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Abstract 29 

The dynamic repertoire of functional brain networks is constrained by the underlying topology of 30 

structural connections: the lack of a direct structural link between two brain regions prevents direct 31 

functional interactions. Despite the intrinsic relationship between structural (SC) and functional 32 

connectivity (FC), integrative and multimodal approaches to combine the two remain limited, 33 

especially for electrophysiological data. In the present work, we propose a new linear adaptive filter 34 

for estimating dynamic and directed FC using structural connectivity information as priors. We 35 

tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from 36 

a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. Our results 37 

show that SC priors increase the resilience of FC estimates to noise perturbation while promoting 38 

sparser networks under biologically plausible constraints. The proposed filter provides intrinsic 39 

protection against SC-related false negatives, as well as robustness against false positives, 40 

representing a valuable new method for multimodal imaging and dynamic FC analysis. 41 
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Introduction 56 

The white matter architecture of the human brain constitutes the structural backbone for neuronal 57 

communication. A fixed network of axonal pathways wires an extremely rich repertoire of brain 58 

functions, from short-range interactions to large-scale dynamics that support perception, cognition, 59 

and action (Petersen & Sporns, 2015). As in all biological systems, properties of the structure 60 

constrain the possible functions. Organizational principles of structural brain networks, such as 61 

small-world and modular architectures, determine the topological space for functional interactions 62 

at the meso- and macro-scale (Hagmann et al., 2008; Sporns, 2010). At the microscale, the absence 63 

of a synaptic connection between two neurons makes a direct functional coupling biologically 64 

impossible. Despite the inherent link between structural (SC) and functional brain connectivity 65 

(FC), the two have been mostly investigated separately, and the potential benefits of integrative and 66 

multimodal approaches combining SC and FC remain largely unexplored (Lei et al., 2015). 67 

 The relationship between structural wiring and functional coupling is at the core of several 68 

statistical and biophysical models of brain networks (Honey et al., 2010). These models advocate a 69 

substantial overlap between SC and FC, both at the mesoscopic and macroscopic scales. Empirical 70 

and modelling studies on resting-state brain networks provide converging support, showing that the 71 

weights of structural and functional networks, as well as their topological features, tend to be 72 

correlated, and the strength of between-regions SC is typically a good predictor of their FC (Deco et 73 

al., 2013; Honey et al., 2009; Mišić et al., 2016; Skudlarski et al., 2008). Given the established 74 

overlap between structure and function, measures of FC may be meaningfully improved by taking 75 

SC into account, as suggested by a few proposed methods. In the framework of Bayesian modeling, 76 

for instance, structural graphs have been incorporated as priors for generative models of FC 77 

(Sokolov et al., 2019). A structural graph is typically obtained from in vivo diffusion-weighted 78 

imaging data (DWI) that quantify the anisotropy in the diffusion of water molecules along white 79 

matter tracts (Hagmann et al., 2008). The connectivity graph is either a binary or weighted 80 

undirected adjacency matrix that provides information about the presence and strength of a physical 81 

link between distinct brain regions. It has been shown how adding SC graphs as priors for effective 82 

connectivity substantially improves model evidence (Sokolov et al., 2019). Similarly, constraining 83 

FC for only present SC links and anatomically determined time lags may reduce false positives and 84 

improve the spatial resolution of electroencephalography (EEG) source imaging (Filatova et al., 85 

2018; Takeda et al., 2019).  86 

Whereas previous work has focused mainly on combining SC and FC for the analysis of 87 

functional Magnetic Resonance Imaging data (fMRI), similar integrative approaches are missing for 88 

the emerging field of time-varying directed FC analysis (Eichenbaum et al., 2021). Time-varying 89 
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FC characterizes the dynamics of directed neuronal interactions that evolve at the millisecond scale, 90 

exploiting high-temporal resolution recordings, such as local field potentials and EEG source 91 

imaging data (Milde et al., 2010; Pascucci et al., 2018; Plomp et al., 2014). We here use the more 92 

general term FC througouth the paper, referring to these directed and dynamic measures of FC. 93 

Recently, we introduced a variant of the classic Kalman filter, the Self-Tuning Optimized Kalman 94 

filter (STOK; Pascucci et al., 2019), for modeling rapid changes in large-scale functional networks 95 

during evoked brain activity. Here, we present an extension of this algorithm that incorporates prior 96 

information on the structural connectivity: the structurally informed STOK (si-STOK). The 97 

algorithm provides a straightforward and novel tool to combine SC (e.g., DTI-derived metrics) with 98 

dynamic FC. We tested the algorithm in benchmark data and evaluated the effect of different SC 99 

matrices on the estimated FC. We demonstrated the advantages of combining SC with FC in terms 100 

of noise resilience and consistency of the estimates. We then compared the two algorithms in event-101 

related large-scale functional brain networks during face processing. Our results showed that 102 

incorporating SC in dynamic FC promotes sparser and physiologically plausible topologies of 103 

functional networks, aiding the identification of the main network drivers and dynamics. Matlab 104 

and Python code for si-STOK are available on GitHub (https://github.com/PscDavid/dynet_toolbox; 105 

https://github.com/joanrue/pydynet). 106 

Results 107 

Somatosensory evoked potentials in rats 108 

To incorporate structural priors in dynamic functional connectivity, we developed a variant of the 109 

self-tuning optimized Kalman filter (STOK) (Pascucci et al., 2019). The STOK is an adaptive filter 110 

that derives time-varying Multivariate Autoregressive coefficients (tv-MVAR) using a simple least-111 

squares regression of present on past signals. We exploited this core feature of the filter to 112 

incorporate SC as shrinking priors of a least-squares solution (see Methods, Eq. [7]). SC matrices 113 

were used to calibrate the variance of a prior expectation of zero FC between each pair of nodes 114 

