
 

 

Protein contact map prediction using multiple sequence 

alignment dropout and consistency learning for sequences 

with less homologs 

Abstract 

The prediction of protein contact map needs enough normalized number of 

effective sequence (Nf) in multiple sequence alignment (MSA). When Nf is small, the 

predicted contact maps are often not satisfactory. To solve this problem, we randomly 

selected a small part of sequence homologs for proteins with large Nf to generate 

MSAs with small Nf. From these MSAs, input features were generated and were 

passed through a consistency learning network, aiming to get the same results when 

using the features generated from the MSA with large Nf. The results showed that this 

method effectively improves the prediction accuracy of protein contact maps with 

small Nf. 

1. Introduction 

De novo protein structure prediction has been a long-standing challenge in 

computational biology. Since 2015, protein contact map assisted protein structure 

prediction has shown its great advantage and thus has been implemented in almost all 

cutting-edge de novo protein structure prediction tools, such as RaptorX1, I-TASSER2, 

AlphaFold13, trRosetta4 and etc5-8. 

Protein contact map is predicted by using features extracted from multiple 

sequences alignment (MSA). Such features include mutual information and 

direct-coupling analysis (DCA). Mutual information was often used in early stage 

studies to predict co-evolving residues pairs.9-11 However, mutual information 

includes both direct coupling pairs and indirect coupling pairs, while the latter are 
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noise for protein contact prediction. To solve this problem, various DCA methods, 

such as mfDCA12, plmDCA13, EVfold6,14, PSICOV15, CCMpred16, and Gremlin17, 

were introduced about 10 years ago to denoise the indirect coupling pairs. Compared 

to mutual information, DCA greatly improves the accuracy of protein contact map 

prediction. However, both mutual information and DCA are highly rely on the number 

of effective sequences (Neff) in MSA. Generally, Neff = Sij(80%) is used; certain 

research group have own preferences, e.g. RaptorX used Neff (70%),  Gremlin used 

sqrt(Neff)/L, Neff/L, and Neff/sqrt(L) [DeepMSA]. We chose to use Nf hereafter in 

this manuscript. However, both mutual information and DCA are highly rely on the 

number of non-redundant sequences in MSA. Each sequence is reweighted by 

1divided by number of sequences > 80% identity (Sometimes, 70% sequence identity 

was also used). The sum of sequences’ weights divided by the sqrt of MSA’s length is 

usually used for measured the depth of MSA.  The accuracy of protein contact map 

prediction increases with Nf. When Nf is smaller than 128, the contact map prediction 

becomes very challenging18. 

Another strategy for protein contact map prediction is supervised machine 

learning, which uses 1D features (such as position specific scoring matrix (PSSM), 

secondary structure prediction, and relative solvent accessibility) and 2D features 

(such as DCA, mutual information pairwise potential, and covariance matrix) 

extracted from MSA as input of a neural network. In the early day, only shallow 

network architecture was used (such as MetaPSICOV19 and PconsC220)_and they can 

outperform DCA methods. Later, much deeper network architectures such as ResNet21 

are employed as they can capture higher-order residue correlation; and great 

breakthrough in contact map prediction accuracy was achieved by methods (such as 

RaptorX7) implemented such network. In these state-of-the-art machine learning 

methods, MSA plays an important role. High quality MSA helps to improve contact 

precision. For example, the involvement of metagenome data can help finding more 

homologous sequence from beyond the whole-genome.22 Methods taking advantage 

of metagenome data, such as TripletRes23 and MapPred24, show that a better MSA 

with enough homologs are useful for improving deep learning based contact 
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prediction methods. Using different MSAs generated by different sequence databases 

and searching parameters can also help improve the predictions. RaptorX reported 

that the average 4 predictions according to 4 different MSAs is 1%~2% better than a 

single feature.25 Transform-restrained Rosetta reported that sometimes MSA is 

unnecessarily deep, they use a MSA subsampling and MSA selection methods that 

improves the precision by 1.5% and 2%~3% respectively. But for proteins with few 

homologs, the quality of predicted contact map is still quite challenging and needed to 

be improved. 

