1	Linking carbohydrate structure with function in the human gut microbiome
2	using hybrid metagenome assemblies
3	
4	Anuradha Ravi ^{1,2*} , Perla Troncoso-Rey ^{1*} , Jennifer Ahn-Jarvis ^{1*} , Kendall R. Corbin ^{1,3} , Suzanne
5	Harris ^{1,4} , Hannah Harris ¹ , Alp Aydin ¹ , Gemma L. Kay ¹ , Thanh Le Viet ¹ , Rachel Gilroy ¹ , Mark J.
6	Pallen ¹ , Andrew J. Page ¹ , Justin O'Grady ^{1,5,*} , Frederick J. Warren ^{1,*,+}
7	
8	¹ Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
9	² Current address: Gemini centre for Sepsis Research, Department of Circulation and Medical
10	Imaging, Norwegian University of Science and Technology, Trondheim, Norway
11	³ Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA.
12	4 Current address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
13	⁵ University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
14	
15	*Contributed equally
16	+Corresponding author: fred.warren@quadram.ac.uk
17	
18	Keywords: Nanopore, Sequencing, CAZymes, colonic fermentation, metagenomics, starch
19	

20 Abstract [200 words]

21	Complex carbohydrates that escape digestion in the small intestine, are broken down in the
22	large intestine by enzymes encoded by the gut microbiome. This is a symbiotic relationship
23	between particular microbes and the host, resulting in metabolic products that influence
24	host gut health and are exploited by other microbes. However, the role of carbohydrate
25	structure in directing microbiota community composition and the succession of
26	carbohydrate-degrading microbes, is not fully understood. In this study we evaluate species-
27	level compositional variation within a single microbiome in response to six structurally
28	distinct carbohydrates in a controlled model gut using hybrid metagenome assemblies. We
29	identified 509 high-quality metagenome-assembled genomes (MAGs) belonging to ten
30	bacterial classes and 28 bacterial families. We found dynamic variations in the microbiome
31	amongst carbohydrate treatments, and over time. Using these data, the MAGs were
32	characterised as primary (0h to 6h) and secondary degraders (12h to 24h). Recent advances
33	in sequencing technology allowed us to identify significant unexplored diversity amongst
34	starch degrading species in the human gut microbiota including CAZyme profiles for novel
35	MAGs.

36

37	Microbial diversity within the microbiome and its interactions with host health and nutrition
38	are now widely studied ¹ . An important role of the human gut microbiome is the metabolic
39	breakdown of complex carbohydrates derived from plants and animals (e.g. legumes, seeds,
40	tissue and cartilage) ² . Short chain fatty acids (SCFA) are the main products of carbohydrate
41	fermentation by gut microbiota and provide a myriad of health benefits through their
42	systemic effects on host metabolism. ^{3,4} However, we still do not have a complete picture of
43	the range of microbial species involved in fermentation of complex carbohydrates to
44	produce SCFA. Understanding the intricacies of complex carbohydrate metabolism by the
45	gut microbiota is a significant challenge. The function of many 'hard to culture species'
46	remains obscure and while advances in sequencing technology are beginning to reveal the
47	true diversity of the human gut microbiota, there is still much to be learned. 5
48	A key challenge is understanding the influence of structural complexity of
49	carbohydrates on microbiota composition. Carbohydrates possess immense structural
50	diversity, both at the chemical composition level (monomer and sugar linkage composition)
51	and at the mesoscale. Individual species, or groups of species, within the gut microbiota are
52	highly adapted to defined carbohydrate structures ⁶ . Starch is representative of the
53	structural diversity found amongst carbohydrates and serves as a good model system as
54	starches are readily fermented by several different species of colonic bacteria. ⁷ The gut
55	microbiota is repeatedly presented with starches of diverse structures from the diet. 8
56	Consistent in starch is an α -1 \rightarrow 4 linked glucose back bone, interspersed with α -1 \rightarrow 6 linked
57	branch points. Despite this apparent structural simplicity, starches botanical origin and
58	subsequent processing (e.g. cooking) impacts its physicochemical properties, particularly
59	crystallinity and recalcitrance to digestion. ⁷ It has been shown <i>in vitro</i> ⁷ , in animal models ⁹

and in human interventions⁸, that altering starch structure can have a profound impact on
gut microbiome composition.

62	The microbiome is known to harbour a huge repertoire of carbohydrate-active
63	enzymes (CAZymes) that can degrade diverse carbohydrate structures. ^{10,11} However, it is a
64	formidable challenge to study this functionality in complex microbial communities due to
65	limitations in the depth of sequencing and coverage of all members in the community.
66	While metagenomic sequencing has become a key tool, identifying genomes and functional
67	pathways within the microbiome remains challenging in second generation sequencing due
68	to limitations associated with short (~300bp) reads. Third generation sequencing such as
69	nanopore sequencing (Oxford Nanopore Technologies (ONT)) promises to circumvent these
70	difficulties by providing longer reads (> 3 kilobase pairs [kbp]). This technology has become
71	popular in clinical metagenomics for rapid pathogen diagnosis 12 and in human genomics
72	research. ¹³ Long-read sequences can help bridge inter-genomic repeats and produce better
73	<i>de novo</i> assembled genomes. ¹⁴ While the MinION platform from ONT has been used for
74	metagenomic studies, ¹⁵ it cannot provide sufficient sequencing depth and coverage to
75	sequence the many hundreds of genomes present in the human gut microbiome.
76	PromethION (ONT) is capable of producing far greater numbers of sequences compared to
77	either MinION or GridION, averaging four-five times more data per flow cell and the
78	capacity to run up to 48 flow cells in parallel; this makes it suitable for metagenomics and
79	microbiome studies. For example, PromethION has been used for long-read sequencing of
80	environmental samples such as wastewater sludge, demonstrating its potential to recover
81	large numbers of metagenome-assembled genomes (MAGs) from diverse mixtures of
82	microbial species. ¹⁶ However, long error-prone reads aren't ideal for species resolution