(Sokolov et al., 2019) (Figure 1). Strong SC values correspond to large prior variance, allowing FC 115 

to deviate from zero, whereas weak SC values reduce the prior variance and shrink FC toward zero. 116 

Hence, the filter’s estimates combine the strength of SC with the FC supported by the data (see 117 

Methods and Figure 1). 118 

 119 

 120 

 121 

 122 
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 123 

 124 

Figure 1 125 

Estimation of structurally-informed dynamic FC using the si-STOK filter. a) A least-squares solution is used to estimate 126 
the coefficient matrix (A) of a time-varying Multivariate Autoregressive Model by regressing past (H) on present (Z) 127 
values of the multivariate time-series (see eq. [4], the symbol � stands for the matrix pseudoinverse). b) SC priors (e.g., 128 
DTI metrics) are incorporated in the filter as the prior variance on the expected zero FC from all the sender nodes to 129 
each receiver node. Weak SC corresponds to small prior variance, shrinking the coefficient estimates toward zero; 130 
strong SC corresponds to large prior variance, allowing the estimated coefficients to deviate more from zero when 131 
supported by the data. c) The regularizing matrix Q informs the least-squares solution with priors on the variance of 132 
autoregressive coefficients based on SC, resulting in MVAR models that combine FC and SC. 133 
 134 

 135 

We tested the proposed algorithm, termed structurally informed STOK (si-STOK), on a 136 

benchmark dataset of epicranial EEG recordings in rats, from a whisker stimulation protocol 137 
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(Plomp et al., 2014; Quairiaux et al., 2011). After whisker stimulation, action potentials originate 138 

and propagate rapidly (e.g., within 10-25 ms) from the contralateral primary sensory cortex, 139 

following the underlying structural connectivity (Plomp et al., 2014) (see Figure 2a). This pattern 140 

was accurately recovered by the STOK filter, which detected an overall larger Magnitude of 141 

outgoing Directed Influences (MDI, see Methods) from the contralateral sensory cortex (e4), at 142 

early post-stimulus latencies (13 ms, see Figure 2a and Pagnotta et al., 2018; Pagnotta & Plomp, 143 

2018; Plomp et al., 2014). We used a directed, weighted matrix of SC that we derived from a meta-144 

analysis of reported structural connections (Bota et al., 2015; Swanson et al., 2017) (see Methods). 145 

Compared to the regular STOK fileter, the inclusion of SC priors provided qualitatively similar 146 

results, with clearer dynamics and visible but minor changes (Figure 2a). The similarity between the 147 

results of the two algorithms was a consequence of the use of a dense SC matrix, with connection 148 

weights that did not deviate drastically from the estimated FC. When evaluating the magnitude of 149 

outgoing influences from e4 to all the other nodes, indeed, the results were highly comparable 150 

(Figure 2b). However, incorporating a sparser SC matrix, with only 25% of the strongest SC 151 

connections, led to evident changes. When one of the expected FC connections (from e4 to e2) was 152 

absent in SC, the resulting estimate decreased considerably (Figure 2b). Nevertheless, FC from e4 153 

to e2 was still larger compared to two other SC-absent connections (from e4 to e1 and from e4 to 154 

e8) for which weak or no FC was supported by the data. Conversely, for connections with weak FC, 155 

strong SC did not drastically increase FC. This demonstrated that in the present modeling 156 

framework the inclusion of structural priors has a low risk of producing false negatives (the 157 

downscaling of FC for absent SC depends also on the strength of FC) while it is also robust against 158 

the risk of introducing false positives driven by strong SC in the absence of FC. 159 

 To better appreciate the advantages of combining SC and FC, we compared the 160 

performance of the two algorithms under noise perturbations. We evaluated two criteria (see 161 

Methods): 1) the consistency of the estimated network at the e4 peak latency; 2) the ability to detect 162 

e4 as the main driver compared to the average network activity. The two criteria were tested by 163 

varying the ratio of noise to signal. As evident in Figure 2c, the si-STOK outperformed the regular 164 

STOK for both criteria at all the noise levels. This highlighted an additional important feature of the 165 

new filter: when FC is informed by SC, the estimated networks become more resilient to noise and 166 

present a consistent topology and nodal strength under perturbations. 167 
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 168 

