

93 by date with other features like zooplankton abundance, it ends with approximately 40% of 

94 missing data in the time series. To fill the missing data, creating a regular sampled daily time-

95 series, a number of imputation methods were tested in sunlight duration, a feature added to the 

96 Helgoland Roads from an external source, with no missing values. After creating a synthetic 

97 missing values dataset with sunlight duration, we calculated root mean square error (RMSE) 

98 and coefficient of determination (R2) between the original and interpolated data. Minimum 

99 changes in frequency distribution between missing data and interpolated variable, lowest 

100 RMSE and highest R2 based the decision to use a Linear Interpolation, supported by [30]. After 

101 the interpolation, we have a daily dataset comprising approximately 13 years, from 02/11/2001 

102 to 22/04/2015.
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103 Additionally, date features were generated namely ‟year” and ‟day of year” from 1 to 365 or 

104 366. The cyclic variables: day of year and wind direction were transformed with (sin, cos) [2π 

105 (day, degrees) / (number of days in year, 360)] to ensure that the last day of a year is understood 

106 to be in sequence with the first day of the next year and 0° degree in direction is equal to 360° 

107 [31].

108 In this study, to validate the performance of the ML models, the dataset was split in 80% (n = 

109 3940) for model training, and 20% (n = 980) for model testing, so we could investigate the 

110 model generalization ability [32]. To eliminate the dimensional differences of the data and also 

111 improve the prediction ability of the models, we used the StandardScaler method from the 

112 Scikit-Learn package, which standardizes features by removing the mean and scaling to unit 

113 variance.

114 The training dataset, the sample of data used to fit the model, dates from 02/11/2001 to 

115 15/08/2012 (~11 years), while the test set is from 16/08/2012 to 22/04/2015 (~2.5 years) and it 

116 is used for model evaluation (Fig 2). For independent validation, we used a linear interpolated 

117 time series of HPLC estimated chlorophyll data (05/05/2015 to 27/11/2018, n=348).

118 Fig 2. The train and test partition in chlorophyll-a concentration target (black solid and gray 

119 solid lines, respectively), and the HPLC chl-a validation dataset (black dashed). After the split, 

120 the testing dataset will remain untouched, to guarantee no leakage of information to the training 

121 step. The validation dataset is the independent validation.

122 Feature Engineering and Selection
123

124 The Pearson correlation coefficients were calculated to investigate linear relationships between 

125 Chlorophyll-a concentration and the other variables (Table 2). All correlation coefficients were 

126 lower than 0.5, indicating no strong linear correlation between chlorophyll and any other 

127 variable.
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128 Table 2. Pearson correlation among predictors and the target chlorophyll-a concentration.

Predictors Code Correlation

year year -0.05

sin(days) sin(days) 0.04

cos(days) cos(days) -0.46

Secchi depth SD 0.15

Sea Surface Temperature SST 0.27

Salinity Salinity -0.22

Silicate SiO4 -0.31

Phosphate PO4 -0.29

Nitrate NO3 -0.09

Sunlight duration Sunlight 0.31

NAO index NAO 0.06

sin(wind direction) sin 0.02

cos(wind direction) cos 0.10
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Wind Speed Speed -0.20

Zooplankton Abundance Abundance 0.22

Chlorophyll-a Chl 1.00

129

130 Prediction is a major task of time series data mining, which uses known historical values to 

131 estimate future values, and feature selection and engineering is essential and crucial for accurate 

132 predictions [33]. To seek improvement, 15 days lagged predictors were generated, totalizing 

133 211 features [34]. The choice of lags was based in a two-week period where all the predictors 

134 supposedly influence chlorophyll-a concentration, including chl-a lagged values, i.e., the lagged 

135 target values were used as predictors. As there are significant seasonal differences e.g., summer 

136 and winter nutrients uptake, the definition of two weeks seemed reasonable for this work to 

137 input information, considering that the Machine Learning algorithms are data-driven and they 

138 are not mechanistic models [35].

139 A large number of features in the dataset drastically affects both the training time as well as the 

140 accuracy of machine learning models. One means to limit model complexity from multiple 

141 variables is to reduce the model by selectively eliminating predictors. Feature selection 

142 procedure was conducted applying a simple sequential addition of lagged predictors, and 

143 Recursive Feature Elimination. For the latter, we use Scikit Learn module Recursive Feature 

144 Elimination with cross validation (Scikit-Learn feature.selection RFECV module) and Ridge 

145 estimator, to estimate the best number of features balanced with accuracy (Fig 3). After the best 

146 number of features were defined with the Ridge cross-validation method, we applied Recursive 

147 Feature Elimination (Scikit-Learn feature.selection RFE module) with SVR linear estimators, 

148 this way selecting the 17 best parameters to model chl-a in a robust manner [36].
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149 Fig 3. Result of RFECV with Ridge estimator. The black dot represents the maximum value of 

150 17 selected features (predictors) to reach the highest explained variance. After the maximum 

151 value, there is an exponential decay/increase in the R2/RMSE.

