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ABSTRACT 15 

Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the 16 

biosustainability of future industries. Acetogens are the most efficient known microbes for fixing 17 

carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic 18 

engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular 19 

concentrations for >1,000 proteins in the model-acetogen Clostridium autoethanogenum grown on 20 

three gas mixtures. We detect prioritisation of proteome allocation for C1 fixation and significant 21 

expression of proteins involved in the production of acetate and ethanol as well as proteins with 22 

unclear functions. The data also revealed which isoenzymes are important. Integration of proteomic 23 

and metabolic flux data demonstrated that enzymes catalyse high fluxes with high concentrations and 24 

high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied with 25 

changing enzyme catalytic rates rather than concentrations. Our work serves as a reference dataset and 26 

advances systems-level understanding and engineering of acetogens. 27 

28 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443690


2 

 

INTRODUCTION 29 

Increasing concerns about irreversible climate change are accelerating the shift to renewable, carbon-30 

free energy production (e.g., solar, wind, fuel cells). However, many fuels and chemicals will stay 31 

carbon-based, and thus, technologies for their production using sustainable and renewable feedstocks 32 

are needed to transition towards a circular bioeconomy. Moreover, the rising amount of solid waste 33 

produced by human activities (e.g., municipal solid waste, lignocellulosic waste) will further endanger 34 

our ecosystems' already critical state. Both challenges can be tackled by using organisms capable of 35 

recycling gaseous one-carbon (C1) waste feedstocks (e.g., industrial waste gases [CO2, CO, CH4], 36 

syngas from gasified biomass or municipal solid waste [CO, H2, CO2]) into fuels and chemicals at 37 

industrial scale1–3. 38 

As we transition into a new bioeconomy, a key feature of global biosustainability will be the 39 

capacity to convert carbon oxides into products at industrial scale. Acetogens are the ideal biocatalysts 40 

for this as they use the most energy-efficient pathway, the Wood-Ljungdahl pathway (WLP)4,5, for 41 

fixing CO2 into the central metabolite acetyl-CoA6–9 and accept gas (CO, H2, CO2) as their sole carbon 42 

and energy source5. Indeed, the model-acetogen Clostridium autoethanogenum is already being used 43 

as a cell factory in industrial-scale gas fermentation3,10. The WLP is considered the first biochemical 44 

pathway on Earth7,11–13 and continues to play a critical role in the biogeochemical carbon cycle by 45 

fixing an estimated 20% of the global CO2
6,14. While biochemical details of the WLP are well 46 

described4,6,15, a quantitative understanding of acetogen metabolism is just emerging16,17. Notably, 47 

recent systems-level analyses of acetogen metabolism have revealed mechanisms behind metabolic 48 

shifts18–21, transcriptional architectures22,23, and features of translational regulation24,25. However, we 49 

still lack an understanding of acetogen proteome allocation through the quantification of proteome-50 

wide intracellular protein concentrations. This fundamental knowledge is required for advancing 51 

rational metabolic engineering of acetogen cell factories and for accurate in silico reconstruction of 52 

their phenotypes using metabolic models1,2. 53 

Quantitative description of an organism’s proteome allocation through absolute proteome 54 

quantification is valuable in several ways. Firstly, it enables us to understand prioritisation of the 55 

energetically costly proteome resources among functional protein categories, metabolic pathways, and 56 
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single proteins26,27. This may also identify relevant proteins with unclear functions and high 57 

abundances. Secondly, some metabolic fluxes can be catalysed by isoenzymes and a comparison of 58 

their intracellular concentrations can indicate which are likely relevant in vivo and are thus targets for 59 

genetic perturbation experiments to validate in vivo functionalities28. Thirdly, integration of absolute 60 

proteomics and metabolic flux data enable the estimation of apparent in vivo catalytic rates of 61 

enzymes (kapp)
26,29, which can be used to identify less-efficient enzymes as targets for improving 62 

pathways through metabolic and protein engineering. Absolute proteomics data also contribute to the 63 

curation of accurate genome-scale metabolic models. 64 

Absolute proteome quantification is generally performed using label-free mass-spectrometry 65 

(MS) approaches without spike-in standards30,31. The major limitation of this approach is that 66 

accuracy of label-free estimated protein concentrations cannot be determined. Furthermore, the 67 

optimal model to convert MS signals (e.g., spectral counts, peak intensities) into protein 68 

concentrations remains unknown32–34. Label-based approaches using stable-isotope labelled (SIL) 69 

spike-ins of endogenous proteins are thus preferred for reliable absolute proteome quantification. This 70 

strategy relies on accurate absolute quantification of a limited set of intracellular proteins (i.e., 71 

anchors) using SIL spike-ins to establish a linear correlation between protein concentrations and their 72 

measured MS intensities32. Studies with the latter approach have determined a 1.5�2.4-fold error for 73 

label-free estimation of proteome-wide protein concentrations in multiple organisms28,35–41. 74 

The aim of our work was to perform reliable absolute proteome quantification for the first 75 

time in an acetogen. We employed a label-based MS approach using SIL-protein spike-in standards to 76 

quantify SIL-based concentrations for 16 key proteins and label-free-based concentrations for >1,000 77 

C. autoethanogenum proteins during autotrophic growth on three gas mixtures. This allowed us to 78 

explore global proteome allocation, uncover isoenzyme usage in central metabolism, and quantify 79 

regulatory principles associated with estimated kapps. Our work provides an important reference 80 

dataset and advances the systems-level understanding and engineering of the ancient metabolism of 81 

acetogens. 82 

83 
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RESULTS 84 

Absolute proteome quantification framework in the model-acetogen C. autoethanogenum. We 85 

performed absolute proteome quantification from autotrophic steady-state chemostat cultures of C. 86 

autoethanogenum grown on three different gas mixtures: CO, syngas (CO+CO2+H2), or CO+H2 87 

(termed “high-H2 CO”) described before18,19. Briefly, four biological cultures of each gas mixture 88 

were grown anaerobically on a chemically defined medium at 37 °C, pH of 5, and dilution rate ~1 89 

day-1 (specific growth rate ~0.04 h-1) without the use of heavy SIL substrates. The absolute proteome 90 

quantification framework (Fig. 1) was built on using 19 synthetic heavy SIL-variants of key C. 91 

autoethanogenum proteins covering central metabolism (Supplementary Table 1). The SIL-protein 92 

standards were spiked in for quantification of intracellular concentrations of their endogenous light 93 

counterparts. This framework ensures accurate absolute quantification compared to commonly used 94 

peptide spike-ins. Spiking cell lysates with protein standards before sample clean-up and protein 95 

digestion accounts for errors accompanying these critical steps30,31,42,43. Furthermore, selection of 96 

peptides ensuring accurate absolute protein quantification without prior MS data is challenging as its 97 

difficult to predict which peptides “fly” well30,31,42,43. In contrast, all proteotypic peptides from a 98 

protein spike-in can be used for quantification. 99 

We synthesised heavy-labelled lysine and arginine SIL-proteins using a cell-free wheat germ 100 

extract platform as described previously18,44,45 and quantified standard stocks using parallel reaction 101 

monitoring (PRM) MS. Next, proteins were extracted from culture samples using an optimised 102 

protocol maximising extraction yield18 followed by spike-in of the 19 heavy SIL-proteins into light 103 

cell lysates. We then used a data-independent acquisition (DIA) MS approach46 to quantitate 1,243 104 

proteins of C. autoethanogenum across 12 samples (quadruplicate cultures of three gas mixtures) 105 

using a comprehensive spectral library consisting of whole-cell lysates, lysate fractions, and spike-in 106 

SIL-proteins. Finally, we quantified intracellular concentrations for 16 key C. autoethanogenum 107 

proteins using light-to-heavy ratios between endogenous and spike-in DIA MS intensities and further 108 

used these 16 as anchor proteins for label-free estimation of ~1,043 protein concentrations through 109 

establishing a linear correlation between protein concentrations and their measured MS intensities32. 110 
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We express intracellular protein concentrations in nanomoles of protein per gram of dry cell weight 111 