83 metagenomics, therefore, a hybrid approach using short and long read data has been found to be most effective for generating accurate MAGs.¹⁷

85	To achieve species-level resolution of the microbes present in the gut microbiome
86	during complex carbohydrate utilisation, we conducted a genome-resolved metagenomics
87	study in a controlled gut colon model. In vitro fermentation systems have been used
88	extensively to model changes in the gut microbial community as a result of external inputs,
89	e.g., changes in pH, protein and carbohydrate supply ^{7,18,19} . We measured the dynamic
90	changes in bacterial populations during fermentation of six structurally contrasting
91	substrates: two highly recalcitrant starches (native Hylon VII ("Hylon") and native potato
92	starch ("potato")); two accessible starches (native normal maize starch ("n.maize") and
93	gelatinized then retrograded maize starch ("r.maize"); an insoluble fibre (cellulose) resistant
94	to fermentation ("Avicel"); and a highly fermentable soluble fibre ("inulin"). By generating
95	hybrid assemblies using PromethION and NovaSeq data, we obtained 509 MAGs. The
96	dereplicated set consisted of 151 genomes belonging to ten bacterial classes and 28
97	bacterial families. Using genome-level information and read proportions data, we identified
98	several species that have novel putative starch-degrading properties.
99	

100 Results

84

PromethION and NovaSeq sequencing of model gut samples enriched for carbohydrate 101

102 degrading species. Fermentation of six contrasting carbohydrate substrates (inulin, Hylon,

103 n.maize, potato, r.maize and Avicel; see methods section) was initiated by inoculation of the

- 104 model colon with a carbohydrate and faecal material and the gut microbial community
- 105 composition was monitored over time (0h, 6h, 12h and 24h) by sequencing as shown in

106 Figure 1. In total, 23 samples and a negative control were sequenced (see Supplementary

- 107 Table 1 for the PromethION and NovaSeq summary sequencing statistics).
- 108 *PromethION sequencing:* The two sequencing runs generated 144 giga base pairs
- 109 (Gbp) of raw sequences. In the first run, all 23 samples were analysed while in the second
- batch, 12 samples from hylon, inulin and r.maize were selected. The first run produced 7.87
- million reads with an average read length of 3419 ± 57 bp and the second run generated
- 112 21.6 million reads with an average read length of 4707 \pm 206 bp . Consolidating the runs,
- trimming and quality filtering resulted in the removal of 33.3 ± 14.7 % of reads
- (Supplementary Table 1). Median read lengths after trimming were 4972.5 \pm 229 bp and the
- 115 median quality score was 9.7 ± 0.9 .
- 116 *Illumina sequencing:* All 23 samples provided high quality sequences (Q value > 30)
- generating a mean of 27 million reads per sample. Quality and read length (<60 bp) filtering
- removed 2.96 % of reads (Supplementary Table 1).
- 119

120 Dynamic shifts in taxonomic profiles among carbohydrate treatments. Hierarchical 121 clustering for the taxonomic profiling using MetaPhlAn3 for each sample is shown in 122 Supplementary Table 2. At baseline (0h), profiles of the top 30 selected species by clustering 123 (using Bray-Curtis distances for samples and species, and a complete linkage) is similar for 124 all treatments, as expected (Error! Reference source not found.). This uniform profile was distinct from the water control sample (a.k.a. 'the kitome'). The water blank also had less 125 126 than 3% (NovoSeq) and less than 0.2% (PromethION) of the reads of the samples. 127 Microbiome shifts were apparent from 6h in the n.maize treatment which showed a very 128 high abundance of *E. coli*, indicating contamination. After 12h, the profiles changed further

129	with a higher abundance of <i>E. coli</i> and <i>B. animalis</i> in the n.maize treatment while the
130	r.maize and inulin treatment profiles were similar, as were the potato and Hylon treatment
131	profiles. By the last sampling point (24h), potato and hylon had similar profiles which are
132	also similar to r.maize. The most abundant species in all the substrates was consistently
133	Prevotella copri which decreased in abundance over time but remained one of the most
134	abundant species throughout. After 6h and 12h, Ruminococcus bromii (a keystone starch
135	degrader) and Bifidobacterium adolescentis increased in abundance in the r.maize, potato
136	and Hylon treatments. Faecalibacterium praunitzii decreased in abundance in inulin at 6h
137	and 12h and then increased in abundance for inulin and avicel at 24h.
138	Dynamic shifts in the microbiome were estimated using PCoA (Supplementary Figure
139	1), with 77% of total variance being explained by the first two components. As expected, the
140	Oh profiles clustered closely together. The most distinct taxonomic change in microbial
141	community composition was apparent in the Avicel treatment after 24h. Inulin and r.maize
142	profiles clustered more closely together than potato and Hylon profiles. Inverse Simpson
143	index results followed a similar pattern for changes in diversity, which decreased after Oh
144	followed by a gradual increase (Supplementary Figure 2). However, in the Avicel treatment
145	there was a different pattern of taxonomic shifts with a large number of taxa increasing in
146	abundance after 12h.
147	

Hybrid metagenome assemblies vs short-read only assemblies. Using Opera-MS, we
combined PromethION reads with Illumina assemblies to produce hybrid assemblies. The
assembly statistics for short-read-only and hybrid assemblies are shown in Supplementary
Table 3 and Error! Reference source not found.. The longest N50 and the largest contig per