Figure 2 169 

Validation in benchmark rat EEG data. a) Contralateral evoked potentials after whisker stimulation, showing the peak in 170 
the primary sensory cortex (e4). Activity propagates rapidly after stimulation from the primary sensory cortex to nearby 171 
parietal and frontal regions (e2 and e6). The role of the primary sensory cortex as the main driver of evoked activity is 172 
evident from the summed Magnitude of outgoing Directed Influences (MDI) estimated with both the STOK and the si-173 
STOK filters. b) Effect of incorporating SC priors in the estimated directed influences from e4 to the rest of the network 174 
at the peak latency of the evoked activity (13 ms). Boxplots summarize the results of the STOK filter with (empty 175 
boxplots) and without (filled boxplots) SC priors, across ten animals. By using a dense SC matrix with almost uniform 176 
priors, the estimated FC are highly similar with and without SC priors. Retaining only 25% of the strongest SC 177 
connections demonstrates the relative shrinkage of SC-absent FC and the resistance of the algorithm against SC-related 178 
false positives: under an SC-absent prior, the expected FC from e4 to e2 was still larger compared to other connections, 179 
whereas strong SC priors did not inflate FC when weak FC was supported by the data (e.g., from e4 to e5). c) 180 
Performance evaluation under noise perturbations, after varying the proportion of signal to noise (additive) in the 181 
original data. Compared to the regular STOK, the si-STOK FC estimates showed overall larger consistency with the FC 182 
estimated in the absence of additional noise, as the proportion of noise perturbing the data increased (left panel). 183 
Similarly, the si-STOK showed a higher ability to detect the contralateral primary sensory cortex as the main driver of 184 
network activity at peak evoked latencies (right panel, the black line indicates the estimated e4 outflow, subtracted from 185 
the average network outflow at 13 ms, with the si-STOK in the absence of noise perturbations; the dashed line indicates 186 
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the estimate obtained with the regular STOK). SC priors lead to an increased ability to detect e4 as the main network 187 
driver at all noise levels tested. Shaded lines in (a) are 95% CI of the mean. 188 

 189 

Human EEG data 190 

After validating the algorithm in benchmark data recorded in rats, we employed the si-STOK filter 191 

to model FC in event-related human EEG data. We modeled FC in a large-scale network of 68 brain 192 

regions in response to faces and scrambled stimuli (Desikan et al., 2006) (see Methods and Figure 193 

3a). On the electrode level, the comparison of evoked responses between faces and scrambled 194 

images revealed the typical topography and time-course of the face-related N170 component (faces 195 

minus scrambled, peak at 160 ms) with the largest difference between conditions localized in the 196 

right fusiform and nearby occipitotemporal areas (see Figure 3b).  197 

Figure 3c shows the effect of incorporating SC priors on the estimated FC at a time window 198 

of interest around the N170 response. FC matrices obtained through the si-STOK filter showed the 199 

clear shrinkage of functional connections for weak and absent SC, leading to FC matrices that partly 200 

inherit the structure of SC but preserved intrinsic patterns of FC coupling (see Figure 3c), in line 201 

with the benchmark results. For the same time window of evoked activity, we compared the 202 

summed outflow from each area between the two conditions (faces minus scrambled, summed 203 

MDI) as a measure of changes in nodal strength during face processing. In the ranked outflow, the 204 

two filters agreed in identifying the bilateral inferior temporal gyrus and the left fusiform gyrus as 205 

the three areas with the largest increase in outflow in response to faces (see Figure 3d). Without 206 

structural priors, however, frontal regions were also ranked amongst the largest drivers at short 207 

post-stimulus latencies (e.g., rFPol, lFPol, see Supplementary File 2 for abbreviations) and the 208 

outflow increase in response to faces was more or less pronounced throughout the entire network. 209 

With the inclusion of structural priors, the ten largest drivers of face-related activity were all located 210 

in primary and secondary visual cortex, including the bilateral fusiform, lateral occipital cortex, 211 

lingual gyrus (e.g., V1), and regions in the temporal cortex (see Figure 3d), while the summed 212 

outflow from the rest of the network decreased progressively.  213 
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 214 

Figure 3 215 

SC priors for large-scale FC analysis of human EEG data. a) Example of the sequence of events in one trial of the face 216 
detection task. Face and scrambled stimuli were randomly interleaved across trials. EEG data were time-locked to the 217 
onset of the stimuli. b) Scalp evoked responses showing the typical topography and time-course of the face-related 218 
N170 component (faces minus scrambled, peak at 160 ms, upper panels). Source reconstruction localized the source of 219 
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face-selective responses in the right fusiform and nearby occipitotemporal areas (lower panels). c) The group SC prior 220 
matrix (upper panel) and the FC (MDI index) estimated with the regular STOK (central panel) and the si-STOK (lower 221 
panel) in response to face stimuli, averaged in a time window around the face-selective N170 response (from 140 to 180 222 
ms post-stimulus). d) Ranked summed outflow in response to faces (faces minus scrambled) from all the 68 areas, 223 
obtained using the regular STOK (bar plot on the left) and the si-STOK (bar plot on the right). See supplementary File 2 224 
for abbreviations. The inclusion of SC priors resulted in a less scattered topology of face-selective outflows, with the 225 
largest network drivers localized in primary, secondary visual areas and regions of the fusiform and inferior-temporal 226 
cortex.   227 

 228 

These comparisons suggest that the inclusion of SC priors refines the topology of FC 229 

networks and portrays the contribution of each node in a more physiologically plausible way. This 230 

feature can aid the identification of hubs and critical modules in large-scale FC analysis. A further 231 

important question is whether SC priors also affect the temporal dynamics of FC. We evaluated this 232 

aspect in a final analysis where we compared the estimated changes in directed influences in 233 

response to face and scrambled stimuli, time-locked to the stimulus onset (from -100 to 500 ms). 234 

For this analysis, we considered a subset of regions in the core face network: the right inferior 235 

temporal gyrus (rIT), the right fusiform (rFu), and the right superior temporal sulcus (rB). The 236 

functional role of these brain areas in face processing is well-documented (Fox et al., 2009; Haxby 237 

et al., 2000) and their SC is a predictive feature of face-specific activity (Saygin et al., 2011), 238 

representing a functionally specialized module with known structure-function relationships. Figure 239 