(nmol/gDCW). 112 

 113 

Absolute quantification of 16 anchor protein concentrations. To ensure high confidence absolute 114 

quantification of anchor protein concentrations from the DIA MS data, we employed stringent criteria 115 

on top of the automated mProphet peak picking algorithm47 within the software Skyline48. We also 116 

performed a dilution series experiment for each SIL-protein to increase accuracy (see Methods for 117 

details). Briefly, we kept only peaks with Gaussian shapes and without interference and precursors 118 

with highest Skyline quality metrics. Importantly, only peptides whose signal were above the lower 119 

limit of quantification (LLOQ) and within the linear dynamic quantification range in the dilution 120 

series experiment were used for anchor protein quantification (Supplementary Table 2). We thus used 121 

106 high-confidence peptides for the absolute quantification of 16 anchor protein concentrations 122 

(Table 1; see also Fig. 5). High confidence of the intracellular concentrations for these key C. 123 

autoethanogenum proteins of central metabolism is supported both by the low average 11% 124 

coefficient of variation (CV) between biological quadruplicate cultures (Table 1) and the average 22% 125 

CV between different peptides of single proteins (Supplementary Table S2). 126 

 127 

Label-free estimation of proteome-wide protein concentrations. Both high quality proteomics data 128 

and suitable anchor proteins are required for reliable label-free absolute proteome quantification. Our 129 

proteome-wide DIA MS data were highly reproducible with an average Pearson correlation 130 

coefficient of R = 0.99 between biological replicates (Fig. 2a and Supplementary Fig. 1). We also 131 

found our anchor proteins suitable as their concentrations spanned across three orders of magnitude, 132 

and the summed mass accounted for ~⅓ of the peptide mass injected into the mass spectrometer 133 

(Table 1 and Fig. 2b). We used the 16 anchor proteins (with 106 peptides) to determine the optimal 134 

label-free quantification model with the best linear fit between anchor protein concentrations and their 135 

measured DIA MS intensities using the aLFQ R package49 as described before for SWATH MS28 (Fig. 136 

2c). Notably, we detected an average 1.5-fold cross-validated mean fold-error (CV-MFE; 137 

bootstrapping) for the label-free estimated anchor protein concentrations across samples (Fig. 2d). 138 
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The errors were distributed normally (Supplementary Fig. 2) with an average 95% CI of 0.3 (Fig. 2d). 139 

We then applied the optimal label-free quantification model to estimate ~1,043 protein concentrations 140 

in C. autoethanogenum (Supplementary Table 3).  141 

Prior to the detailed analysis of proteome-wide protein concentrations, we further evaluated 142 

our label-free data accuracy beyond the 1.5-fold CV-MFE determined above. Firstly, the total 143 

proteome mass (1.2±0.1 μg; average ± standard deviation) closely matched the 1 μg peptide mass 144 

injected into the mass spectrometer (Fig. 2d). The data were also supported by a strong correlation 145 

between estimated protein concentrations and expected stoichiometries for equimolar (Fig. 3) and 146 

non-equimolar protein complexes (Supplementary Fig. 3). Notably, absolute protein concentrations of 147 

syngas cultures correlated well (R = 0.65) with their respective absolute transcript expression levels 148 

determined before19 (Supplementary Fig. 4). This result is similar to the correlations of absolute data 149 

seen in other steady-state cultures26,50. Altogether, we present the first absolute quantitative proteome 150 

dataset for a gas-fermenting acetogen that includes SIL-based concentrations for 16 key proteins and 151 

label-free estimates for over 1,000 C. autoethanogenum proteins during growth on three gas mixtures. 152 

 153 

C1 fixation dominates global proteome allocation. Global proteome allocation amongst functional 154 

gene classifications was explored using proteomaps27 and KEGG Orthology identifiers (KO IDs)51. 155 

The “treemap” structure defining the four-level hierarchy of our proteomaps (Supplementary Table 4) 156 

also included manually curated categories to accurately reflect acetogen metabolism (e.g., C1 157 

fixation/WLP, Hydrogenases). As expected for autotrophic growth of an acetogen, the C1 fixation 158 

(Fig. 4) or WLP (Supplementary Fig. 5) categories dominated the proteome allocation with a ~⅓ 159 

fraction, compared to Carbohydrate metabolism or Glycolysis/Gluconeogenesis. Notably, the data 160 

show that two genes–dihydrolipoamide dehydrogenase (LpdA; CAETHG_RS07825) and glycine 161 

cleavage system H protein (GcvH; RS07795)–encoded by the WLP gene cluster were translated at 162 

very high levels (Fig. 4). This is important as both have unknown functions in C. autoethanogenum 163 

metabolism. Significant investment in expression of proteins involved in acetate and ethanol 164 

production (Supplementary Fig. 5) is consistent with ⅓-to-⅔ of fixed carbon channelled into these 165 

two growth by-products across the three gas mixtures18,19. The 11% proteome fraction of category 166 
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Translation (Fig. 4) is expected for cells growing at a specific growth rate ~0.04 h-1 based on absolute 167 

proteomics data from Escherichia coli26,39,52. The notable proteome allocation for Amino acid 168 

metabolism and particularly the high abundance of ketol-acid reductoisomerase (IlvC; RS00580) are 169 

surprising since metabolic fluxes through 2,3-butanediol and branched-chain amino acid pathways 170 

were low under these growth conditions18,19. In addition, numerous proteins with unknown or unclear 171 

functions (coloured grey in proteomaps) are highly expressed (e.g., RS12590, RS08610, RS08145), 172 

highlighting the need for global mapping of genotype-phenotype relationships in acetogens. In general, 173 

proteome allocation was highly similar between the three gas mixtures (Supplementary Table 3). This 174 

result is unsurprising given the few relative protein expression differences detected previously18. 175 

 176 

Enzyme usage revealed in central metabolism. Next, we focused on uncovering enzyme usage in 177 

acetogen central metabolism (Fig. 5). This contains enzymes of the WLP, acetate, ethanol, and 2,3-178 

butanediol production pathways, hydrogenases, and the Nfn transhydrogenase, which together carry 179 

>90% of the carbon and most of the redox flow in C. autoethanogenum18–20. Multiple metabolic fluxes 180 

in these pathways can be catalysed by isoenzymes and absolute proteomics data can indicate which of 181 

the isoenzymes are likely relevant in vivo. While the carbon monoxide dehydrogenase (CODH) AcsA 182 

(RS07861�62) that forms the bifunctional CODH/ACS complex with the acetyl-CoA synthase53 183 

(AcsB; RS07800) is essential for C. autoethanogenum growth on gas as confirmed in mutagenesis 184 

studies54, the higher concentrations of the dispensable monofunctional CODH CooS1 (RS14775) 185 

suggest it may also play a role in CO oxidation (Fig. 4, 5), in addition to CO2 reduction54. 186 

Additionally, our proteomics data show high abundance of the primary acetaldehyde:ferredoxin 187 

oxidoreductase (AOR1; RS00440) and this support the emerging understanding that in C. 188 

autoethanogenum ethanol is dominantly produced using the AOR1 activity via acetate, instead of 189 

directly from acetyl-CoA via acetaldehyde using mono- or bifunctional activities18,19,55,56 (Fig. 5). 190 

Furthermore, the data suggest that the specific alcohol dehydrogenase (Adh4; RS08920) is responsible 191 

for reducing acetaldehyde to ethanol, a key reaction in terms of carbon and redox metabolism. The 192 

high abundance of the electron-bifurcating hydrogenase HytA-E complex (RS13745�70) compared 193 

to alternative hydrogenases confirms that it is the main H2-oxidiser57,58 (Fig. 5). This is consistent with 194 
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the fact that in the presence of H2 all the CO2 fixed by the WLP is reduced to formate using H2 by the 195 

HytA-E and formate dehydrogenase (FdhA; RS13725) enzyme complex activity18,19. Despite the 196 

proteomics evidence, genetic perturbations are required to determine condition-specific in vivo 197 

functionalities of isoenzymes in acetogens unequivocally. 198 

 The overall most abundant protein was the formate-tetrahydrofolate ligase (Fhs; RS07850), a 199 

key enzyme in the WLP (Fig. 5, 4). Despite the high abundance, its expression might still be rate-200 

limiting (see below). Another key enzyme for acetogens is AcsB because of its essentiality for acetyl-201 