152 treatment were generated using hybrid assemblies as expected (figure 3b & 3c). The overall 153 length of assembled sequences was similar for both approaches (Figure 3d). 154 The reads from each treatment and collective TO were co-assembled into hybrid 155 assemblies and binned into MAGs. In total we binned and refined 509 MAGs that met the MIMAG quality score criteria²⁰ of which 65% (n=333) were high-quality (Figure 4; 156 Supplementary table 4). From the co-assemblies, thirty-five MAGs had an N50 of > 500,000 157 158 Mbp and 158 MAGs were assembled into < 30 scaffolds. The MAGs were dereplicated into 159 primary and secondary clusters according to Average Nucleotide identity (ANI) (primary 160 clusters <97%; secondar clusters <99%). In total, we identified 151 MAG secondary clusters 161 (Supplementary table 5). Each genome cluster consisted of between one and seven 162 genomes based on their genome similarity. 163 164 Taxonomic annotation of MAGs. Proposed bacterial taxonomy using GTDb was represented in existing bacterial families: All MAG clusters had > 99% identity to existing genera 165 166 (Supplementary Table 6). By directly comparing the MAG assembly statistics for the MAGs in

167 the present study to the representative assemblies in GTDb (Supplementary Table 8) we

168 found that while the average overall assembly length was almost similar (an average of

169 2,250,870 bp in the present study vs. 2,541,312bp in GTDb), there were far fewer contigs in

170 our assemblies (an average of 67 contigs in the present study vs. 160 in GTDb), and

171 therefore may be considered to be of higher quality. Therefore, using the approach

172 described in Pallen *et al*²¹, Supplementary Table 7 provides proposed taxonomy for the 70

173 species which do not currently have Latin binomial names.

174

175	Carbohydrate structure	Irives progression of bacterial diversit	v. Relative abundance of

- each MAG within treatments was calculated and log fold change of abundance between
- 177 treatments was used to estimate change in relative abundance (Supplementary table 9). In
- total, 36 of 151 clusters exhibited \geq 2-log fold increase in relative abundance for all
- treatments. Specifically, ≥2-log fold change in abundance was seen in 6, 12, 11 and 18 MAGs
- 180 for Avicel, Hylon, potato and r.maize treatments, respectively (Figure 5). The genomes were
- partitioned as early (0h up to 6h) and late degraders (12h to 24h) according to when they
- 182 first showed an increase in relative abundance (Supplementary Table 10).
- 183 Relative abundance of all MAGs from each treatment was aggregated and plotted for each
- 184 time period (Supplementary figure 3). Relative abundance was constant for Avicel
- 185 throughout indicating low activity of the MAGs in utilising crystalline cellulose, likely
- reflecting the very limited fermentability of microcrystalline cellulose. As for other maize
- 187 starches (hylon, r.maize and potato), the read proportions showed an overall reduction in
- abundance, with only starch degrading MAGs increasing in abundance.
- 189

190 CAZyme family interplay with the carbohydrate treatments. For identifying CAZymes in the 191 MAGs, genome-predicted proteins identified by Prodigal were compared with the CAZy 192 database using dbCAN2 (Supplementary table 11). CAZyme counts specifically for Glycoside 193 hydrolases (GH) and Carbohydrate binding modules (CBM) for all clusters showed a high 194 representation of the profiles with GH13, GH2 and GH3 accounting for 34.1% of all counts 195 (Supplementary Figure 4). CAZyme profiles for MAGs with > 2-log fold change are 196 highlighted in Supplementary table 12 and Figure 6. Although six genomes were identified 197 as associated with the degradation of cellulose, none contained any characteristic cellulose 198 active CAZy proteins indicating multiple cross feeders. *Collinsella aerofaciens* J (cluster

199	29_1), Candidatus Minthovivens enterohominis (cluster 81_1) are novel genomes that
200	showed a 2x log -fold increase when in the presence of inulin and also harboured multiple
201	copies of inulinases (GH32). Bacteroides uniformis, a known inulin degrader also contained
202	multiple copies of GH32. We identified a large representation of the amylolytic (starch
203	degrading) gene family GH13 in Hylon (counts= 88), potato (counts=50) and r.maize
204	(counts=77) treatments. As expected, GH13 was weakly represented in Avicel (counts=19)
205	and inulin (counts=29) treatments (Figure 6). The presence of GH13 in MAGs was closely
206	associated with CBM48, which is commonly appended to starch degrading GH13
207	enzymes. ²² In total, we identified several novel degraders and previously discovered
208	degraders of the different carbohydrate treatments which are highlighted in Supplementary
209	table 10.
210	
211	Discussion
211 212	Discussion Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION
212	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION
212 213	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying
212 213 214	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large
212 213 214 215	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large number of high-quality near-complete MAGs that we generated using this approach
212 213 214 215 216	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large number of high-quality near-complete MAGs that we generated using this approach enabled us to functionally annotate the CAZymes in the MAGs and identify potential
212 213 214 215 216 217	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large number of high-quality near-complete MAGs that we generated using this approach enabled us to functionally annotate the CAZymes in the MAGs and identify potential carbohydrate degrading species. Several of these species have not previously been
212 213 214 215 216 217 218	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large number of high-quality near-complete MAGs that we generated using this approach enabled us to functionally annotate the CAZymes in the MAGs and identify potential carbohydrate degrading species. Several of these species have not previously been
212 213 214 215 216 217 218 219	Using a hybrid assembly approach (i.e., combining NovaSeq short-read and PromethION long-read metagenomic data), we report species-level resolved taxonomic data identifying distinct changes in microbiome composition in response to different substrates. The large number of high-quality near-complete MAGs that we generated using this approach enabled us to functionally annotate the CAZymes in the MAGs and identify potential carbohydrate degrading species. Several of these species have not previously been identified as playing a role in starch fermentation (Figure 6 and Supplementary Table 9).