4 shows the estimated time-varying MDI with and without SC priors. This comparison revealed 240 

clear differences that extended well beyond the basic outflow summary described above, 241 

specifically: 1) SC priors led to quantitative increases in unidirectional interactions at specific 242 

latencies, consistent with face-related evoked dynamics (e.g., from rFu to rIT, from rIT to rB); 2) 243 

SC priors more clearly show the sequence of unidirectional interactions between nodes (e.g., from 244 

rIT to rFu, followed by rFu to rIT); 3) SC priors shrunk and underestimated weak FC for SC-absent 245 

connections, reducing the risk of false positives (e.g., the connection from rIT to rB at very short 246 

post-stimulus latencies). 247 
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 248 

Figure 4 249 

Effect of SC priors on the evoked dynamics of directed interactions in a subset of brain areas of the core face network. 250 
Shaded lines are standard errors of the mean. Red and blue horizontal bars highlights statistically significant differences 251 
(faces vs. scrambled, permutation test, p(unc.) < 0.01). 252 

 253 

Discussion 254 

We introduced and validated a new adaptive filter for combining structural and dynamic functional 255 

connectivity, the si-STOK. The algorithm builds on a recent variant of the general linear Kalman 256 

filter (Kalman, 1960; Milde et al., 2010; Pascucci et al., 2019) and allows incorporating structural 257 

priors in a multivariate autoregressive modeling framework with high temporal resolution. We 258 

tested the filter in rat epicranial recordings and human EEG data, using SC priors from a meta-259 

analysis of tracer studies and DTI metrics respectively. Compared to FC without SC priors, we 260 

found the following advantages. First, FC estimates were more consistent and more resilient to 261 

noise. Second, SC priors promoted sparser FC networks and favored a more accurate identification 262 

of the main network drivers at expected post-stimulus latencies. Third, using SC as prior variance 263 

provided solutions with intrinsic protection against SC-related false negatives (for discordant SC-264 

FC, the filter relied more on the data and less on the prior), and robustness against false positives 265 

(strong SC did not inflate FC unless supported by the data).  266 
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 The first two aspects represent desired features considering the expected sparsity of FC 267 

networks and the sparse topology of the underlying structural links (Markov et al., 2012; Pagnotta 268 

et al., 2019; Valdés-Sosa et al., 2005). Previous work has shown how sparse and regularized 269 

approaches to FC analysis can decrease spurious connections, increase robustness to noise 270 

(Pagnotta et al., 2019), and counteract issues due to limited data points (Antonacci et al., 2019; 271 

Valdés-Sosa et al., 2005). Informing sparse solutions through the fixed topology of SC links has the 272 

additional benefit of introducing a biologically grounded space for regularization. This represents 273 

an advantage in conditions where regularization may have a strong impact on the model structure, 274 

such as under multicollinearity and non-independence amongst time-series (e.g., under linear 275 

mixing of source EEG activity due to volume conduction; Anzolin et al., 2019; Haufe et al., 2013). 276 

The resulting FC partly inherits the sparsity and topological properties of the SC matrices, while 277 

preserving the strength and directedness of functional interactions. This may ultimately facilitate 278 

graph analysis of functional networks, such as the identification of FC hubs, modules, and nodal 279 

properties without additional sparsity-based and consensus-based thresholding, which may lead to 280 

unstable and threshold-dependent network estimates (Garrison et al., 2015).  281 

 The third important feature of the si-STOK is the protection against false positives due to 282 

invalid SC priors. Previous studies, including large-scale validations of tractography pipelines, have 283 

reported a high ratio of invalid connections and a substantial amount of false positives (Maier-Hein 284 

et al., 2017). This caveat undermines the possibility to simply mask or weight FC by SC, increasing 285 

the risk of inflating FC for invalid SC connections. The proposed algorithm employs the 286 

Generalized Tikhonov method (Plato & Vainikko, 1990), a powerful and versatile regularization 287 

scheme under a Bayesian perspective where priors are combined with the observed data. Strong SC, 288 

therefore, does not necessarily inflate FC, as demonstrated in our test in benchmark data. 289 

Conversely, strong FC can still be detected in the absence of SC. This was also evident from the 290 

results in rat EEG data, where we observed FC between the primary somatosensory and the parietal 291 

cortex (e4 to e2, see Figure 2) even under a strong prior of no SC. Although reduced, FC between 292 

these areas was still larger compared to other connections for which SC was present but only weak 293 

FC was expected from physiology (e.g., from e4 to e8). This accommodates the possible divergence 294 

between FC and SC connections (Honey et al., 2009; Lim et al., 2019), which may arise from 295 

indirect structural connections, false negatives in SC (Damoiseaux & Greicius, 2009), or because of 296 

the differential engagement of specific functional modules under different task demands (Sokolov et 297 

al., 2019).  298 
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 From our test in benchmark data it is also clear that, under certain circumstances, SC priors 299 

have minor effects on FC. This may occur, for instance, when using dense SC matrices in 300 

conditions where the signal-to-noise ratio is high, or when SC does not deviate drastically from FC. 301 

The rat EEG data analyzed here are an example. The rat cortex is essentially flat (lissencephalic) 302 

with few expected deep sources. The signal recorded at each electrode is therefore an accurate 303 

representation of the activity flowing through the structural pathways in the cortex underneath 304 