CoA synthesis by the CODH/ACS complex. AcsB is linked to the WLP by the corrinoid iron sulfur 202 

proteins AcsC (RS07810) and AcsD (RS07815) that supply the methyl group to AcsB. Interestingly, 203 

the ratio of AcsCD-to-AcsB increased from 1.7 (CO) to 2.3 (syngas) to 2.9 (high-H2 CO), suggesting 204 

that the primary role of the CODH/ACS complex shifted from CO oxidation towards acetyl-CoA 205 

synthesis, likely because increased H2 uptake could replace the supply of reduced ferredoxin from CO 206 

oxidation. Concurrently, the Nfn transhydrogenase (RS07665) levels that act as a redox valve in 207 

acetogens20 are maintained high (Fig. 5), potentially to rapidly respond to redox perturbations. We 208 

conclude that absolute quantitative proteomics can significantly contribute to a systems-level 209 

understanding of metabolism, particularly in less-studied organisms. 210 

 211 

Integration of absolute proteomics and flux data yields in vivo enzyme catalytic rates. Absolute 212 

proteomics data enable estimation of intracellular catalytic working rates of enzymes when metabolic 213 

flux rates are known26,29. We thus calculated apparent in vivo catalytic rates of enzymes, denoted as 214 

kapp (s
-1)26, as the ratio of specific flux rate (mmol/gDCW/h) determined before18 and protein 215 

concentration (nmol/gDCW) (see Methods). This produced kapp values for 13 and 48 216 

enzymes/complexes using either anchor or label-free protein concentrations, respectively 217 

(Supplementary Table 5 and Fig. 5, 6). The first two critical steps for carbon fixation in the methyl 218 

branch of the WLP (i.e., CO to formate) are catalysed at high rates (Fig. 5). Notably, FdhA showed a 219 

kapp~30 s-1 for CO2 reduction without H2 during growth on CO only, which is similar to in vitro kcat 220 

data of formate dehydrogenases in other acetogens59,60. Interestingly, the next step of formate 221 

reduction was catalysed potentially by a less-efficient enzyme–Fhs–as its kapp of ~3 s-1 is significantly 222 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443690


9 

 

lower compared to other WLP enzymes (Fig. 5). Overall, enzymes catalysing reactions in high flux 223 

pathways such as the WLP and acetate and ethanol production have higher kapps than those of 224 

downstream from conversion of acetyl-CoA to pyruvate (Fig. 5). Indeed, enzymes catalysing high 225 

metabolic fluxes in C. autoethanogenum have both higher concentrations and higher catalytic rates 226 

compared to enzymes catalysing lower fluxes as both specific flux rates and enzyme concentrations 227 

(Kendall’s τ = 0.56, p-value = 5×10-9) and flux and kapp (τ = 0.45, p-value = 2×10-6) were significantly 228 

correlated (Fig. 6a), as seen before for other organisms26,61. 229 

 Having acquired absolute proteomics data for C. autoethanogenum growth on three gas 230 

mixtures with different metabolic flux profiles also allowed us to determine the impact of change in 231 

enzyme concentration and its catalytic rate for adjusting metabolic flux rates. Two extreme examples 232 

are the reactions catalysed by the HytA-E (Fig. 6b) and the Nfn (Fig. 5) complexes where flux 233 

adjustments were accompanied with large changes in kapps rather than in enzyme concentrations. Flux 234 

changes in high flux pathways such as the WLP and acetate and ethanol production also coincided 235 

mainly with kapp changes (Fig. 6b). This principle seems to be dominant in C. autoethanogenum as 236 

90% of flux changes were not regulated through enzyme concentrations (i.e., post-translational 237 

regulation; Supplementary Table 6) when comparing all statistically significant flux changes between 238 

the three gas mixtures with respective enzyme expression changes (see Methods). 239 

 240 

DISCUSSION 241 

The looming danger of irreversible climate change and harmful effects of solid waste accumulation 242 

are pushing humanity to develop and adopt sustainable technologies for renewable production of fuels 243 

and chemicals and for waste recycling. Acetogen gas fermentation offers great potential to tackle both 244 

challenges through recycling waste feedstocks (e.g., industrial waste gases, gasified biomass or 245 

municipal solid waste) into fuels and chemicals1,2. Although the quantitative understanding of 246 

acetogen metabolism has recently improved16,17, a quantitative description of acetogen proteome 247 

allocation was missing. This is needed to advance their metabolic engineering into superior cell 248 

factories and accurate in silico reconstruction of their phenotypes1,2. Thus, we performed absolute 249 
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proteome quantification in the model-acetogen C. autoethanogenum grown autotrophically on three 250 

gas mixtures. 251 

 Our absolute proteome quantification framework relied on SIL-protein spike-in standards and 252 

DIA MS analysis to ensure high confidence of the determined intracellular concentrations for 16 key 253 

C. autoethanogenum proteins. We further used these proteins as anchor proteins for label-free 254 

estimation of >1,000 protein concentrations. This enabled us to determine the optimal label-free 255 

quantification model for our data to infer protein concentrations from MS intensities, which remains 256 

unknown in common label-free approaches not utilising spike-in standards32,33. More importantly, 257 

label-free estimated protein concentrations using the latter approach are questionable as their accuracy 258 

cannot be determined. We determined an excellent average error of 1.5-fold for our label-free 259 

estimated protein concentrations based on 16 anchor proteins and a bootstrapping approach. This error 260 

is in the same range as described in previous studies using SIL spike-in standards for absolute 261 

proteome quantification28,35–41. Further, we also observed a good match both between estimated and 262 

injected proteome mass into the mass spectrometer and between protein concentrations and expected 263 

protein complex stoichiometries. We conclude that label-free estimation of proteome-wide protein 264 

concentrations using SIL-protein spike-ins and state-of-the-art MS analysis is reasonably accurate. 265 

 Quantification of acetogen proteome allocation during autotrophic growth expectedly showed 266 

prioritisation of proteome resources for fixing carbon through the WLP, in line with transcript 267 

expression data in C. autoethanogenum19,56. The allocation of one third of the total proteome for C1 268 

fixation is higher than proteome allocation for carbon fixation through glycolysis during heterotrophic 269 

growth of other microorganisms26,36. High abundances of other key enzymes of acetogen central 270 

metabolism were also expected as the WLP, acetate and ethanol production pathways, hydrogenases, 271 

and the Nfn transhydrogenase carry >90% of the carbon and most of the redox flow in C. 272 

autoethanogenum18–20. However, very high expression of the two genes–LpdA and GcvH–of the WLP 273 

gene cluster with unknown functions in C. autoethanogenum is striking, raising the question whether 274 

their function in C. autoethanogenum could also be to link WLP and glycine synthase-reductase 275 

pathways, as recently proposed for another acetogen62. Since many other proteins with unknown or 276 
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unclear functions were also highly abundant, global mapping of genotype-phenotype relationships in 277 

acetogens is much needed. 278 

 The in vivo functionalities of isoenzymes are not clear for multiple key metabolic fluxes in 279 

acetogen central metabolism and absolute proteomics data can indicate which isoenzymes are likely 280 

relevant. Oxidation of CO or reduction of CO2 is a fundamental step for all acetogens and known to 281 

be catalysed by three CODHs in C. autoethanogenum54. Though only AcsA that forms the 282 

bifunctional CODH/ACS complex with the acetyl-CoA synthase53 is essential for growth on gas54, we 283 

detected higher concentrations of the monofunctional CODH CooS1, which deletion strain shows 284 

intriguing phenotypes54. Concurrently, our data suggest that prioritisation of CODH/ACS activity 285 

between CO oxidation and acetyl-CoA synthesis is sensitive to H2 availability. Thus, further studies 286 

are required to decipher condition-dependent functionalities of CODHs. In addition to CODHs, the 287 

biochemical understanding of ethanol production is important in terms of both carbon and redox 288 

metabolism. Our data confirm that in C. autoethanogenum ethanol is predominantly produced via 289 

acetate by AOR118,19,55,56 and more importantly, indicate for the first time that AOR1 activity is 290 

followed by Adh4 (previously characterised as butanol dehydrogenase63) for reduction of 291 

acetaldehyde to ethanol. These observations call for large-scale genetic perturbation experiments to 292 

determine unequivocally the condition-specific in vivo functionalities of isoenzymes in acetogens. 293 