223	useful for assembly of MAGs. ¹⁷ A recent publication by Moss <i>et al.</i> ²³ and associated protocol
224	paper ²⁴ suggested that bead beating DNA extraction protocols were unsuitable for long-
225	read sequencing as they led to excessive shearing of DNA and therefore enzymatic cell lysis
226	followed by phenol-chloroform purification were preferred to recover high molecular
227	weight (HMW) DNA. This was not reflected in our experience. The N50's obtained by Moss
228	et al. for sequencing DNA extracted from stool samples by phenol-chloroform on the
229	PromethION platform ranged from 1,432 bp to 5,205 bp, which on average was shorter than
230	the N50 we obtained using comparable samples extracted by a bead beating protocol. This
231	is in agreement with Bertrand et al. 14 who directly compared commercial bead beating and
232	phenol-chloroform extraction protocols for extracting HMW DNA from stool samples for
233	MinION sequencing and found that while phenol-chloroform gave higher molecular weights
234	of DNA, the DNA was of low integrity compromising sequencing quality.
235	
235 236	Hybrid assemblies allow generation of near complete MAGs and identification of novel
	Hybrid assemblies allow generation of near complete MAGs and identification of novel microbial species. We found larger N50s and longest contigs when using hybrid assemblies
236	
236 237	microbial species. We found larger N50s and longest contigs when using hybrid assemblies
236 237 238	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking
236 237 238 239	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking data using a combined MinION and Illumina hybrid approach to sequence mock
236 237 238 239 240	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking data using a combined MinION and Illumina hybrid approach to sequence mock communities, human gut samples, ¹⁴ and rumen gut microbiota samples. ¹⁷ This allowed us to
236 237 238 239 240 241	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking data using a combined MinION and Illumina hybrid approach to sequence mock communities, human gut samples, ¹⁴ and rumen gut microbiota samples. ¹⁷ This allowed us to assemble 509 MAGs across all the major phylogenetic groups (Supplementary file 5), with
236 237 238 239 240 241 241 242	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking data using a combined MinION and Illumina hybrid approach to sequence mock communities, human gut samples, ¹⁴ and rumen gut microbiota samples. ¹⁷ This allowed us to assemble 509 MAGs across all the major phylogenetic groups (Supplementary file 5), with representatives from ten bacterial classes and 28 families, including both Gram-positive and
236 237 238 239 240 241 242 243	microbial species. We found larger N50s and longest contigs when using hybrid assemblies compared with short-read assemblies; this is in agreement with previous benchmarking data using a combined MinION and Illumina hybrid approach to sequence mock communities, human gut samples, ¹⁴ and rumen gut microbiota samples. ¹⁷ This allowed us to assemble 509 MAGs across all the major phylogenetic groups (Supplementary file 5), with representatives from ten bacterial classes and 28 families, including both Gram-positive and Gram-negative species. Bertand et al. ¹⁴ found that phenol-chloroform extractions led to

247	recover <i>Bifidobacterium</i> MAG's from the PromethION data produced using their enzyme
248	and phenol-chloroform based extraction method (although they were able to recover
249	Bifidobacterium MAG's from short-read data which was obtained following a bead beating
250	based DNA extraction of the same samples). This indicates that bead beating is necessary to
251	obtain accurate representations of the microbial community in human stool samples. The
252	bead beating DNA extraction protocol used in this study was also recommended by the
253	Human Microbiome Project to avoid biases in microbiome samples. ^{25,26}
254	We have provided <i>Candidatus</i> names to 70 bacterial species which do not currently have
255	representative Latin binomial names in the GTDB database (Supplementary Table 7). Our
256	decision to provide names for these species reflects the higher quality of MAGs compared
257	to those currently represented in the databases (Supplementary Table 8).
258	
250	
259	Structural diversity in substrates drives changes in microbial communities. Over the 24h
	Structural diversity in substrates drives changes in microbial communities. Over the 24h fermentation, microbial communities rapidly diverged depending on substrate. The smallest
259	
259 260	fermentation, microbial communities rapidly diverged depending on substrate. The smallest
259 260 261	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected,
259 260 261 262	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited
259 260 261 262 263	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited fermentability. ²⁷ Each substrate resulted in distinct changes in microbial community
259 260 261 262 263 264	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited fermentability. ²⁷ Each substrate resulted in distinct changes in microbial community composition, supporting previous findings that chemically-identical but structurally-diverse
259 260 261 262 263 264 265	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited fermentability. ²⁷ Each substrate resulted in distinct changes in microbial community composition, supporting previous findings that chemically-identical but structurally-diverse
259 260 261 262 263 264 265 266	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited fermentability. ²⁷ Each substrate resulted in distinct changes in microbial community composition, supporting previous findings that chemically-identical but structurally-diverse starches can result in distinct changes in microbial community. ^{7,8}
259 260 261 262 263 264 265 266 266	fermentation, microbial communities rapidly diverged depending on substrate. The smallest change in community composition occurred in the Avicel treatment, as would be expected, given that Avicel was the most recalcitrant substrate evaluated, with very limited fermentability. ²⁷ Each substrate resulted in distinct changes in microbial community composition, supporting previous findings that chemically-identical but structurally-diverse starches can result in distinct changes in microbial community composition. ^{7,8} Changes in microbial composition are related to the ability to degrade structurally diverse

270 our microbial community .²⁸ We found the greatest number and diversity of CAZyme genes