(Quairiaux et al., 2011). Using dense SC priors, generally in agreement with the expected FC, 305 

provided no additional or diverging information (see Figure 2b). In many other applications, 306 

however, signals are contaminated with multiple sources of noise and the recordings are not direct 307 

measurements of brain activity and connectivity. Under these common circumstances, SC priors 308 

may have more appreciable and beneficial effects on FC estimates. Our manipulation of added 309 

noise confirmed this advantage (Fig 2c). 310 

   The proposed algorithm is the first to integrate SC in a directed and dynamic measure of 311 

FC. We evaluated the effect of SC priors on large-scale dynamics of directed interactions in human 312 

source EEG activity during a face detection task. We considered dynamic interactions in a subset of 313 

regions corresponding to key nodes of the core face network (Haxby et al., 2000; Saygin et al., 314 

2011). Our results showed that SC priors can also shape the temporal dynamics of FC. Particularly, 315 

incorporating SC priors revealed an initial face-selective increase of FC from the right inferior 316 

temporal gyrus to the fusiform, followed by an increase of FC from the fusiform to the inferior 317 

temporal gyrus and from the inferior temporal gyrus to the superior temporal sulcus. Without SC 318 

priors, a precise sequence of FC changes was less distinguishable and face-evoked increases in FC 319 

were also present at unreasonably short post-stimulus latencies (e.g., from the inferior temporal 320 

gyrus to the superior temporal sulcus, see Figure 4). The observed pattern may well reflect the 321 

build-up of face-specific processing supported by a hierarchy of recurrent interactions in the core 322 

face network: the inferior temporal cortex may first relay information about global aspects (e.g., the 323 

shape and coarse structure of the face stimuli used here) to the fusiform which then feedback 324 

information about finer details (Goffaux et al., 2011; Sugase-Miyamoto et al., 2011; Tovée, 1995). 325 

Although the interpretation of these results remains speculative and goes beyond the purpose of the 326 

current work, the results of this analysis are a clear example of how SC priors can enhance or 327 

downregulate time-varying dynamics in FC. 328 

In sum, we provide a new method for dynamic FC that incorporates priors on structural 329 

connectivity for the anaysis of multivariate electrophysiological signals. The algorithm offers a 330 

simple and powerful tool for multimodal imaging that can meaningfully contribute to integrative 331 
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approaches in network neuroscience (Crimi et al., 2016; Lei et al., 2015; Sokolov et al., 2019; 332 

Stephan et al., 2009). It allows the incorporation of various types of SC, weighted or binary, 333 

symmetric or directed. Because of its simple form, the algorithm can flexibly incorporate different 334 

types of SC priors, from basic metrics, such as the number of white matter fibers and the Euclidean 335 

distance, to graph-derived metrics, such as the path length and communicability (Vázquez-336 

Rodríguez et al., 2019), as well as FC priors from other modalities.  337 

Methods 338 

Benchmark EEG data 339 

Rat EEG recordings 340 

Benchmark data are publicly available EEG recordings from a grid of 16 stainless steel electrodes 341 

placed directly on the skull bone of 10 young Wistar rats (P21; half males). Data were collected 342 

during unilateral whisker stimulations under light isoflurane anesthesia (available from 343 

https://osf.io/fd5ru). Details about the recording can be found in the original publication (Plomp et 344 

al., 2014; Quairiaux et al., 2011). Data were acquired at 2000 Hz, bandpass filtered online, and 345 

down-sampled to 1000 Hz before connectivity analysis. All animal handling procedures were 346 

approved by the Office Vétérinaire Cantonal (Geneva, Switzerland) following Swiss Federal Laws.  347 

Rat structural connectome 348 

Structural priors for the rat EEG benchmark were obtained from a published meta-analysis of 349 

histologically defined axonal connections between cortical regions in rats (Bota et al., 2015; 350 

Swanson et al., 2017). Particularly, we used one dataset containing ranked connection weights 351 

based on reported association and commissural connections. Details of the dataset can be found in 352 

the original publication (Dataset S3; from Swanson et al., 2017). Ranked connection weights for 353 

pairs of regions corresponding to the electrodes recording sites were manually selected by an expert 354 

biologist from primary visual areas, somatosensory, primary, and secondary motor areas, and 355 

cingulate cortex (see Supplementary File 1). Connection weights, ranging from 0 to 12 (from absent 356 

to very strong, see Supplementary File 1) were organized into a 16-by-16 structural connection 357 

matrix whose main diagonal elements (e.g., self-connections) were set to the maximum value of 12. 358 

The structural matrix was then normalized to the maximum value and used as a prior for the time-359 

varying connectivity analyses of the rat EEG data.  360 
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Human EEG data 361 

Task and stimuli 362 

EEG data were recorded while twenty participants (3 males, mean age = 23 ± 3.5) performed a face 363 

detection task (see Figure 3a) in a dimly lit and electrically shielded room. Each trial lasted 1.2 s 364 

and started with a blank screen (500 ms). After the blank screen, one image (either a face or a 365 

scrambled image of a face) was presented for 200 ms and participants had the remaining 1000 ms to 366 

respond. The task was to report whether they saw a face or not (yes/no task) by pressing two 367 

buttons in a response box with their right hand (ResponsePixx, VPixx technologies). Faces and 368 

scrambled faces were randomly interleaved across trials. After the response and a random interval 369 