152 Model selection and parameter tuning
153

154 The algorithms evaluated in this study are Random Forest Regressor (RF) [37], Support Vector 

155 Machine Regressor (SVR) [38] and Multi-layer Perceptron Regressor Neutral Network (MLP) 

156 [39],[40]. Depending upon the study cases, different ML algorithms usually require some 

157 adjustments. These are often crucial for the development of a successful application. Each ML 

158 algorithm has parameters so-called hyperparameters, which define the setup of the machine to 

159 modelling the target function. For each model, a search range of hyperparameters was tested. 

160 In case where a value was selected at the edge of the search range, a new cross-validation was 

161 conducted including more values.

162 All hyperparameter tuning of the models (Table 3) is based on GridSearchCV in the Scikit-

163 Learn package, which can evaluate all possible given combinations of hyperparameter values 

164 using 10-fold cross-validation to determine the best combination of hyperparameter that has the 

165 best accuracy of the model in terms of coefficient of determination (R2). Cross-validation is 

166 model validation techniques for obtaining reliable and stable models. The use of multiple 

167 models in the evaluation removes possible biases of some models with some data sets. We use 

168 the training dataset to search for the best parameters, and report the prediction performances on 

169 the test dataset using these parameters [41]. The mentioned grid search was performed 

170 independently for each model on the training subset. 

171 R2, adjusted coefficient of determination (adj R2) and RMSE are the metrics that were used in 

172 this work to evaluate the predictions. The use of adj R2 in multiple regression is important 

173 because it increases only when new independent variables that increase the explanatory power 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.12.443749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443749
http://creativecommons.org/licenses/by/4.0/


10

174 of the regression equation are added; making it a useful measure of how well a multiple 

175 regression equation fits the sample data. A linear base model, available in Scikit-Learn module 

176 as ‟linear_model”, was used to observe the improvements using the more sophisticated 

177 algorithms.

178 Table 3. Hyperparameter tested in GridSearchCV and the ones applied to each ML algorithms.

Model Hyperparameter Selected value Default

 kernel rbf rbf

 C 3 1

 gamma 0.01 0.1
SVR

 Epsilon 0.1 0.0001

max_iter 90 200

hidden_layer_sizes 40 100

activation logistic relu

 solver adam adam

 Alpha 0.5 0.0001

MLP

 warm_start True False

 bootstrap True True

 max_depth 25 None

 max_features 21 auto

 min_samples_leaf 9 1

RF

 min_samples_split 2 2
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n_estimators 80 100

179  

180 SARIMA Model
181

182 For the SARIMA model, the univariate chl-a data was used, while maintaining the partitions in 

183 the training and test dataset. To test stationarity, the Augmented Dickey-Fuller test (ADF) was 

184 applied indicating significant stationarity (p<0.05) in the train and test datasets. To fill the 

185 model (p,d,q)x(P,D,Q)365, where 365 represents the seasonality, the best auto-regressive (p, P) 

186 and moving average (q, Q) parameters were selected using an iterative method in the train 

187 dataset. The parameters ranged from 0 to 4 in the non-seasonal parameters (p,q) and 0 to 2 in 

188 the seasonal parameters (P, Q), selecting the combination with lowest Akaike Information 

189 Criteriation (AIC). The difference order parameters d and D were 0, due to the stationarity 

190 results of the ADF test. The best parameters selected using the training dataset were (4, 0, 1) x 

191 (2, 0, 1)365, and this SARIMA model was used to fit the test dataset.

192 Results

193 For this study, the best R2, adj R2 and RMSE achieved predicting chlorophyll-a using Support 

194 Vector Machine Regressor, Random Forest Regressor, and Neural Network Multi-layer 

195 Perceptron Regressor are presented in Table 4. In a combination of hyperparameters tuning and 

196 feature selection, SVR reached the best R2 (0.78) and RMSE (1.113 µg L-1) compared with the 

197 other algorithms. However, these were slightly better results. The algorithms presented good 

198 performances for the training data set during the cross-validation step (Fig 4). In addition, the 

199 predicted values were close to the observed data (Fig 5).
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200 Table 4. Comparison of non-optimized (Default) and optimized model performances for 

201 predicting Chlorophyll-a concentration during training (train) and testing (test) steps. The linear 

202 model serves as a base model.