 Absolute proteomics data offer a unique opportunity to estimate apparent in vivo catalytic 294 

rates of enzymes (kapp)
26,29 if also metabolic flux data are available. These data are particularly 295 

valuable for more accurate in silico reconstruction of phenotypes using protein-constrained genome-296 

scale metabolic models64,65. While in vitro kcat and in vivo kapp data generally correlate29, models using 297 

maximal kapp values show better prediction of protein abundances66. Furthermore, information of kapps 298 

can infer less-efficient enzymes as targets for improving pathways through metabolic and protein 299 

engineering. For example, protein engineering of Fhs (catalysing formate reduction) might improve 300 

WLP throughput and carbon fixation since its kapp was significantly lower compared to other pathway 301 

enzymes. At the same time, the large change in kapps of the abundant electron-bifurcating hydrogenase 302 

HytA-E and the Nfn transhydrogenase complexes indicate capacity for the cells to rapidly respond to 303 

H2 availability and redox perturbations, which may be critical for metabolic robustness of acetogens20. 304 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443690


12 

 

Overall, we detected both higher concentrations and kapps for enzymes catalysing higher metabolic 305 

fluxes, which is believed to arise from an evolutionary push towards reducing protein production costs 306 

for enzymes carrying high flux61. The observation that 90% of flux changes in C. autoethanogenum 307 

were not regulated through changes in enzyme concentrations is not surprising for a metabolism that 308 

operates at the thermodynamic edge of feasibility16,17 since post-translational regulation of fluxes is 309 

energetically least costly. Further research is needed to identify which mechanism from post-310 

translational protein modification, allosteric regulation, or substrate concentration change is 311 

responsible for post-translational regulation of fluxes. 312 

 We have produced the first absolute proteome quantification in an acetogen and thus provided 313 

understanding of global proteome allocation, isoenzyme usage in central metabolism, and regulatory 314 

principles of in vivo enzyme catalytic rates. This fundamental knowledge has potential to advance 315 

both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of 316 

their phenotypes1,2,64,65. Our study also highlights the need for large-scale mapping of genotype-317 

phenotype relationships in acetogens to infer in vivo functionalities of isoenzymes and proteins with 318 

unknown or unclear functions. This absolute proteomics dataset serves as a reference towards a better 319 

systems-level understanding of the ancient metabolism of acetogens. 320 

 321 

METHODS 322 

Bacterial strain and culture growth conditions. Absolute proteome quantification was performed 323 

from high biomass concentration (~1.4 gDCW/L) steady-state autotrophic chemostat cultures of C. 324 

autoethanogenum growing on three different gas mixtures with culturing conditions described in our 325 

previous works18,19. Briefly, four biological replicate chemostat cultures of C. autoethanogenum strain 326 

DSM 19630 were grown on a chemically defined medium (without yeast extract) either on CO (~60% 327 

CO and 40% Ar), syngas (~50% CO, 20% H2, 20% CO2, and 10% N2/Ar), or CO+H2, termed “high-328 

H2 CO”, (~15% CO, 45% H2, and 40% Ar) under strictly anaerobic conditions. The bioreactors were 329 

maintained at 37 °C, pH of 5, and dilution rate ~1 day-1 (specific growth rate ~0.04 h-1). 330 

 331 
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Cell-free synthesis of stable-isotope labelled protein standards. Twenty proteins covering C. 332 

autoethanogenum central carbon metabolism, the HytA-E hydrogenase, and a ribosomal protein 333 

(Supplementary Table 1) were selected for cell-free synthesis of SIL-proteins as described in ref.18. 334 

Briefly, genes encoding for these proteins were synthesised by commercial gene synthesis services 335 

(Biomatik). Target genes were sub-cloned into the cell-free expression vector pEUE01-His-N2 336 

(CellFree Sciences) and transformed into Escherichia coli DH5α from which plasmid DNA was 337 

extracted and purified. Correct gene insertion into the pEUE01-His-N2 was verified by DNA 338 

sequencing. Subsequently, cell-free synthesis of His-tag fused C. autoethanogenum proteins was 339 

performed using the bilayer reaction method with the wheat germ extract WEPRO8240H (CellFree 340 

Sciences) as described previously44,45. mRNAs for cell-free synthesis were prepared by an in vitro 341 

transcription reaction while in vitro translation of target proteins was performed using a bilayer 342 

reaction where the translation layer was supplemented with L-Arg-13C6,
15N4 and L-Lys-13C6,

15N2 343 

(Wako) at final concentrations of 20 mM to achieve high efficiency (>99 %) for stable-isotope 344 

labelling of proteins. The in vitro synthesised SIL-protein sequences also contained an N-terminal 345 

amino acid sequence GYSFTTTAEK that was later used as a tag for quantification of the SIL-protein 346 

stock concentration. Subsequently, SIL-proteins were purified using the Ni-Sepharose High-347 

Performance resin (GE Healthcare Life Sciences) and precipitated using methanol:chloroform:water 348 

precipitation in Eppendorf Protein LoBind® tubes. Lastly, precipitated SIL-proteins were reconstituted 349 

in 104 μL of 8 M urea ([UA]; Sigma-Aldrich) in 0.1 M Trizma® base (pH 8.5) by vigorous vortexing 350 

and stored at -80 °C until further use. 351 

 352 

Absolute quantification of SIL-protein standards using PRM MS. Concentrations of the twenty 353 

synthesised SIL-protein standard stocks were determined using PRM MS preceded by in-solution 354 

digestion of proteins and sample desalting and preparation for MS analysis. 355 

Sample preparation 356 

Only Eppendorf Protein LoBind® tubes and pipette tips were used for all sample preparation steps. 357 

Firstly, 20 μL of UA was added to 4 μL of the SIL-protein standard stock used to determine the stock 358 

concentration, and the mix was vortexed. Then, 1 μL of 0.2 M DTT (Promega) was added, followed 359 
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by vortexing and incubation for 1 h at 37 °C to reduce disulphide bonds. Sulfhydryl groups were 360 

alkylated with 2 µL of 0.5 M iodoacetamide (IAA; Sigma-Aldrich), vigorous vortexing, and 361 

incubation for 30 min at room temperature in the dark. Next, 75 µL of 25 mM ammonium bicarbonate 362 

was added to dilute UA down to 2 M concentration. Subsequently, 2 pmol (2 µL of stock) of the non-363 

labelled AQUA® peptide HLEAAKGYSFTTTAEKAAELHK (Sigma-Aldrich) containing the 364 

quantification tag sequence GYSFTTTAEK was added to enable quantification of SIL-protein stock 365 

concentrations using MS analysis based on the ratio of heavy-to-light GYSFTTTAEK signals (see 366 

below). Protein digestion was performed for 16 h at 37 °C with 0.1 µg of Trypsin/Lys-C mix (1 µL of 367 

stock; Promega) and stopped by lowering pH to 3 by the addition of 5 µL of 10% (v/v) trifluoroacetic 368 

acid (TFA). 369 

 Samples were desalted using C18 ZipTips (Merck Millipore) as follows: the column was 370 

wetted using 0.1% (v/v) formic acid (FA) in 100% acetonitrile (ACN), equilibrated with 0.1% FA in 371 

70% (v/v) ACN, and washed with 0.1% FA before loading the sample and washing again with 0.1% 372 

FA. Peptides were eluted from the ZipTips with 0.1% FA in 70% ACN. Finally, samples were dried 373 

using a vacuum-centrifuge (Eppendorf) at 30 °C until dryness followed by reconstitution in 12 µL of 374 

0.1% FA in 5% ACN for subsequent MS analysis. 375 

LC method for PRM MS 376 

A Thermo Fisher Scientific UltiMate 3000 RSLCnano UHPLC system was used to elute the samples. 377 