(from 600 to 900 ms), a new trial began. The experiment consisted of four blocks of 150 trials each, 370 

for a total of 600 trials, i.e., 300 with faces and 300 with scrambled faces. Face stimuli were female 371 

and male faces (4 by 4 degrees of visual angle, dva) taken from online repositories and cropped 372 

with a Gaussian kernel to smooth the borders. Scrambled images were obtained by fully 373 

randomizing the phase spectra of the original images (Ales et al., 2012). Stimuli were generated 374 

using Psychopy (Peirce, 2008) and presented on a VIEWPixx/3D display system (1920 ×�1080 375 

pixels, refresh rate of 100�Hz). All participants provided written informed consent before the 376 

experiment and had a normal or corrected-to-normal vision. The experiment was approved by the 377 

local ethical committee. 378 

EEG acquisition and preprocessing 379 

Data were recorded at 2048 Hz with a 128-channel Biosemi Active Two EEG system (Biosemi, 380 

Amsterdam, The Netherlands). Signal quality was ensured by monitoring and maintaining the offset 381 

between the active electrodes and the Common Mode Sense - Driven Right Leg (CMS-DRL) 382 

feedback loop under a standard value of ±20 mV. After each recording session, individual 3D 383 

electrode positions were digitized using an ultrasound motion capture system (Zebris Medical 384 

GmbH). One participant was excluded due to too many motion artifacts, leaving 19 datasets for 385 

analysis. Further details on the recordings and preprocessing pipeline can be found in the original 386 

manuscript of the VEPCON dataset (OpenNeuro Dataset ds003505; Pascucci et al., 2021).  387 

EEG source imaging 388 

EEG source imaging was performed using Cartool (Brunet et al., 2011) and custom-made scripts in 389 

Matlab R2020b (9.9.0.1524771 Update 2). Source reconstruction was based on individual MRI data 390 

and the LAURA algorithm implemented in Cartool (regularization 6; spherical model with 391 

anatomical constraints, LSMAC), limiting the solution space to grey matter voxels. Source activity 392 

for freely oriented dipoles was extracted from all the source points inside each of the 68 cortical 393 
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areas and projected to a representative single direction for each area, using the singular values 394 

decomposition approach (Rubega et al., 2018; time window for estimating the main direction: 140-395 

250 ms post-stimulus). Before functional connectivity analysis, a global z-score transformation was 396 

applied to the entire dataset of each participant. Epochs of source activity corresponding to trials 397 

with behavioral errors were then removed and the dataset was divided into two conditions, 398 

according to trials containing faces or scrambled stimuli. 399 

MRI acquisition and preprocessing 400 

A detailed description of the MR acquisition and preprocessing can be found in the original 401 

manuscript of the VEPCON dataset (OpenNeuro Dataset ds003505; Pascucci et al., 2021). 402 

Structural connectome 403 

Structural connectivity matrices were estimated from the reconstructed fiber orientation distribution 404 

(FOD) image using the SD_stream deterministic streamline tractography algorithm implemented in 405 

MRtrix 3.0.0-RC1 (Tournier et al., 2019). Fiber streamline reconstruction started from seeds in the 406 

white matter that were spatially random, and the whole process completed when 1M fiber 407 

streamlines were reconstructed. At each streamline step of 0.5 mm, the local FOD was sampled, and 408 

from the current streamline tangent orientation, the orientation of the nearest FOD amplitude peak 409 

was estimated via a Newton optimization on the sphere. Fibers were stopped if a change in direction 410 

was greater than 45 degrees. Fibers with a length not in the 5-200 mm range were discarded. The 411 

streamline reconstruction process was complete when both ends of the fiber left the white matter 412 

mask. Then, for each scale, the parcellation was projected to the native DTI space after symmetric 413 

diffeomorphic co-registration between the T1w scan and the diffusion-free B0 using ANTs 2.2.0. 414 

Finally, the connectivity matrix was built according to the Desikan parcellation atlas, using the log 415 

of the number of fibers as the connectivity measure. Only 68 areas from cortical volumes were 416 

included in the structural matrix and used for functional connectivity analysis. A consensus group-417 

representative structural brain connectivity matrix was generated from the connectomes of all 418 

participants connectomes using the method introduced in (Betzel et al., 2019). Each particpiants’ 419 

connectivity matrix was then thresholded by preserving the group-representative connection density 420 

independently for intra- and interhemispheric connections. This  allows retaining more inter-421 

hemispheric connections in comparison to simple connectome thresholding. The resulting 422 

connection density is set to 30%. The median of the obtained structural connectomes across 423 

participants was then normalized to its maximum and used as a group structural prior for 424 

connectivity analysis. 425 

 426 
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Adaptive filtering 427 

Self-Tuning Optimized Kalman filter (STOK) 428 

To incorporate structural priors in dynamic functional connectivity we used a linear adaptive filter, 429 

the Self-Tuning Optimized Kalman filter (STOK; Pascucci et al., 2019), as the base algorithm. 430 

STOK is a high-temporal resolution and noise resilient filter for modeling time-varying multivariate 431 

autoregressive processes (tv-MVAR) of the form:  432 

�� � � ��,����� � ��
�

���

; � 
 �1, … , �� 

[1] 433 

where � is a multi-trial and multivariate set of � time series of dimension [trials x �] (e.g., activity 434 

signals from different brain regions), � refers to time samples (with � the total length of the time 435 

segment considered), ��,�  are �� � � � � � �� matrices of autoregressive coefficients for each lag � 436 

of a chosen model order �, �� is zero-mean white noise with covariance matrix ∑� (also called the 437 

innovation process). Eq. [1] can be represented in the following state-space form: 438 