Default
train test
adj R² R² RMSE (µg L-1) adj R² R² RMSE (µg L-1)

SVM 0.81 0.82 1.255 0.63 0.71 1.273
RF 0.96 0.96 0.607 0.64 0.71 1.258
NN 1 1 0.128 0.14 0.33 1.934
Optimized

train test
adj R² R² RMSE(µg L-1) adj R² R² RMSE (µg L-1)

SVM 0.77 0.77 1.424 0.77 0.78 1.113
RF 0.84 0.84 1.18 0.74 0.75 1.167
NN 0.75 0.75 1.474 0.76 0.76 1.144
Linear (base model)

train test
adj R² R² RMSE (µg L-1) adj R² R² RMSE (µg L-1)
0.74 0.76 1.47 0.65 0.73 1.227

203

204 Fig 4. Boxplot of accuracy in the 10 fold cross-validation training step for the SVR, MLP and 

205 RF models, showing the mean and the number of folds (n) or subsets in the training data used 

206 to define the best hyperparameters.

207 The algorithms gave a good performance for the training dataset and allowed a good 

208 generalization for the test dataset, as can be seen from how close the predicted values are from 

209 the observed ones in Fig 5.  Using all the 211 features and the default hyperparameters, the 

210 results in the test data were not as good as those from the optimized models (Table 4).

211 Fig 5. Result of prediction (black dashed) and comparison with the test dataset (gray solid). For 

212 the three algorithms, R2 is higher than 0.7 and RMSE lower than 1.2 µg L-1. a) SVR, b) MLP 

213 and c) RF.
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214 Considering the features used as inputs in each of the algorithms: for Random Forest the best 

215 result was acquired with the original features plus 2 lags, i.e., two past data in the time series, 

216 while with MLP the original features and 1 lag was enough to get the best achievable results 

217 for this algorithm in this study. For SVR, the Recursive Feature Elimination was implemented 

218 by combining Ridge and SVR linear estimators and selecting a maximum number of 17 

219 predictors. This generated the following result: ['SD, 'SST', 'Salinity', 'SD_-1', 'SST_-1', 'SST_-

220 2', 'SST_-9', 'SST_-12', 'SST_-13', 'SST_-14', 'SST_-15', 'Salinity_-1', 'Chl_-1', 'Chl_-4', 'Chl_-

221 5', 'Chl_-7', 'Chl_-8'], with the negative numbers in the codes (Table 2) representing the applied 

222 lag in days. The adj R2 results, which are sensitive to the number of used predictors, show 

223 improvement from 0.14 to 0.76 for MLP, while for SVR was 0.63 to 0.77 and 0.64 to 0.74 to 

224 RF.

225 For the independent validation, a chl-a dataset acquired by HPLC, the predictions had better 

226 RMSE and R² than the test datasets (Fig 6). Again, the higher values had limitations in 

227 prediction, but the lower variance compared with the training and testing datasets allowed better 

228 evaluation indicators, with RMSE for all algorithms in the order of 0.3 µg L-1 and R2 reaching 

229 approximately 0.9.

230 Fig 6. Result of prediction (black dashed) and comparison with the validation dataset (gray 

231 solid). For the three algorithms, R2 is approximately 0.9 and RMSE lower than 0.3 µg L-1. a) 

232 SVR, b) MLP and c) RF.

233 The iterative SARIMA parameters selection uses much more computer processing time 

234 compared with the GridSearchCV method in machine learning. The latter is a scale of seconds 

235 to minutes while the former hours to days. It took around two weeks to select the best p, q, P 

236 and Q parameters in the daily data considering a yearly seasonality. The results fitting the test 

237 dataset with the SARIMA model gave worst results compared with the ML models (Fig 7). 
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238 Fig 7. Result of SARIMA fit (black dashed) in the test dataset (gray solid). The better fit in 

239 extreme values is counter-balanced by the estimation of negative values, decreasing/increasing 

240 R2/RMSE compared to the ML models results.

241 Discussion

242 Machine learning analysis was conducted on the Helgoland Roads Time Series to develop the 

243 best fit of chlorophyll-a concentrations over time using different parameters and their lagged 

244 correlates. For the three algorithms implemented, the model results were virtually equal in the 

245 evaluation metrics, presenting similar results in prediction, with slightly better values for the 

246 model SVR. For the time predictions, all the three models performances are acceptable with 

247 high R2 values greater than 0.70 and RMSE lower than 1.5 μg L-1, ~40% smaller than the 

248 chlorophyll-a concentration standard deviation of 2.9 μg L-1. However, all the algorithms were 

249 unable to predict extreme values (Fig 8). It was expected that a certain degree of decrease in 

250 accuracy would be incurred because of the difficulty in capturing and reproducing these 

251 extreme peaks [42]. One hypothesis which would explain the underestimation of extreme values 

252 is the lack of parameters evaluating e.g., hydrodynamics can result in the transport of 

253 chlorophyll from other areas as an input event, even though salinity and wind parameters are 

254 reliable indicatives for current and wave dynamics in the German Bight [43]. As these events 

255 do not present as a temporal pattern, the ML models does not recognize the influence in the 

256 target.