Taking inspiration from the latest progress on the analysis of different object 

sizes in object detection, we propose a novel deep learning framework to handle this 

challenge. First, we make data augmentation for MSA with enough normalized 

number of effective sequence (Nf). The argumentation was done by randomly select 

part of MSA’s sequences that is proposed as MSA dropout, to do feature extraction. 

Then, features are learned from both original MSAs and MSAs dropout by a network 

branch called consistency learning that guide our network learning the difference 

between small Nf features and large Nf features. The results show our methods have 

much better contact map accuracy for proteins with small Nf, and at the same time, 

achieves state-of-the-art performance for proteins with large Nf.  

2. Methods 

Definition for normalized number of effective sequence (Nf) in MSAs 

Here we define the depth of MSA by calculating the normalized number of 

effective sequence (Nf): 

Nf =
1
√L

�
1

1 + � I[𝑆𝑆𝑚𝑚,𝑛𝑛 ≥ 0.8]N
m=1,m≠n

𝑁𝑁

𝑛𝑛=1

 (1) 

L is the number of residues in the protein sequence. N is the number of 

sequences in a MSA. 𝑆𝑆𝑚𝑚,𝑛𝑛 is the sequence identity of mth sequence homolog and nth 

sequence homolog. I[𝑆𝑆𝑚𝑚,𝑛𝑛 ≥ 0.8] equals to 1 if 𝑆𝑆𝑚𝑚,𝑛𝑛 ≥ 0.8, and to zero otherwise. 
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Datasets selection 

We made evaluation on two different test sets. The first test set is the same as 

described in Zhang’s article,18 which was from SCOPe database26 with 614 

non-redundant protein. These 614 proteins have 403 easy and 211 hard targets, 

classified by the meta-threading program, LOMETS27. Here we mainly focused on the 

211 hard targets. To further demonstrate the network’s performance on low Nf cases, 

we needed to test on more cases. So we used a subset of proteins from Protein Data 

Bank (PDB) with their first released date after December 2019. (Because the proteins 

released before December 2019 were used for training.) Using the PISCES website28, 

We removed the redundant proteins with a sequence identity larger than 25% to each 

other and resolution larger than 2.5 Å. Sequence was also ignored if its length was 

larger than 700 or less than 50. In this way, 1651 proteins from PDB were selected as 

the second test set. 

Our training data was created from PDB in December 2019 using a subset of 

proteins which are satisfied the followings: (1) Sequence identity less than 25%. (2) 

Resolution less than 2.5 Å. (3) Sequence length is between 50 and 700. (4) Sequence 

identity large than 30% to any sequence in the 614 non-redundant proteins’ test sets 

were excluded.  

Multiple sequence alignment generation and sampling 

The MSAs were generated using the Zhang lab’s DeepMSA software18. 

DeepMSA is a MSA generation pipeline by combining HH-suite29 and HMMER 

program30 to search homology, which can be divided into three stages in databases 

Uniclust, Uniref and Metaclust respectively. In this work, we generated MSAs using 

databases Uniclust30_2018_0831, Uniref9032 in December 2019 and 

Metaclust50_2018_0833. For each protein sequence in training and test datasets, the 

default search parameters in DeepMSA were used with the normalized number of 

effective sequence (Nf) cutoff 128. The Nf is non-redundant sequences with 80% 

sequence identity divided by the square root of the sequence length that is a 
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commonly used approach in previous studies. 

The sampled MSAs were also used for input feature generation. We randomly 

selected a part of homologs from the original MSA. The Nf interval of the sampled 

MSAs should be 10 to 20, ten MSAs were sampled. In a word, for each training 

protein sequence, 11 different MSAs were used (the original and 10 sampled MSAs) 

for input feature generation. 

Features generation 

Input features are same with the RaptorX-Contact. Sequential and pairwise 

features were derived for every MSA. Sequential features (1D features) include 

protein position-specific scoring matrix (PSSM), predicted secondary structure, and 

solvent accessibility by RaptorX-property. Pairwise features include a DCA based 

contact map predicted by CCMpred, mutual information, and pairwise potential 

calculated by MetaPSICOV. For training proteins, both the original MSA and sampled 

MSAs were used for features generation. And for test proteins, only the original MSA 

was needed. 