Each sample was initially injected (6 µL) onto a Thermo Fisher Acclaim PepMap C18 trap reversed-378 

phase column (300 µm x 5 mm nano viper, 5 µm particle size) at a flow rate of 15 µL/min using 2% 379 

ACN for 3 min with the solvent going to waste. The trap column was switched in-line with the 380 

separation column (GRACE Vydac Everest C18, 300Å 150 µm x 150 mm, 2 µm) and the peptides 381 

were eluted using a flowrate of 3 µL/min using 0.1% FA in water (buffer A) and 80% ACN in buffer 382 

A (buffer B) as mobile phases for gradient elution. Following 3 min isocratic of 3% buffer B, peptide 383 

elution employed a 3-40% ACN gradient for 28 min followed by 40-95% ACN for 1.5 min and 95% 384 

ACN for 1.5 min at 40 °C. The total elution time was 50 min including a 95% ACN wash and a re-385 

equilibration step. 386 

PRM MS data acquisition 387 
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The eluted peptides from the C18 column were introduced to the MS via a nano-ESI and analysed 388 

using the Thermo Fisher Scientific Q-Exactive HF-X mass spectrometer. The electrospray voltage 389 

was 1.8 kV in positive ion mode, and the ion transfer tube temperature was 250 °C. Full MS-scans 390 

were acquired in the Orbitrap mass analyser over the range m/z 550–560 with a mass resolution of 391 

30,000 (at m/z 200). The AGC target value was set at 1.00E+06 and maximum accumulation time 50 392 

ms for full MS-scans. The PRM inclusion list included two mass values of 552.7640 and 556.7711. 393 

MS/MS spectra were acquired in the Orbitrap mass analyser with a mass resolution of 15,000 (at m/z 394 

200). The AGC target value was set at 1.00E+06 and maximum accumulation time 30 ms for MS/MS 395 

with an isolation window of 2 m/z. The loop count was set at 14 to gain greater MS/MS data. Raw 396 

PRM MS data have been deposited to Panorama at 397 

https://panoramaweb.org/Valgepea_Cauto_PRM.url (private reviewer account details: username: 398 

panorama+reviewer27@proteinms.net; password: hSAwNUAL) with a ProteomeXchange 399 

Consortium (http://proteomecentral.proteomexchange.org) dataset identifier PXD025760. 400 

PRM MS data analysis 401 

Analysis of PRM MS data was performed using the software Skyline48. The following parameters 402 

were used to extract PRM MS data for the quantification tag sequence GYSFTTTAEK: three 403 

precursor isotope peaks with a charge of 2 (++) were included (monoisotopic; M+1; M+2); five of the 404 

most intense y product ions from ion 3 to last ion of charge state 1 and 2 among the precursor were 405 

picked; chromatograms were extracted with an ion match mass tolerance of 0.05 m/z for product ions 406 

by including all matching scans; full trypsin specificity with two missed cleavages allowed for 407 

peptides with a length of 8-25 AAs; cysteine carbamidomethylation as a fixed peptide modification. 408 

Additionally, peptide modifications included heavy labels for lysine and arginine as 409 

13C(6)15N(2)/+8.014 Da (K) and 13C(6)15N(4)/+10.008 Da (R), respectively. This translated into the 410 

SIL-proteins and the non-labelled AQUA® peptide possessing the tag GYSFTTTAEK with m/z of 411 

556.7711 and 552.7640, respectively. Hence, the concentrations of SIL-protein stocks were calculated 412 

based on the ratio of heavy-to-light GYSFTTTAEK signals and the spike-in of 2 pmol of the non-413 

labelled AQUA® peptide (see above). High accuracy of quantification was evidenced by the very high 414 

similarity between both precursor peak areas and expected isotope distribution (R2>0.99; idotp in 415 
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Skyline) and heavy and light peak areas (R2>0.99; rdotp in Skyline) for all SIL-protein standard 416 

stocks. No heavy GYSFTTTAEK signal was detected for protein CAETHG_RS16140 (an acetylating 417 

acetaldehyde dehydrogenase in the NCBI annotation of sequence NC_022592.167), thus 19 SIL-418 

proteins could be used for following absolute proteome quantification in C. autoethanogenum 419 

(Supplementary Table 1). PRM MS data with all Skyline processing settings can be viewed and 420 

downloaded from Panorama at https://panoramaweb.org/Valgepea_Cauto_PRM.url (private reviewer 421 

account details: username: panorama+reviewer27@proteinms.net; password: hSAwNUAL). 422 

 423 

Absolute proteome quantification in C. autoethanogenum using DIA MS. We used 19 synthetic 424 

heavy SIL variants (see above) of key C. autoethanogenum proteins (Supplementary Table 1) as 425 

spike-in standards for quantification of intracellular concentrations of their non-SIL counterparts 426 

using a DIA MS approach46. Also, we performed a dilution series experiment for the spike-in SIL-427 

proteins to ensure accurate absolute quantification. We refer to these 19 intracellular proteins as 428 

anchor proteins that were further used to estimate proteome-wide absolute protein concentrations in C. 429 

autoethanogenum. This was achieved by determining the best linear fit between anchor protein 430 

concentrations and their measured DIA MS intensities using the same strategy as described 431 

previously28. 432 

Preparation of spike-in SIL-protein standard mix and dilution series samples 433 

Only Eppendorf Protein LoBind® tubes and pipette tips were used for all preparation steps. The 19 434 

spike-in SIL-protein standards that could be used for absolute proteome quantification in C. 435 

autoethanogenum (see above) were mixed in two lots: 1) ‘sample spike-in standard mix’: SIL-protein 436 

quantities matching estimated intracellular anchor protein quantities (i.e., expected light-to-heavy 437 

[L/H] ratios of ~1) based on label-free absolute quantification of the same samples in our previous 438 

work18; 2) ‘dilution series standard mix’: SIL-protein quantities doubling the estimated intracellular 439 

anchor protein quantities for the dilution series sample with the highest SIL-protein concentrations. 440 

 To ensure accurate absolute quantification of anchor protein concentrations, a dilution series 441 

experiment was performed to determine the linear dynamic quantification range and LLOQ for each 442 

of the 19 spike-in SIL-proteins. Dilution series samples were prepared by making nine 2-fold dilutions 443 
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of the ‘dilution series spike-in standard mix’ (i.e., 10 samples total for dilution series with a 512-fold 444 

concentration span) in a constant C. autoethanogenum cell lysate background (0.07 µg/µL; 10 445 

µg/tube) serving as a blocking agent to avoid loss of purified SIL-proteins (to container and pipette tip 446 

walls) and as a background proteome for accurate MS quantification of the linear range and LLOQ for 447 

anchor proteins. 448 

Sample preparation 449 

C. autoethanogenum cultures were sampled for proteomics by immediate pelleting of 2 mL of culture 450 

using centrifugation (25,000 × g for 1 min at 4 °C) and stored at -80 °C until analysis. Details of 451 

protein extraction and protein quantification in cell lysates are described previously18. In short, thawed 452 

cell pellets were suspended in lysis buffer (containing SDS, DTT, and Trizma® base) and cell lysis 453 

was performed using glass beads and repeating a ‘lysis cycle’ consisting of heating, bead beating, 454 

centrifugation, and vortexing before protein quantification using the 2D Quant Kit (GE Healthcare 455 

Life Sciences). 456 

 Sample preparation and protein digestion for MS analysis was based on the filter-aided 457 

sample preparation (FASP) protocol68. The following starting material was loaded onto an Amicon® 458 

Ultra-0.5 mL centrifugal filter unit (nominal molecular weight cut-off of 30,000; Merck Millipore): 1) 459 

50 µg of protein for one culture sample from each gas mixture (CO, syngas, or high-H2 CO) for 460 

building the spectral library for DIA MS data analysis (samples 1-3); 2) 7 µg of protein for one 461 

culture sample from either syngas or high-H2 CO plus ‘sample spike-in standard mix’ for including 462 

spike-in SIL-protein data to the spectral library (samples 4-5); 3) 15 µg of protein for all 12 culture 463 

samples (biological quadruplicates from CO, syngas, and high-H2 CO) plus ‘sample spike-in standard 464 

mix’ for performing absolute proteome quantification in C. autoethanogenum (samples 6-17); 4) ten 465 

dilution series samples with 10-15 µg of total protein (C. autoethanogenum cell lysate background 466 

plus ‘dilution series spike-in standard mix’) for performing the dilution series experiment for the 19 467 

spike-in SIL-proteins (see above) (samples 18-27).  468 

Samples containing SIL-proteins (samples 4-27) were incubated at 37 °C for 1 h to reduce 469 