  439 

�� �  Φ������� � ���� 

[2] 440 

�� � ���� � ��           441 

[3] 442 

where Eq. [2] represents the latent state ��  (e.g., the MVAR process) as a random walk from the 443 

previous state ���� [� � � � ��, with transition matrix Φ��� and uncorrelated zero-mean noise �. In 444 

Eq. [3], the observed data �� are expressed as a linear combination of the latent state �� and a 445 

projection matrix ��, under white noise perturbation ��. The link with Eq. [1] is established by 446 

recursively defining �� from the past of the time-series in � (from � � 1 to the model order �), and 447 

��  as the values of � at present time �. This leads to the least-squares estimate: 448 

���	
�          � ���	�� � ����
��
1 � �  

[4] 449 

in which the recursive update of ���	
� is a weighted average of the previous state ���	�� and a least-450 

squares reconstruction from recent measurements ���
��. The matrix ��
 is the damped Moore-451 
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Penrose pseudoinverse �
  of �, in which small singular values are attenuated to retain a 452 

prespecified portion of the variance (here we retained 0.99 of the variance for the rat EEG data and 453 

0.9 for the human EEG data). The variable � is a self-tuning adaptation constant that automatically 454 

updates the speed of the filter depending on its residuals. The complete derivation of the STOK can 455 

be found in (Pascucci et al., 2019). 456 

Structural priors 457 

The prior information is incorporated in the filter as a regularizing operator. Recall that the update 458 

of ���	
� in Eq. [4] —i.e., the estimated matrix of tv-MVAR coefficients, requires the ordinary least-459 

squares solution to ���
��: 460 

!��� �  ���
��  
[5] 461 

with !��� (�� x �) representing the matrix of autoregressive coefficients that updates the previous 462 

state ���	��. A principled way to incorporate priors in Eq. [5] is the use of a Generalized Tikhonov 463 

regularization, which admits the closed-form solution: 464 

!���,�
� �  ��,��� � "����� � #���

�� $
���"��,� � ����,���$, % 
 �1, … , �� 
[6] 465 

where �� is the expected value of !, and #�� is the inverse covariance matrix, or precision matrix, 466 

of ��. #���
��  acts as a regularizing or Tikhonov matrix in Eq. [6]. The inclusion of a regularizing 467 

matrix allows specifying penalties on the estimated coefficients. When the regularizing matrix is a 468 

multiple of the identity matrix, the solution corresponds to the classical &� norm. When the main 469 

diagonal contains distinct elements, however, the solution penalizes the coefficients differently, 470 

depending on the strength of the corresponding value in the regularizing matrix. This form of 471 

regularization offers a straightforward solution for incorporating structural priors in a tv-MVAR 472 

model. By solving Eq. [6] for each channel separately (e.g., for each signal in the multivariate time 473 

series), elements on the main diagonal of #�� can be used to penalize the inflow from channel % to 474 

channel ' (' ( %) depending on structural priors, that is, an a priori structure can be imposed on the 475 

contribution of all the channels to the activity observed in each one.  476 

 Although this approach is deterministic, it has a natural Bayesian interpretation: Eq. [6] is 477 

equivalent to expressing a prior belief on the functional connections !��� entering each channel, 478 

under a multivariate normal distribution �"!���; ��, #���$. This regularization scheme requires the 479 
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non-trivial conversion of SC to FC priors. A commonly employed strategy is to set the prior 480 

expectations on �� to zero (e.g., no functional connectivity, Sokolov et al., 2019; Stephan et al., 481 

2009), and to define the prior variance #��� based on the strength of SC. Under the mild assumption 482 

of a positive and monotonic relationship between structure and function, strong SC can be 483 

translated into large FC prior variance #���
�� , corresponding to small regularization values in #���

��  484 

that favor non-zero FC when supported by the data. Conversely, weak SC can be translated into 485 

small prior variance, increasing the effect of regularization, and shrinking the tv-MVAR 486 

coefficients toward their expected value of zero. Mapping SC to FC priors also requires the scaling 487 

of SC to a range of suitable values, given that regularization acts on the magnitude and scale of 488 

autoregressive coefficients. Normalized SC values are in the 0-1 range. For the sake of the present 489 

work, we scaled SC from 10�� to 0.1, a range that produced clear effects of regularization for both 490 

rat and human EEG data, without an excessive shrinking of all the coefficients.  491 

Hence, the Tikhonov matrix #���
��  in Eq. [6] is a diagonal matrix whose non-zero elements 492 

represent the inverse prior variance for the functional connectivity between % input sources and a 493 

receiver node '. By setting �� equal to zero, we obtain: 494 

!���,�
� �  "����� � #���

�� $
�����,� . 
[7] 495 

In a Bayesian view, the precision matrix #���
�� � �'+,� �

�����
  in Eq. [7] determines the extent to 496 

which the posterior estimate (e.g., the functional connectivity between two nodes) can deviate from 497 

its expected value of zero. As a result, the estimated matrices of tv-MVAR coefficients combine 498 

information from both functional and structural connectivity: weak SC decreases the prior variance 499 

and increases regularization (e.g., expressing a strong belief that a functional connection is likely to 500 

be absent, to reduce false-positive connections); strong SC increases the prior variance and 501 

decreases regularization, allowing functional connections to deviate from zero when supported by 502 

the functional data.  503 

The new coefficients !�� obtained from Eq. [7] (posteriors) are then substituted in Eq. [4], 504 

leading to the recursive update equation with structural priors: 505 

���	
�          � ���	�� � �!��
1 � �  

   [8] 506 
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which ultimately provides an estimate of tv-MVAR coefficients � informed by the properties of 507 