Network architecture 

The above process generated enough realistic small Nf cases from large Nf. 

However, simply learning from small Nf cases might not produce features 

discriminative enough. Taking inspiration from the recent work on contrastive 

learning networks34, we further proposed a feature-metric lifting loss to guide the 

training of the small Nf cases. In these frameworks, the authors proposed to learning a 

consistent feature representation from input data with different data augmentations to 

bootstrap the training of the network. Here, we followed a similar pipeline (Figure 1). 

Our intuition is that input features generated from a large Nf input are discriminative, 

and we want to learn a similar embedding from a small Nf input. Specifically, for 

each large Nf input 𝑥𝑥𝑖𝑖, we first generated a small Nf pair 𝑥𝑥𝑖𝑖′ as in MSA sampling 

section, we then passed the input pair through a shared deep Resnet and enforced the 
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learned consistency between these two inputs (Figure 1). We define the lifting loss as 

the l1 loss between the logits 𝑧𝑧𝑖𝑖 from 𝑥𝑥𝑖𝑖 and 𝑧𝑧𝑖𝑖′ from 𝑥𝑥𝑖𝑖′. 

𝐿𝐿𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 = |𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖′|1 (2) 

On one hand, we proposed to learn a similar embedding between the small Nf 

inputs and large Nf inputs; on the other hand, the proposed lifting module further acts 

as a completion module, i.e., we supervised the network by completing a large Nf 

target with a small Nf input on the feature-metric level as in some recent works on 

image completion34. Note that our method is also a natural fit for unsupervised 

representation learning for protein contact map estimation. This will be our future 

research direction, i.e., to use the large number of unlabeled proteins for training deep 

conv-nets.  

We reproduced RaptorX architecture according to Xu’s paper1. The 1D residual 

network consists of 30 1D residual blocks and 60 2D residual blocks. The convolution 

kernel size is 3 and we used different dilation to increase the receptive field for each 

neuron35. Batch normalization and ReLU activations were applied across different 

layers. Finally, a softmax layer was added to predicted the final output and adopt 

cross-entropy loss. 

Training 

We used a two-step approach to test our proposal. We first pretrained the network 

on small Nf inputs only, then finetuned the network with the lifting loss. Our overall 

loss was a combination of the lifting loss and the standard cross entropy loss between 

our prediction and ground truth contact label. We implemented our solution under the 

PyTorch platform36. During training, we randomly sampled a 300*300 submatrix 

from the input sequence. The network was optimized end-to-end with AdamW 

optimizer37 for a total of 30 epochs with a batch size of 1. Learning rate was set to 

1e-4 for the first 20 epoch. Then, we decayed it by 0.2 for every 5 epochs. 
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RESULTS 

Dropout helps a lot for proteins of small Nf  

 Our model shows a great improvement on proteins of small Nf (5<Nf<40). 

We evaluated the performance of our model with TripletRes and RaptorX baselined 

on part of 211 hard targets cases that did not have enough homologous sequences. 

Here we show the results of proteins with effective sequence (Nf) between 5 and 40 

with step of 5.  

 Generally, the contact precision is better with increasing Nf (Figure 2a). 

Although the performance of RaptorX baseline model is poor than TripletRes, the 

model trained by MSAs dropout and consistency learning has a significant 

improvement and is better than TripletRes on most cases. In summary, for targets with 

Nf between 5 and 40, network trained by the original MSAs performs not very well 

on the top L/5 precision. Using the same data, our model using consistency learning 

and MSAs dropout can improve the precision of proteins of small Nf from 0.727 to 

0.818, and it’s better than TripletRes’ 0.779 (Table S1). The precision matrix, used by 

TripletRes, showed ability to perform better for proteins with low number of 

homologous sequences23,38,39, which was not used by RaptorX. This may lead to the 

poor performance of our RaptorX baseline. Nevertheless, used by consistency 

learning and MSA dropout, network can have better performance on these targets. 