SIL-protein disulphide bonds (cell lysate contained DTT). Details of the FASP workflow are 470 

described before18. In short, samples were washed with UA, sulfhydryl groups alkylated with IAA, 471 
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proteins digested using a Trypsin/Lys-C mix, and peptides eluted from the filter with 60 µL of 472 

ammonium bicarbonate. Next, 50 µL of samples 1-3 were withdrawn and pooled for performing high 473 

pH reverse-phase fractionation as described previously18 for expanding the spectral library for DIA 474 

MS data analysis, yielding eight fractions (samples 28-35). Subsequently, all samples were vacuum-475 

centrifuged at 30 °C until dryness followed by reconstitution of samples 1-3 and 4-35 in 51 and 13 µL 476 

of 0.1% FA in 5% ACN, respectively. Finally, total peptide concentration in each sample was 477 

determined using the PierceTM Quantitative Fluorometric Peptide Assay (Thermo Fisher Scientific) to 478 

ensure that the same total peptide amount across samples 1-17 and 28-35 (excluding samples 18-27, 479 

see below) could be injected for DIA MS analysis. 480 

LC method for data-dependent acquisition (DDA) and DIA MS 481 

Details of the LC method employed for generating the spectral library using DDA and for DIA sample 482 

runs are described previously20. In short, a Thermo Fisher Scientific UHPLC system including C18 483 

trap and separation columns was used to elute peptides with a gradient and total elution time of 110 484 

min. For each DDA and DIA sample run, 1 µg of peptide material from protein digestion was injected, 485 

except for dilution series samples (samples 18-27 above) that were injected in a constant volume of 3 486 

µL to maintain the dilution levels of the ‘dilution series spike-in standard mix’. 487 

DDA MS spectral library generation 488 

The following 13 samples were analysed on the Q-Exactive HF-X in DDA mode to yield the spectral 489 

library for DIA MS data analysis: 1) three replicates of one culture sample from each gas mixture (CO, 490 

syngas, or high-H2 CO) (samples 1-3 above); 2) three replicates of one culture sample from either 491 

syngas or high-H2 CO plus ‘sample spike-in standard mix’ (samples 4-5); 3) eight high pH reverse-492 

phase fractions of a pool of samples from each gas mixture (samples 28-35). 493 

Details of DDA MS acquisition for generating the spectral library are described before20. In 494 

short, eluted peptides from the C18 column were introduced to the MS via a nano-ESI and analysed 495 

using the Q-Exactive HF-X with an Orbitrap mass analyser. The DDA MS spectral library for DIA 496 

MS data confirmation and quantification using the software Skyline48 was created using the Proteome 497 

Discoverer 2.2 software (Thermo Fisher Scientific) and its SEQUEST HT search as described 498 

previously18. The final .pd result file contained peptide-spectrum matches (PSMs) with q-values 499 
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estimated at 1% false discovery rate (FDR) for peptides ≥4 AAs. The generated spectral library file 500 

has been deposited to the ProteomeXchange Consortium 501 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository69 with the dataset 502 

identifier PXD025732 (private reviewer account details: username: reviewer_pxd025732@ebi.ac.uk; 503 

password: QdkJHXy0). 504 

DIA MS data acquisition 505 

Details of DIA MS acquisition are described before20. In short, as for DDA MS acquisition, eluted 506 

peptides were introduced to the MS via a nano-ESI and analysed using the Q-Exactive HF-X with an 507 

Orbitrap mass analyser. DIA was achieved using an inclusion list: m/z 395�1100 in steps of 15 amu 508 

and scans cycled through the list of 48 isolation windows with a loop count of 48. In total, DIA MS 509 

data was acquired for 22 samples (samples 6-27 defined in section Sample preparation). Raw DIA 510 

MS data have been deposited to the ProteomeXchange Consortium 511 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository69 with the dataset 512 

identifier PXD025732 (private reviewer account details: username: reviewer_pxd025732@ebi.ac.uk; 513 

password: QdkJHXy0). 514 

DIA MS data analysis 515 

DIA MS data analysis was performed with Skyline48 as described before18 with the following 516 

modifications: 1) 12 manually picked high confidence endogenous peptides present in all samples and 517 

spanning the elution gradient were used for iRT alignment through building an RT predictor; 2) 518 

outlier peptides from iRT regression were removed; 3) a minimum of three isotope peaks were 519 

required for a precursor; 4) single peptide per spike-in SIL-protein was allowed for anchor protein 520 

absolute quantification while at least two peptides per protein were required for label-free estimation 521 

of proteome-wide protein concentrations; 5) extracted ion chromatograms (XICs) were transformed 522 

using Savitszky-Golay smoothing. Briefly, the .pd result file from Proteome Discoverer was used to 523 

build the DIA MS spectral library and the mProphet peak picking algorithm47 within Skyline was used 524 

to separate true from false positive peak groups (per sample) and only peak groups with q-value<0.01 525 

(representing 1% FDR) were used for further quantification. We confidently quantitated 7,288 526 

peptides and 1,243 proteins across all samples and 4,887 peptides and 1,043 proteins on average 527 
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within each sample for estimating proteome-wide absolute protein concentrations. For absolute 528 

quantification of anchor protein concentrations, we additionally manually: 1) removed integration of 529 

peaks showing non-Gaussian shapes or interference from other peaks; 2) removed precursors with 530 

similarity measures of R2<0.9 between product peak areas and corresponding intensities in the 531 

spectral library (dotp in Skyline), precursor peak areas and expected isotope distribution (idotp), or 532 

heavy and light peak areas (rdotp). After analysis in Skyline, 17 spike-in SIL-proteins remained for 533 

further analysis as protein CAETHG_RS14410 was not identified in DIA MS data while 534 

CAETHG_RS18395 did not pass quantification filters (Supplementary Table 1). DIA MS data with 535 

all Skyline processing settings can be viewed and downloaded from Panorama at 536 

https://panoramaweb.org/Valgepea_Cauto_Anchors.url for anchor protein absolute quantification and 537 

at https://panoramaweb.org/Valgepea_Cauto_LF.url for estimating proteome-wide absolute protein 538 

concentrations (private reviewer account details: username: panorama+reviewer27@proteinms.net; 539 

password: hSAwNUAL). 540 

Absolute quantification of anchor protein concentrations 541 

We employed further stringent criteria on top of the output from Skyline analysis to ensure high 542 

confidence absolute quantification of 17 anchor protein concentrations. Firstly, precursor with highest 543 

heavy intensity for the highest ‘dilution series spike-in standard mix’ sample in the dilution series 544 

(DS01) was kept while others were deleted. Peptides quantified in less than three biological replicates 545 

cultures within a gas mixture, with no heavy signal for DS01 sample, or with heavy signals for less 546 

than three continuous dilution series samples were removed. Next, we utilised the dilution series 547 

experiment to only keep signals over the LLOQ and within the linear dynamic quantification range. 548 

For this, correlation between experimental and expected peptide L/H signal ratios for each peptide 549 

across the dilution series was made to determine the LLOQ and calculate correlation, slope, and 550 

intercept between MS signal and spike-in level (Supplementary Table 2). Only peptides showing 551 

correlation R2>0.95, 0.95<slope<1.05, and -0.1<intercept<0.1 for the dilution series were kept. This 552 

ensured that we were only using peptides within the linear dynamic range. The remaining peptides 553 

were further filtered for each culture sample by removing peptides whose light or heavy signal was 554 

below the LLOQ in the dilution series. Subsequently, only peptides were kept with L/H ratios for at 555 
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least three biological replicates cultures for each gas mixture (i.e., ≥9 data points). Finally, we aimed 556 

to detect outlier peptides by calculating the % difference of a peptide’s L/H ratio from the average 557 