SC. The structural connectivity matrix can be either symmetric or asymmetric (e.g., for 508 

unidirectional priors), binary or weighted, with values that increase as a function of the expected 509 

strength of a connection between two nodes.  510 

Time-varying directed functional connectivity 511 

Directed connectivity measure 512 

In the analysis of FC, we used a measure of directed connectivity derived from the estimated 513 

matrices of tv-MVAR coefficients. This measure, that we termed Magnitude of Directed Influence 514 

(MDI), corresponds to the magnitude of autoregressive coefficients over lags, and quantifies the 515 

time-domain unidirectional influence from a sender % to a target node ': 516 

-./���,� � 0∑ +���,�,�
��

���
. 517 

[9] 518 

A similar measure, called direct causality (DC), has previously been used to estimate the amount of 519 

direct causal influences in multivariate systems (Kamiński et al., 2001; Porcaro et al., 2009). 520 

Rat EEG functional connectivity 521 

We tested the new algorithm and compared the performance against the regular STOK using 522 

benchmark EEG data from epicranial recordings in rats. These data provide a good benchmark for 523 

time-varying connectivity analysis because of the known structural and functional connectivity 524 

patterns. After whisker stimulation, the evoked FC is expected to follow the underlying SC, with 525 

the activity that propagates from the contralateral primary somatosensory cortex to nearby parietal 526 

and frontal regions, at short latencies (5-25 ms post-stimulation). This pattern was extensively 527 

validated in previous work (Pagnotta & Plomp, 2018; Pascucci et al., 2019; Plomp et al., 2014).  528 

As a proof of concept, we first verified the effect of adding structural priors with different 529 

levels of sparsity. Two SC matrices were used as priors for the si-STOK, one obtained from the 530 

original SC (see Rat structural connectome and Supplementary File 1), the other obtained by 531 

applying proportional thresholding to the same SC, retaining only 25% of the strongest connections, 532 

setting the remaining to zero and the diagonal (self-self connections) to one. The -./ metric was 533 

derived from tv-MVAR models with a model order of 4 (Pagnotta & Plomp, 2018; Pascucci et al., 534 

2019). In the comparison, we focused on the outflow from the contralateral somatosensory cortex to 535 

the rest of the network, at the peak latency. The peak latency was estimated from the results of the 536 
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regular STOK as 13 ms post-stimulus, in line with previous reports (Pascucci et al., 2019; Plomp et 537 

al., 2014).  538 

In a second step, we compared the performance of the two filters under noise perturbation. 539 

We mixed the original data with white noise signals of the same size as the data and with an 540 

amplitude corresponding to the 95th percentile of the data. We varied the mixing ratio between the 541 

original data and the noise signals in five levels (from 0 to 0.5, in steps of 0.1; 0 = 100% of the data 542 

and 0% of the noise). The noise at each level was regenerated 30 times. For each iteration, we 543 

estimated: 1) the difference between the outflow from the contralateral somatosensory cortex and 544 

the average outflow of the network, at peak latency, and 2) a binary, directed adjacency matrix 545 

preserving 50% of the strongest connections at peak latency. From the first measure, we estimated 546 

the difference between the outflow from the primary somatosensory cortex and the network average 547 

outflow, across animals —i.e., the ability of the two algorithms to discriminate the somatosensory 548 

cortex as the main driver under noise perturbations. From the second measure, we derived a metric 549 

of consistency of the estimated networks under increasing noise. The consistency was obtained as 550 

the proportion of binary connections in the adjacency matrix that, for each level of noise larger than 551 

0, were identical to those estimated in the absence of noise —i.e., the consistency of the estimated 552 

strongest connections under increasing noise. For both measures, the zero-noise level was used as a 553 

baseline. 554 

Human EEG functional connectivity 555 

In the analysis of human EEG data, we evaluated the results of the STOK and si-STOK filter in 556 

estimating large-scale FC during face processing (see Figure 3a). For both filters, we used a model 557 

order of ten, in line with values used before (Pascucci et al., 2018, 2019). We first compared evoked 558 

activity after face and scrambled stimuli at the scalp and source level (see Figure 3b). We selected a 559 

time window centered on the scalp and the source N170 peak component (140-180 ms) as the 560 

latency of interest for FC results. In the N170 window, we evaluated the estimated difference in 561 

network MDI across conditions. For this difference, we compared the summed outflow obtained 562 

with the two filters, from each node of the 68-areas network (see Figure 3d). In a subsequent 563 

analysis, we focused on dynamic directed interactions among a subset of areas known to be 564 

involved in face processing (e.g., regions of the core face network, Haxby et al., 2000). We 565 

considered three areas, all in the right hemisphere: the fusiform gyrus (rFu), the inferior temporal 566 

gyrus (rIT), and the superior temporal sulcus (rB) (see Figure 4). We then compared directed 567 

influences among each pair of areas in response to face or scrambled stimuli across time. 568 

Significance was assessed using group-permutation statistics, as the proportion of group-averaged 569 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443529doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443529
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structurally-informed STOK 

22 
 

MDI differences that were larger or smaller than the observed ones, after shuffling the sign of the 570 

difference across participants 100000 times.  571 
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