257 Fig 8. Cross-plots of the modeled and observed chlorophyll values in a) SVR, b) MLP and c) 

258 RF. It is possible to notice the deviation in extreme values, showing the limitation of the ML 

259 models in deal with these data values.

260 Because each algorithm is based on different algebraic assumptions and procedures, they can 

261 result in different predictions. Between SVR and MLP, [14] point to differences in the nonlinear 
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262 equalization performance and the structural risk minimization principle of SVR being more 

263 effective than the empirical risk minimization principle of neural networks in terms of 

264 minimizing error. According to [44], in MLP the method for determining global solutions is 

265 difficult to converge because of its inherent algorithm design and model parameters are more 

266 complex than SVR, whereas the SVR has ready access to global optimal solutions, obtained by 

267 solving a linearly constrained quadratic programming problem [14]. Between SVR and RF, as 

268 we saw, the linear base model gave good results. There is the possibility of a linear dependency 

269 that is better captured by SVR, probably a result from the linear interpolation in the pre-

270 processing step of this study.

271 The feature selection and tuning of hyperparameters was extremely important and improved 

272 the results substantially. This was noticeable in the adj R2 results for Default and Optimized 

273 models. While Random Forest gave the best R² and RMSE using all features plus 2 lags, when 

274 fed with the 17 features selected by Ridge and SVR RFE, the estimation of extreme peaks was 

275 slightly better, but resulting in worse R2 and RMSE. It is the trade-off between variance and 

276 bias well discussed in the ML field. Analyzing the 17 features used in SVR and described in 

277 the Results section, the algorithm considered SST, lagged SST, lagged chlorophyll, Salinity and 

278 Secchi depth to reach the best results presented in this work. It is important to point that ML is 

279 a data-driven approach, but it is possible to make inferences about the selected features. For 

280 this study, we noticed the choice of SST as important feature, probably representing the 

281 seasonal patterns in the chlorophyll target. 

282 Better R2, adj R2 and RMSE results in the independent validation dataset are possibly due to 

283 less variability and absence of extreme values, and shows the good generalization the ML 

284 models are capable. All the good results, for both the test and independent validation data, 

285 shows the better prediction power of the three ML algorithms evaluated in this study. 

286 Comparing with the classical SARIMA model, the univariate and linear background did not 
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287 achieve results needed for it to outperform the ML models. Compared with the ML literature, 

288 studies like [3] and [11] achieved results of R2 ranging from 0.50 to 0.80, analyzing shorter time 

289 series of chl-a in lakes. [45] predicted variations of chlorophyll-a in different sites of the North 

290 Sea using Generalized Additive Models (GAM) and the R2 results ranged from 0.15 to 0.63. 

291 [28], using GAM to predict chl-a in a spatial approach for the North Atlantic, got the best result 

292 for R2 as 0.83. All these values show how variable can be different methods performances in 

293 predicting chlorophyll, not necessarily meaning one method is better than the other, but more 

294 adaptive. ML models proved generalization capacity and high accuracy.

295

296 Conclusions

297 In this work, we evaluated three machine learning algorithms in a regression task. Support 

298 Vector Regressor presented a slightly better performance, with the advantage that it uses less 

299 computational time, and generated chlorophyll concentration predictions with 0.78 correlation 

300 to the observed data, in comparison to 0.77 and 0.76 to MLP and RF, respectively. Moreover, 

301 the root mean square error was around 1.1 µg L-1 for the test dataset and less than 1 for the 

302 independent validation data, which is approximately 38% percent smaller than the standard 

303 deviation of 2.9 µg L-1. This study demonstrates the ability of machine learning models to use 

304 environmental in situ time series to predict the chlorophyll concentration with significant 

305 accuracy (R2), higher than 70%, besides the importance of tuning hyperparameters and define 

306 the best predictors. Most chlorophyll-a prediction studies are conducted in fresh water 

307 environments or using satellite data and limited time series, so this work can be considered a 

308 step toward the use of Machine Learning algorithms in marine areas based on long term time 

309 series. Being aware of limitations presented in this study, in future works it would be interesting 

310 to work with irregular sampled time series, improve the method for feature selection and 

311 ensemble results of different ML and classical statistical models.
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452 Supporting information

453 S1 Fig. Time series of parameters used to predict chlorophyll-a concentration: (a) Secchi disk 

454 depth, in meters (m); (b) Sea Surface Temperature, in degrees Celsius (°C); (c) Salinity; (d) 

455 Silicate (µmol L-1); (e) Phosphate (µmol L-1); (f) Nitrate (µmol L-1); (g) Sunlight duration, 

456 in hours (h); (h) NAO index; (i) Wind Direction, in degrees (°); (j) Wind Speed, in meters per 

457 second (m s-1) ; and (l) Total zooplankton abundance, individuals per cubic meter (# m-3).
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