One thing needs to mention is the above TripletRes results was derived from 

Zhang lab’s DeepMSA article in 2020. The final performance can be influenced by 

many reasons such as the quality of multiple sequence alignments. We also want to 

know the performance of our model, TripletRes, and RaptorX baseline when using the 

same alignments. So, we make another test set consist of proteins that their structures 

are released later than December 2019. 1651 proteins were filtered as described in the 

methods. TripletRes results of these proteins are evaluated using standalone package 

of TripletRes with the same MSA as our model. We show the comparison of our 

model, TripletRes, and RaptorX baseline on small Nf cases. (Figure 2b). For almost 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443740


 

 

all intervals, our trained RaptorX baseline performs better than TripletRes, while the 

model with data argumentation has even better performance. Just using the MSAs 

dropout and consistency learning network, the overall predicted precision of these 

proteins with Nf ranging from 5 to 40 improves from RaptorX baseline’s 0.656 to 

0.707. 

 

Performance on large Nf proteins is comparable  

Our methods achieve not only better performance on protein with small Nf, but 

also stat-of-art performance on large Nf proteins. Here we show the contact precision 

with enough homologs (Nf > 40) compared with TripletRes (Table 2). For 1651 test 

PDBs, the top L/5 long range precision of TripletRes, Reproduced RaptorX baseline 

and our methods are 0.918, 0.922, and 0.905 respectively. These models’ 

performances on large Nf are very close, and much higher than proteins with smaller 

Nf. On these proteins, our reproduced RaptorX baseline is comparable to the 

TripletRes, while the network with MSAs dropout has slightly lower performance that 

may be caused by balancing the information between dropped MSA and original 

MSA, suggesting that we should train different models for different Nf’s proteins to 

get the best performance. 

Ablation Experiments 

Here, we provide an analysis with each of the proposed module. We divided our 

test sets into three different subsets: Nf < 10, 10 <= Nf < 40, and Nf >= 40. 

First, we analyzed the results of applying MSAs dropout module to the network. 

We report the results with long range top L/5 precision (Table 3). The first row shows 

the result when the original MSA and the original framework of RaptorX are used for 

training. The second row shows the performance when only MSA dropout is used for 

data argumentation. Using of MSA dropout, that is only 10 sets of small Nf data, 

increase 2~3% for data in the interval of Nf < 10 and 10 <= Nf < 40. We believe this 
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is due to the obvious difference between small Nf data and large Nf data. In other 

words, small Nf data has fewer effective sequence homologs, so its input features do 

not have enough information. The previous studies ignored the difference between 

different Nf data. When small Nf data and large Nf data are trained simultaneously in 

the same network framework, the network will be more inclined to fit one type of data. 

In the current situation, the large Nf data in the training set accounts for the majority, 

so it is more inclined to fit the large Nf data, thereby reducing the accuracy of the 

small Nf data. So when we use more small Nf data to train the network, the network 

can have a better fit to the small Nf data. . 

The third row shows the performance when consistency learning network is 

added. For small Nf data, the performance is about 5% higher than the baseline 

network. This also illustrates the idea of using large Nf data to "guide" small Nf data, 

and the network has indeed learned the difference between these two types of data. 

Thus described, MSA dropout and consistency learning can be used to enhance small 

Nf protein’s contact map prediction. After adding the training process of MSA 

dropout and the consistency learning network, the precision is slightly lower by 1~2%. 

We believe this is due to the need to balance the features of small Nf inputs and large 

Nf inputs during the network training process, ignoring the learning weight of some 

high-Nf input features. 

Case study 

To further compare the difference between our method and the baseline, we show 

several representative examples of small Nf. The visual representation of its contact 

map and three-dimensional conformation show the reliability of our method (Figure 

3). 

In general, the truly predicted top L/5 long range contacts by MSAs dropout and 

consistency learning cover most predicted residues by the original network. The first 

two examples are from SCOPe test set, the top L/5 long range contact of d4l5qa1 

improves from 0.318 to 0.818, and d1qqra_ improves from 0.666 to 1.000. The last 
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two examples are from PDB test set, 6LYJC improves from 0.500 to 0.818 and 

6OC7C improves from 0.538 to 0.923. The argumentation network not only covers 

more regions of query proteins, but also finds more contacts around predictions of 

original network and reduced the false positive rates.  

Summary of strategies to improve protein contact map prediction by squeezing 

MSAs 

We summarized some studies that improved the accuracy of contact map 

prediction by squeezing information from MSAs. These studies can be roughly 

divided into two categories. One is to increase the effective number homologs, the 

other is to subsampling sequences from MSAs (Table 4). 