L/H ratio of all peptides for a given protein for every sample. Peptides were considered outliers and 558 

thus removed if the average difference across all samples was >50% or if the average difference 559 

within biological replicate cultures was >50%. After the previous stringent criteria were applied, 106 560 

high-confidence peptides remained (Supplementary Table 2) for the quantification of 16 anchor 561 

protein concentrations since CAETHG_RS01830 was lost during manual analysis (Table 1 and 562 

Supplementary Table 1). Proteins CAETHG_RS13725 and CAETHG_RS07840 were excluded from 563 

the high-H2 CO culture dataset as their calculated concentrations varied >50% between biological 564 

replicates. Data of one high-H2 CO culture was excluded from further analysis due to difference from 565 

bio-replicates likely due to challenges with MS analysis. 566 

Label-free estimation of proteome-wide protein concentrations 567 

We used the anchor proteins to estimate proteome-wide protein concentrations in C. 568 

autoethanogenum by determining the best linear fit between anchor protein concentrations and their 569 

measured DIA MS intensities using the aLFQ R package49 and the same strategy as described for 570 

SWATH MS28. Briefly, aLFQ used anchor proteins and cross-validated model selection by 571 

bootstrapping to determine the optimal model within various label-free absolute proteome 572 

quantification approaches (e.g., TopN, iBAQ). The approach can obtain the model with the smallest 573 

error between anchor protein concentrations determined using SIL-protein standards and label-free 574 

estimated concentrations. The models with the highest accuracy were used to estimate proteome-wide 575 

label-free concentrations for all proteins from their DIA MS intensities (1,043 proteins on average 576 

within each sample; minimal two peptides per protein; see above): summing the five most intense 577 

fragment ion intensities of the most or three of the most intense peptides per protein for CO or high-578 

H2 CO cultures, respectively; summing the five most intense fragment ion intensities of all quantified 579 

peptides of the protein divided by the number of theoretically observable peptides (i.e., iBAQ70) for 580 

syngas cultures. 581 

 582 
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Expected protein complex stoichiometries. Equimolar stoichiometries for the HytA-E/FdhA and 583 

MetFV protein complexes were expected based on SDS gel staining experiments in C. 584 

autoethanogenum57 and the acetogen Moorella thermoacetica71, respectively. Expected 585 

stoichiometries for other protein complexes in Fig. 3 and Supplementary Fig. 3 were based on 586 

measured stoichiometries in E. coli K-12 (Complex Portal; www.ebi.ac.uk/complexportal) and 587 

significant homology between complex member proteins in C. autoethanogenum and E. coli. All 588 

depicted C. autoethanogenum protein complex members had NCBI protein-protein BLAST E-589 

values<10-16 and scores>73 against respective E. coli K-12 proteins using non-redundant protein 590 

sequences. 591 

 592 

Generation of proteomaps. The distribution of proteome-wide protein concentrations among 593 

functional gene classifications was visualised using proteomaps27. For this, the NCBI annotation of 594 

sequence NC_022592.167 was used as the annotation genome for C. autoethanogenum, with 595 

CAETHG_RS07860 removed and replaced with the carbon monoxide dehydrogenase genes named 596 

CAETHG_RS07861 and CAETHG_RS07862 with initial IDs of CAETHG_1620 and 1621, 597 

respectively. Functional categories were assigned to protein sequences with KO IDs51 using the 598 

KEGG annotation tool BlastKOALA72. Since proteomaps require a tree-like hierarchy, proteins that 599 

were automatically assigned to multiple functional categories were manually assigned to one bottom-600 

level category (Level 3 in Supplementary Table 4) based on their principal task. We also created 601 

functional categories “C1 fixation/Wood-Ljungdahl Pathway” (Level 2/3), “Acetate & ethanol 602 

synthesis” (Level 3), “Energy conservation” (Level 3), “Hydrogenases” (Level 3) and manually 603 

assigned key acetogen proteins to these categories to reflect more accurately functional categories for 604 

an acetogen. Proteins without designated KO IDs were manually assigned to latterly created 605 

categories or grouped under “Not Included in Pathway or Brite” (Level 1) with Level 2 and 3 as “No 606 

KO ID”. If BlastKOALA assigned multiple genes the same proposed gene/protein name, unique 607 

numbers were added to names (e.g., pfkA, pfkA2). The final “treemap” defining the hierarchy for our 608 

proteomaps is in Supplementary Table 4. 609 

 610 
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Calculation of apparent in vivo catalytic rates of enzymes (kapp). We calculated apparent in vivo 611 

catalytic rates of enzymes, denoted as kapp (s
-1)26, as the ratio of specific flux rate (mmol/gDCW/h) 612 

determined before18 and protein concentration (nmol/gDCW) quantified here for the same C. 613 

autoethanogenum CO, syngas, and high-H2 CO cultures. Gene-protein-reaction (GPR) data of the 614 

genome-scale metabolic model iCLAU78618 were manually curated to reflect most recent knowledge 615 

and were used to link metabolic fluxes with catalysing enzymes. For reactions with multiple assigned 616 

enzymes (i.e,. isoenzymes), the enzyme with the highest average ranking of its concentration across 617 

the three cultures (Supplementary Table 3) was assumed to solely catalyse the flux. For enzyme 618 

complexes, average of quantified subunit concentrations was used (standard deviation estimated using 619 

error propagation). For the HytA-E hydrogenase, its measured protein concentration was split 620 

between reactions “rxn08518_c0” (direct CO2 reduction with H2 in complex with FdhA) and 621 

“leq000001_c0” (H2 oxidation solely by HytA-E) proportionally to flux for syngas and high-H2 CO 622 

cultures. The resulting enzymes or enzyme complexes catalysing specific fluxes are shown in 623 

Supplementary Table 5. Finally, we assumed each protein chain being catalytically active and only 624 

calculated kapp values for metabolic reactions with a non-zero flux in at least one condition, specific 625 

flux rate>0.1% of CO fixation flux in at least one condition, and label-free data with measured 626 

concentration for the associated enzyme(s) in all conditions (Supplementary Table 5). Membrane 627 

proteins were excluded from kapp calculations to avoid bias from potentially incomplete protein 628 

extraction. This produced kapp values for 13 enzymes/complexes using anchor protein concentrations 629 

and for 48 enzymes/complexes using label-free protein concentrations (Supplementary Table 5). 630 

 631 

Determination of regulation level of metabolic fluxes. We used published flux and relative 632 

proteomics data18 of the same cultures studied here to determine whether fluxes are regulated by 633 

changing enzyme concentrations or their catalytic rates by considering metabolic fluxes with non-zero 634 

specific flux rates in at least two conditions of CO, syngas, or high-H2 CO cultures. The same 635 

manually curated GPRs and criteria for isoenzymes and protein complexes as described above for kapp 636 

calculation were used to determine flux-enzyme pairs (Supplementary Table 6). We first used a two-637 

tailed two-sample equal variance Student’s t-test with FDR correction73 to determine fluxes with 638 
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significant changes between any two conditions (q-value<0.05). We then used the Student’s left-tailed 639 

t-distribution with FDR to determine if the significant flux change for every flux was significantly 640 

different from the change in respective enzyme expression between the same conditions 641 

(Supplementary Table 6). Flux with a q-value<0.05 for the latter test was considered to be regulated at 642 

post-translational level (e.g., by changing enzyme catalytic rate). 643 

 644 

DATA AVAILABILITY 645 

All data generated or analysed during this study are in the main text, supplementary information files, 646 

or public databases. Raw PRM MS data have been deposited to Panorama at 647 

https://panoramaweb.org/Valgepea_Cauto_PRM.url (private reviewer account details: username: 648 

panorama+reviewer27@proteinms.net; password: hSAwNUAL) with a ProteomeXchange 649 

Consortium (http://proteomecentral.proteomexchange.org) dataset identifier PXD025760. Raw DIA 650 