271 were in the genomes of *Bacteroidetes* (Figure 6 and Supplementary Figure 4), as has previously been computationally estimated for the human gut microbiome.^{10,29} This is in 272 273 contrast to rumen microbiomes where *Fibrobactares* are the primary fibre-degrading 274 bacterial group.¹⁷ 275 We identified genomes that increased in abundance during either early or late 276 stages of fermentation suggesting that their involvement in substrate degradation was 277 either as primary (early) or secondary (late) degraders (Figure 5). We also identified 278 differences in abundance of particular CAZyme-encoding genes amongst species which may 279 reflect their specialisation to specific substrates (Figure 6). Bacteroides uniformis has been characterised as an inulin-degrading species,³⁰ and in our analysis it was identified during 280 281 inulin fermentation and had three copies of the GH32 (inulinase) gene and a gene encoding 282 the inulin binding domain, CBM38. Candidatus Minthovivens enterohominis also increased 283 in abundance early in inulin degradation, and its genome contained five copies of the GH32 284 gene. Faecalibacterium prausnitzii increased in abundance with inulin supplementation and 285 has been shown to have the ability to degrade inulin when co-cultured with primary degrading species.^{31,32} F. prausnitzii was also found to increase in abundance for cellulose, 286 287 but not for the starch based substrates. 288 Avicel is a highly crystalline cellulose that is resistant to fermentation; the human gut microbiota has a very limited capacity to degrade celluloses.³³ Interestingly, the largest 289 290 increase in abundance we observed was for *Blautia hydrogenotrophica*; which has been

291 reported in association with cellulose fermentation since it acts as an acetogen using

292 hydrogen produced by primary degraders of cellulose.³⁴

In all starch treatments, there were large increases in the proportion of identified
 genes that encoded GH13 (the major amylolytic gene family including α-amylase, α-

295	glucosidase and pullulanase) reflecting selection for starch-degrading species (Figure 6); this
296	was also the case for CBM48 which is also involved in starch degradation (Figure 6). ²² Our
297	analysis identified several well-known starch degrading species, most notably R. bromii and
298	B. adoloscentis (Figure 5). R. bromii is a well characterised specialist on highly recalcitrant
299	starch, ³⁵ possessing specialised starch-degrading machinery termed the 'amylosome'; it was
300	only identified in the most recalcitrant starch treatments (Hylon and potato). Previous
301	genome sequencing of an <i>R. bromii</i> isolate reported 15 GH13 genes; ³⁵ 14 GH13 genes were
302	identified in the <i>R. bromii</i> MAG assembled in this study. In the potato treatment another
303	closely related but less well characterised <i>Rumminococcus</i> species with ten GH13 genes and
304	one CBM48 gene was identified.
305	A previously uncultured <i>Blautia</i> species was identified possessing eight GH13 and
306	three CBM48 genes which increased in abundance in response to Hylon and potato. Blautia
307	species have previously been shown to increase in abundance in response to resistant
308	starch. ^{36,37} We also identified four further previously-uncharacterised species that increased
309	in abundance and had more than five GH13 genes: Candidatus Cholicenecus caccae,
310	Candidatus Eisenbergiella faecalis, Candidatus Enteromorpha quadrami and Candidatus
311	Aphodonaster merdae.
312	Maize starch treatments (r.maize and Hylon) showed increases in abundance of
313	Bifidobacterium species. Previous studies have characterized Bifidobacterium as a starch-
314	degrading genus. ³⁸ The only <i>Bifidobacterium</i> species to increase in abundance in response
315	to Hylon was <i>B. adolescentis,</i> which is known to utilise to this hard-to-digest starch better
316	than other <i>Bifidobacterium</i> species, ³⁹ ; a broader range of <i>Bifidobacterium</i> species increased

317 in abundance in response to the more accessible r.maize.

318

319 Conclusion

320	We have demonstrated that deep long- and short-read metagenomic sequencing and hybrid
321	assembly has great potential for studying the human gut microbiota. We identified species-
322	level resolved changes in microbial community composition and diversity in response to
323	carbohydrates with different structures over time, identifying succession of species within
324	the fermenter. To provide functional information about these species we obtained over 500
325	MAGs from a single human stool sample. Annotating CAZyme genes in MAGs from species
326	enriched for by fermentation of different carbohydrates allowed us to identify species
327	specialised in degradation of defined carbohydrates, increasing our knowledge of the range
328	of species potentially involved in starch metabolism in the human gut.
329	
330	Material and Methods
331	A schematic overview of the workflow and experimental design is displayed in Figure 1.
332	Substrates. Native maize starch (catalogue no. S4126), native potato starch (catalogue no.
333	2004), Avicel PH-101 (catalogue no. 11365) and chicory inulin (catalogue no. I2255) were
334	purchased from Sigma-Aldrich, (Gillingham, UK). Hylon VII® was kindly provided as a gift by
335	Ingredion Incorporated (Manchester, UK).
336	Retrograded maize starch was prepared from 40g of native maize starch in 400 mL of
337	deionized water. The slurry was stirred continuously at 95°C in a water bath for 20 minutes.
338	The resulting gel was cooled to room temperature for 60 minutes, transferred to aluminium
339	pots (150 mL, Ampulla, Hyde UK), and stored at 4°C for 48 hours. The retrograded gel was
340	then frozen at -80°C for 12 hours and freeze-dried (LyoDry, MechaTech Systems Ltd, Bristol,

342 Each substrate (0.500 ± 0.005g, dry weight) was weighed in sterilized fermentation
343 bottles (100 mL) prior to start of the experiment.

344	Inoculum collection and preparation. A single human faecal sample was obtained from one
345	adult (≥ 18 years old), free-living, healthy donor who had not taken antibiotics in the 3
346	months prior to donation and was free from gastrointestinal disease. Ethical approval was
347	granted by Human Research Governance Committee at the Quadram Institute (IFR01/2015)
348	and London - Westminster Research Ethics Committee (15/LO/2169) and the trial was
349	registered on clinicaltrials.gov (NCT02653001). A signed informed consent was obtained
350	from the participant prior to donation. The stool sample was collected by the participant,
351	stored in a closed container under ambient conditions, transferred to the laboratory and
352	prepared for inoculation within 2 hours of excretion. The faecal sample was diluted 1:10
353	with pre-warmed, anaerobic, sterile phosphate buffer saline (0.1M, pH 7.4) in a double
354	meshed stomacher bag (500 mL, Seward, Worthing, UK) and homogenized using a
355	Stomacher 400 (Seward, Worthing, UK) at 200 rpm for two cycles, each of 60 seconds
356	length.
357	Batch fermentation in the model colon. Fermentation vessels were established with media

adapted from Williams *et al.*,⁴⁰ In brief, each vessel (100 mL) contained an aliquot (3.0 mL)

of filtered faecal slurry, 82 mL of sterilized growth medium, and one of the six substrates for

360 experimental evaluation: native Hylon VII or native potato starch (highly recalcitrant

361 starches); native maize starch or gelatinized, retrograded maize starch (accessible starches);

Avicel PH-101 (insoluble fibre; negative control); and chicory inulin (fermentable soluble

363 fibre; positive control). There was also a media only control with no inoculum (blank)

364 making a total of seven fermentation vessels.