In 2016, RaptorX improved the prediction accuracy by using different sequence 

databases (UniProt20_2016_02 and UniProt20_2015_11) and different search 

parameters (E-value 0.001 and 1). Each sequence produced 4 input features by 

different MSAs25. This approach is equivalent to increase the Nf of MSAs and 

subsampling them, so it can improve the prediction accuracy of 1~2%. In CASP13, 

TripletRes ,using metagenome sequence database to find more sequence homologs, 

enriched the information contained in MSA. This improves the prediction 

performance of small Nf18,23.  

However, yang et al found that the more effective sequence homologs is not 

always better, but the reliability of sequence homologs need to ensure. They 

performed selection and subsampling for MSA. The selection of MSA refers to 

selection homologous sequences with low E-value and high coverage as much as 

possible, while the subsampling of MSA refers to only extracting 50% sequences 

from the selected MSAs in every training epoch. Through the combination of these 

two operations, the prediction performance improved 2~5%. 

Here we mainly focus the small Nf proteins. We believe that one reason for its 

poor prediction effect is that there are fewer small Nf proteins in the training data. 

Mixing small Nf and large Nf input features makes the network pay more attention to 
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large Nf features. Therefore, we artificially generate small Nf input features so that 

the network can learn the features of this part of the protein much better. In addition, 

we also found that large Nf protein can guide the prediction of small Nf protein. 

Finally, we increased the performance by 5% and 8% in two different test sets 

respectively. 

Conclusion and discussion 

We proposed a novel data argumentation method for feature generation called 

MSAs dropout and implement consistency learning network in contact map prediction. 

We reproduced RaptorX contact prediction architecture and used MSAs dropout and 

consistency learning on it. We evaluate the performance with TripletRes, one of the 

best methods in contact map prediction in CASP13. Even the precision matrix used by 

TripletRes can greatly improve the precision of low Nf, our method, only use the 

PSSM and protein 1-D property instead, outperforms TripletRes. Meanwhile, our 

methods can achieve stat-of-art performance on protein with large Nf. So, we prove 

that MSAs dropout and consistency learning network is useful for contact map 

prediction. 

Although we are using RaptorX’s contact map prediction architecture in this 

study, MSAs dropout and consistency learning network are general methods that can 

be combined with distinct MSA generated features and network architectures in 

protein contact/distance predictions and other protein property prediction. 

In this study, we just used a range of MSAs dropout 10 ~ 20 that results in 

significant improvement for protein with relatively low Nf. For proteins with very 

small Nf, such as Nf less than 1, the features now contain little information for 

networks to infer the contact, more works will be done in future work. 
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Figure 1. Architecture of XXX network. 
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Figure 2. Performance of top L/5 long range contact on proteins with small Nf (5 <= 

Nf <= 40). 

 

a

b
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Table 1. Small Nf performance of PDB test set. 
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Table 2. Long range precision for proteins with Nf > 40. 
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Table 3. Ablation experiment. 
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Figure 3. Case study of truly predicted contact of long L/5. (a, b) Contact map 

and 3-D structure of proteins d4l5qa1, d1qqra_, 6LYJC and 6OC7C from top to 

bottom. The lower triangle is the truly predicted contacts by baseline and the upper 

triangle is the truly predicted contacts with argumentation (a). Green lines are the top 

L/5 contacts predicted both by baseline and argumentation. Blue lines are contact only 

predicted by baseline and red lines are contacts only predicted by argumentation (b). 
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Table 4. Squeezing information in MSAs. 
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Figure S1 Case study of truly predicted contact of long L/5. (a, b) Contact map and 

3-D structure of proteins d1y0ka1, 6UTCA and 7BV0A, from top to bottom. The 

lower triangle is the truly predicted contacts by baseline and the upper triangle is the 

truly predicted contacts with argumentation (a). Green lines are the top L/5 contacts 
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predicted both by baseline and argumentation. Blue lines are contact only predicted 

by baseline and red lines are contacts only predicted by argumentation (b). 
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Table S1 Small Nf performance of scope test set. 
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