MS data have been deposited to the ProteomeXchange Consortium 651 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository69 with the dataset 652 

identifier PXD025732 (private reviewer account details: username: reviewer_pxd025732@ebi.ac.uk; 653 

password: QdkJHXy0). PRM MS data with all Skyline processing settings can be viewed and 654 

downloaded from Panorama at https://panoramaweb.org/Valgepea_Cauto_PRM.url. DIA MS data 655 

with all Skyline processing settings can be viewed and downloaded from Panorama at 656 

https://panoramaweb.org/Valgepea_Cauto_Anchors.url for anchor protein absolute quantification and 657 

at https://panoramaweb.org/Valgepea_Cauto_LF.url for estimating proteome-wide absolute protein 658 

concentrations (private reviewer account details: username: panorama+reviewer27@proteinms.net; 659 

password: hSAwNUAL). Any other relevant data are available from the corresponding author on 660 

reasonable request. 661 
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 850 

FIGURE LEGENDS 851 

Fig. 1 Absolute proteome quantification framework in C. autoethanogenum. Absolute proteome 852 

quantification in light (no stable-isotope labelled [SIL] substrates) autotrophic C. autoethanogenum 853 

chemostat cultures was built on using 19 synthetic heavy SIL-protein spike-in standards and data-854 

independent acquisition (DIA) mass spectrometry (MS) analysis. Culture samples with SIL-protein 855 

spike-ins and samples for DIA spectral library were analysed by DIA MS. Subsequent stringent data 856 
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analysis allowed to quantify intracellular concentrations for 16 key C. autoethanogenum proteins 857 

using light-to-heavy ratios between endogenous and spike-in DIA MS intensities. These 16 key 858 

proteins were further used as anchor proteins for label-free estimation of ~1,043 protein 859 

concentrations through establishing a linear correlation between protein concentrations and their 860 

measured MS intensities. Some parts created with BioRender.com. 861 

 862 

Fig. 2 Label-free estimation of proteome-wide protein concentrations. a Correlation of peptide 863 

mass spectrometry (MS) feature intensities between biological replicate cultures of the three gas 864 

mixtures. b Linear correlation between anchor protein concentrations and their measured MS 865 

intensities for one syngas culture. gDCW, gram of dry cell weight, aLFQ, absolute label-free 866 

quantification. c Errors of different label-free quantification models for the linear fit between anchor 867 

protein concentrations and their measured MS intensities determined by bootstrapping using the aLFQ 868 

R package49 for one syngas culture. CV-MFE, cross-validated mean fold-error. d Label-free 869 

quantification error of optimal model (orange) and total proteome mass (blue) across samples. Error 870 

bars denote 95% CI. 871 

 872 

Fig. 3 Strong correlation between protein concentrations and expected stoichiometries for 873 

equimolar protein complexes. Grey dotted lines denote the average 1.5-fold cross-validated mean 874 

fold-error (CV-MFE) of label-free protein concentrations. Label-free protein concentrations are 875 

plotted, except for the HytA-FdhA complex, which was quantified using stable-isotope labelled 876 

protein spike-ins. Data points of the same colour represent gas mixtures. See Methods for details on 877 

expected protein complex stoichiometries. See Supplementary Table S3 for gene/protein ID, proposed 878 

name, description, and label-free data. See Table 1 for HytA-FdhA data. gDCW, gram of dry cell 879 

weight. 880 

 881 

Fig. 4 Proteomaps uncover global proteome allocation. Left proteomap shows proteome allocation 882 

amongst functional gene classification categories (KEGG Orthology identifiers [KO IDs] 51) at level 883 

two of the four-level “treemap” hierarchy structure (Supplementary Table S4). Right proteomap 884 
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shows proteome allocation at the level of single proteins (level four of “treemap”). See Supplementary 885 

Fig. S5 for proteomaps of levels one and three of “treemap”. Area of the tile is proportional to protein 886 

concentration. Colours denote level one categories of “treemap”. Proteomaps visualise average 887 

concentrations of syngas cultures while category percentages are average of three gas mixtures 888 

(shown for categories with a fraction >5%). See Supplementary Table S3 for gene/protein ID, 889 

proposed name, description, and label-free protein concentrations. 890 

 891 

Fig. 5 Quantitative systems-level view of acetogen central metabolism. Enzyme concentrations 892 

(nmol/gDCW), apparent in vivo catalytic rates of enzymes (kapp; s
-1), and metabolic flux rates 893 

(mmol/gDCW/h) are shown for C. autoethanogenum steady-state chemostat cultures grown on three 894 

gas mixtures. See dashed inset for bar chart and heatmap details. Enzyme concentration and kapp data 895 

are average of biological replicates. Proteins forming a complex are highlighted with non-black 896 

borders (FdhA forms a complex with HytA–E for direct CO2 reduction with H2; CooS1 is expected to 897 

form a complex with CooS1a and b as they are encoded from the same operon). For reactions with 898 

isoenzymes, kapp is for the enzyme with the highest concentration ranking (top location on enzyme 899 

heatmap), see Methods for details. Flux data from ref.18 are average of biological replicates and error 900 

bars denote standard deviation. Arrows show direction of calculated fluxes; red arrow denotes uptake 901 

or secretion. Gene/protein IDs right of enzyme concentration heatmaps are preceded with 902 

CAETHG_RS and red font denotes concentrations determined using stable-isotope labelled (SIL) 903 

protein spike-in standards (i.e., anchor proteins). Asterisk denotes data for redox-consuming CO2 904 

reduction to formate solely by FdhA without the use of H2 during growth on CO. aBifunctional 905 

acetaldehyde/alcohol dehydrogenase (acetyl-CoA→ethanol); bFlux into PEP from OAA and pyruvate 906 

is merged and kapp is for PEPCK. See Supplementary Table S3 for gene/protein ID, proposed name, 907 

description, and label-free protein concentrations. See Table 1 for anchor protein concentrations. See 908 

Supplementary Table S5 for kapp and flux data. See ref.18 for cofactors of reactions and metabolite 909 

abbreviations. gDCW, gram of dry cell weight, NQ, not quantified. 910 

 911 
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Fig. 6 Regulatory principles of apparent in vivo catalytic rates of enzymes (kapp) and metabolic 912 

flux throughput. a Enzymes catalysing higher metabolic flux rates have both higher concentrations 913 

and higher kapps. Yellow and blue denote high and low values, respectively. Kendall’s τ correlations 914 

with significance p-values between respective pairs are shown below heatmap. See Supplementary 915 

Table S5 for flux rate, enzyme concentration, and kapp data, and for description of reaction names 916 

(Rxn name) and gene-protein-reaction (GPR) associations. b Control of metabolic flux throughput 917 

through kapp changes for high flux pathways. See also Fig. 5. gDCW, gram of dry cell weight. 918 
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Parameters and units

Enzyme/protein - protein concentration (nmol/gDCW)
Flux - specific flux rate (mmol/gDCW/h)
kapp - apparent in vivo catalytic rate of enzyme (s-1)
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Rxn name Flux kapp

GPR 
CAETHG_RS…

rxn07189 14775
rxn00690 07850
rxn01211 07845
rxn00907 07840
rxn00910 07830+35
rxn06149 07805
rxn12080 07800
rxn00225 16495
rxn00173 16490
rxn08518 13725+(45-70)
rxn00543 08920

leq000004 00440
leq000001 13745-70
leq000002 07665

rxn00103 13725
rxn05938 14890
rxn00001 15405
rxn00250 07735
rxn00184 11665
rxn00097 09335
rxn05289 09165
rxn00247 13335
rxn01106 08500
rxn01100 08510
rxn00459 08495
rxn00781 16815
rxn00003 01930
rxn00260 01020
rxn00903 14905
rxn00747 08505
rxn02187 00580
rxn03068 00580
rxn00898 00585
rxn06673 09960+65
rxn00187 09895
rxn02112 01830
rxn01643 06525
rxn00611 16355
rxn01301 15215
rxn00974 13540
rxn00256 13535
rxn01388 13540
rxn00505 13545
rxn01069 05835
rxn00770 09805
rxn01974 15555
rxn01972 18870
rxn03030 06545
rxn03086 06510
rxn00248 12200
rxn00799 09220

τ=0.56 p=5×10-9

τ=0.45 p=2×10-6
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