365	For each fermentation vessel the growth medium contained 76 mL of basal solution,
366	5 mL vitamin phosphate and sodium carbonate solution, and 1 mL reducing agent. The
367	composition of the various solutions used in the preparation of the growth medium is
368	described in detail in Supplementary Table 13 . A single stock (7 litres) of growth medium
369	was prepared for use in all vessels. Vessel fermentations were pH controlled and maintained
370	at pH 6.8 to 7.2 using 1N NaOH and 1N HCl regulated by a Fermac 260 (Electrolab Biotech,
371	Tewkesbury, UK). A circulating water jacket maintained the vessel temperature at 37°C.
372	Magnetic stirring was used to keep the mixture homogenous and the vessels were
373	continuously sparged with nitrogen (99% purity) to maintain anaerobic conditions. Samples
374	were collected from each vessel at 0 (5 min), 6, 12, and 24 hours after inoculation. The
375	biomass from two 1.8 mL aliquots from each sample were concentrated by refrigerated
376	centrifugation (4°C; 10,000 g for 10 min), the supernatant removed, and the pellets stored
377	at -80°C prior to bacterial enumeration and DNA extraction; one pellet was used for
378	enumeration and one for DNA extraction.
379	Bacterial cell enumeration. All materials used for bacterial cell enumeration were
380	purchased from Sigma-Aldrich (Gillingham, UK), unless specified otherwise. To each frozen
381	pellet, 400 μL of PBS and 1100 μL of 4% paraformaldehyde (PFA) were added and gently
382	thawed at 20°C for 10 minutes with gentle mixing. Once thawed, each resuspension was
383	thoroughly mixed and incubated overnight at 4°C for fixation to occur. The resuspensions
384	were then centrifuged for 10 minutes at 8000 x g, the supernatant removed, and the
385	residual pellet washed with 1 mL 0.1% Tween-20. This pellet then underwent two further
386	washes in PBS to remove any residual PFA and was then resuspended in 600 μL PBS: ethanol
387	(1:1).

388	The fixed resuspensions were centrifuged for 3 minutes at 16000 x g, the
389	supernatant removed, and the pellet resuspended in 500 μ L 1 mg/mL lysozyme (100 μ L 1M
390	Tris HCl at pH 8, 100 μL 0.5 M EDTA at pH 8, 800 μL water, and 1 mg lysozyme, catalogue no.
391	L6876) and incubated at room temperature for 10 minutes. After thorough mixing and
392	centrifugation for 3 minutes at 16000 x g, the supernatant was removed, and the pellet
393	washed with PBS. The resulting pellet was then resuspended in 150 μL of hybridisation
394	buffer (HB, per mL: 180 μ L 5 M NaCl, 20 μ L 1M Tris HCl at pH 8, 300 μ L Formamide, 499 μ L
395	water, 1 μ L 10% SDS), centrifuged, the supernatant removed and the remaining pellet
396	resuspended again in 1500 μL of HB and stored at 4°C prior to enumeration. For bacterial
397	enumeration, 1 μ L of Invitrogen SYTO 9 (catalogue no. S34854, Thermo Fisher Scientific,
398	Loughborough, UK) was added to 1 mL of each fixed and washed resuspension. Within 96-
399	well plate resuspensions were diluted to 1:1000 and the bacterial populations within them
400	enumerated using flow cytometry (Luminex Guava easyCyte 5) at wavelength of 488nm and
401	Guava suite software, version 3.3.
402	DNA extraction. Each pellet was resuspended in 500 μL (samples collected at 0 and 6 hr) or
403	650 μL (samples collected at 12 and 24 hr) with chilled (4°C) nuclease-free water (Sigma-
404	Aldrich, Gillingham, UK). The resuspensions were frozen overnight at -80°C, thawed on ice
405	and an aliquot (400 $\mu L)$ used for bacterial genomic DNA extraction. FastDNA® Spin Kit for
406	Soil (MP Biomedical, Solon, US) was used according to the manufacturer's instructions
407	which included two bead-beating steps of 60s at a speed of 6.0m/s (FastPrep24, MP
408	Biomedical, Solon, USA). DNA concentration was determined using the Quant-iT $^{ m M}$ dsDNA
409	Assay Kit, high sensitivity kit (Invitrogen, Loughborough, UK) and quantified using a
410	FLUOstar Optima plate reader (BMG Labtech, Aylesbury, UK).

411	Illumina NovaSeq Library preparation and sequencing. Genomic DNA was normalised to 5
412	ng/ μ L with elution buffer (10mM Tris-HCl). A miniaturised reaction was set up using the
413	Nextera DNA Flex Library Prep Kit (Illumina, Cambridge, UK). 0.5 μ L Tagmentation Buffer 1
414	(TB1) was mixed with 0.5 μL Bead-Linked Transposomes (BLT) and 4.0 μL PCR-grade water in
415	a master mix and 5 μL added to each well of a chilled 96-well plate. 2 μL of normalised DNA
416	(10 ng total) was pipette-mixed with each well of tagmentation master mix and the plate
417	heated to 55°C for 15 minutes in a PCR block. A PCR master mix was made up using 4 μL
418	kapa2G buffer, 0.4 μ L dNTP's, 0.08 μ L Polymerase and 4.52 μ L PCR grade water, from the
419	Kap2G Robust PCR kit (Sigma-Aldrich, Gillingham, UK) and 9 μL added to each well in a 96-
420	well plate. 2 μL each of P7 and P5 of Nextera XT Index Kit v2 index primers (catalogue No.
421	FC-131-2001 to 2004; Illumina, Cambridge, UK) were also added to each well. Finally, the 7
422	μL of Tagmentation mix was added and mixed. The PCR was run at 72°C for 3 minutes, 95°C
423	for 1 minute, 14 cycles of 95°C for 10s, 55°C for 20s and 72°C for 3 minutes. Following the
424	PCR reaction, the libraries from each sample were quantified using the methods described
425	earlier and the high sensitivity Quant-iT dsDNA Assay Kit. Libraries were pooled following
426	quantification in equal quantities. The final pool was double-SPRI size selected between 0.5
427	and 0.7X bead volumes using KAPA Pure Beads (Roche, Wilmington, US). The final pool was
428	quantified on a Qubit 3.0 instrument and run on a D5000 ScreenTape (Agilent, Waldbronn,
429	DE) using the Agilent Tapestation 4200 to calculate the final library pool molarity. qPCR was
430	done on an Applied Biosystems StepOne Plus machine. Samples quantified were diluted 1 in
431	10,000. A PCR master mix was prepared using 10 μ L KAPA SYBR FAST qPCR Master Mix (2X)
432	(Sigma-Aldrich, Gillingham, UK), 0.4 μ L ROX High, 0.4 μ L 10 μ M forward primer, 0.4 μ L 10
433	μ M reverse primer, 4 μ L template DNA, 4.8 μ L PCR grade water. The PCR programme was:
434	95°C for 3 minutes, 40 cycles of 95°C for 10s, 60°C for 30s. Standards were made from a 10

435	nM stock of Phix, diluted in PCR-grade water. The standard range was 20 pmol, 2 pmol, 0.2
436	pmol, 0.02 pmol, 0.002 pmol, 0.0002 pmol. Samples were then sent to Novogene
437	(Cambridge, UK) for sequencing using an Illumina NovaSeq instrument, with sample names
438	and index combinations used. Demultiplexed FASTQ's were returned on a hard drive.
439	Nanopore library preparation and PromethION sequencing. Library preparation was
440	performed using SQK-LSK109 (Oxford Nanopore Technologies, Oxford, UK) with barcoding
441	kits EXP-NBD104 and EXP-NBD114. The native barcoding genomic DNA protocol by Oxford
442	Nanopore Technologies (ONT) was followed with slight modifications. Starting material for
443	the End-Prep/FFPE reaction was 1 μg per sample in 48 μL volume. 3.5 μL NEBNext FFPE DNA
444	Repair Buffer (NEB, New England Biolabs, Ipswich, USA), 3.5 μ L NEB Ultra II End-prep Buffer,
445	3 μ L NEB Ultra II End-prep Enzyme Mix and 2 μ L NEBNext FFPE DNA Repair Mix (NEB) were
446	added to the DNA (final volume 60 $\mu L),$ mixed slowly by pipetting and incubated at 20°C for
447	5 minutes and then 65°C for 5 minutes. After a 1X bead wash with AMPure XP beads
448	(Agencourt, Beckman Coulter, High Wycombe, UK), the DNA was eluted in 26 μL of
449	nuclease-free water. 22.5 μL of this was taken forward for native barcoding with the
450	addition of 2.5 μL barcode and 25 μL Blunt/TA Ligase Master Mix (NEB) (final volume 50 μL).
451	This was mixed by pipetting and incubated at room temperature for 10 minutes. After
452	another 1X bead wash (as above), samples were quantified using Qubit dsDNA BR Assay Kit
453	(Invitrogen, Loughborough, UK). In the first run, samples were equimolar pooled to a total
454	of 900 ng in a volume of 65 μ L. In the second run, samples were pooled to 1700 ng followed
455	by a 0.4X bead wash to achieve the final volume of 65 μ L. 5 μ L Adapter Mix II (ONT), 20 μ L
456	NEBNext Quick Ligation Reaction Buffer (5X) and 10 μL Quick T4 DNA Ligase (NEB) were
457	added (final volume 100 μ L), mixed by flicking, and incubated at room temperature for 10
458	minutes. After bead washing with 50 μL of AMPure XP beads and two $% \mu L$ washes in 250 μL of

459	Long Fragment Buffer (ONT), the library was eluted in 25 μL of Elution Buffer and quantified
460	with Qubit dsDNA BR and TapeStation 2200 using a Genomic DNA ScreenTape (Agilent
461	Technologies, Edinburgh, UK). 470 ng of DNA was loaded for sequencing in the first run and
462	400 ng in the second run. The final loading mix was 75 μ L SQB, 51 μ L LB and 24 μ L DNA
463	library.
464	Sequencing was performed on a PromethION Beta using FLO-PRO002 PromethION
465	Flow Cells (R9 version). The sequencing runtime was 57 hours for Run 1 and 64 hours for
466	Run 2. Flow cells were refuelled with 0.5X SQB (75 μ L SQB and 75 μ L nuclease free water) 40
467	hours into both runs.
468	Bioinformatics analysis. The bioinformatics analysis was performed using default options
469	unless specified otherwise.
470	Nanopore basecalling: Basecalling was performed using Guppy version 3.0.5+45c3543 (ONT)
471	in high accuracy mode (model dna_r9.4.1_450bps_hac), and demultiplexed with qcat
472	version 1.1.0 (Oxford Nanopore Technologies, <u>https://github.com/nanoporetech/qcat</u>).
473	Sequence quality: For Nanopore, sequence metrics were estimated by Nanostat version
474	1.1.2 ⁴¹ . In total, 22 million sequences were generated with a median read length of 4500 bp
475	and median quality of 10 (phred). Quality trimming and adapter removal was performed
476	using Porechop version 0.2.3 (<u>https://github.com/rrwick/Porechop</u>). For Illumina, quality
477	control was done for paired-end reads using <i>fastp,</i> version 0.20.0. ⁴² to remove adapter
478	sequences and filter out low-quality (phred quality < 30) and short reads (length < 60 bp).
479	After quality control, the average number of reads in the samples was over 26.1 million
480	reads, with a minimum of 9.7 million reads; the average read length was 148 bp.
481	Taxonomic profiling: Trimmed and high-quality short reads are processed using MetaPhlAn3
482	version 3.0.2, ⁴³ to estimate both microbial composition to species level and also the relative

483	abundance of species from each metagenomic sample. MetaPhlAn3 uses the latest marker
484	information dataset, CHOCOPhlAn 2019, which contains ${\sim}1$ million unique clade-specific
485	marker genes identified from ~100,000 reference genomes; this includes bacterial, archaeal
486	and eukaryotic genomes. Hclust2 was used to plot the hierarchical clustering of the
487	different taxonomic profiles at each time point [https://github.com/SegataLab/hclust2]. The
488	results of the microbial taxonomy were analysed in RStudio Version 1.1.453
489	(<u>http://www.rstudio.com/)</u> .
490	Principle Coordinate analyses using the pcoa function in the ape package version 5.3
491	(https://www.rdocumentation.org/packages/ape/versions/5.3) and the vegan package was
492	used to identify differences in microbiome profiles amongst treatments.
493	Hybrid assembly: Trimmed and high-quality Illumina reads were merged per
494	treatment, and then used in a short-read-only assembly using Megahit version 1.1.3. ^{44,45}
495	Then OPERA-MS ⁴⁶ version 0.8.2, was used to combine the short-read only assembly with
496	high-quality long reads, to create high-quality hybrid assemblies. By combining these two
497	technologies, OPERA-MS overcomes the issue of low-contiguity of short-read-only
498	assemblies and the low base-pair quality of long-read-only assemblies.
499	Genome binning, quality, dereplication and comparative genomics of hybrid
500	assemblies: The hybrid co-assemblies from Opera-MS ⁴⁶ were used for binning. Here,
501	Illumina reads for each time period were mapped to the co-assembled contigs to obtain a
502	coverage map. Bowtie2 version 2.3.4.1 was used for mapping, and samtools to convert SAM
503	to BAM format. MaxBin2 version 2.2.6 ⁴⁷ and MetaBat2 version 2.12.1 ⁴⁸ which uses
504	sequence composition and coverage information, was used to bin probable genomes using
505	default parameters. The binned genomes and co-assembled contigs were integrated into
506	Anvi'o version 6.1 for manual refinement and visual inspection of problematic genomes. In

507	particular, we used the scripts: 'anvi-interactive' to visualise the genome bins; 'anvi-run-
508	hmms' to estimate genome completeness and contamination; 'anvi-profile' to estimate
509	coverage and detection statistics for each sample; and 'anvi-refine' to manually refine the
510	genomes. All scripts were run using default parameters. Additionally, DAS tool version 1.1.2
511	⁴⁹ was used to aggregate high-quality genomes from each treatment by using single copy
512	gene-based scores and genome quality metrics to produce a list of good quality genomes for
513	every treatment. Additionally, checkM version 1.0.18 ⁵⁰ was used on all final genomes to
514	confirm completion and contamination scores. In general, genomes with a 'quality satisfying
515	completeness - 5*contamination > 50 score' and/or with a '>60% completion and <10%
516	contamination' score according to CheckM, were selected for downstream analyses.
517	Dereplication into representative clusters: In order to produce a dereplicated set of
518	genomes across all treatments, dRep version 2.5.0 ⁵¹ was used. Pairwise genome
519	comparisons or Average Nucleotide Identity (ANI) was used for clustering. dRep clusters
520	genomes with ANIs of 97% were regarded as primary clusters, and genomes with ANI of 99
521	% regarded as secondary clusters. A representative genome is provided for each of the
522	secondary clusters.
523	Relative abundance of genomes: Since co-assemblies were used for binning, relative
524	abundance was calculated as the proportion of reads recruited to that bin across all time

525 periods for each treatment. This provides an estimate of which time period recruited the

526 most reads. To provide this estimate in relative terms, the value is normalised to the total

527 number of reads that was recruited for that genome. As for Avicel that misses the time 0h, a

- 528 mean relative abundance from each MAG in the cluster at time 0h was used. The relative
- 529 abundance scores was provided by 'anvi-summarize' (from the Anvi'o package) as relative

530 abundance. Further, fold changes were calculated between the relative abundance at time

531 Oh to the corresponding relative abundance at 6h, 12h and 24h using gtools R package 532 version 3.5.0. Fold changes provide an estimate of change in MAG abundance which might 533 be a result from utilisation of a particular carbohydrate. Fold changes were converted to log 534 ratios. MAGs with a fold change of $2x (\log_2 \text{ foldchange}=1)$ were regarded as an active 535 carbohydrate utiliser. 536 Metagenomic assignment and phylogenetic analyses: Genome bins that passed 537 quality assessment were analysed for their closest taxonomic assignment. To assign 538 taxonomic labels, the genome set was assigned into the microbial tree of life using GTDB 539 version 0.3.5 and database R95 to identify the closest ancestor and obtain a putative 540 taxonomy assignment for each genome bin. For genomes where the closest ancestor could 541 not be determined, the Relative Evolutionary Distance (RED) to the closest ancestor and 542 novel taxa names were provided. Using these genome bins, a phylogenetic tree was 543 constructed using Phylophlan version 0.99 and visually inspected using iTOL version 4.3.1 544 and ggtree from package https://github.com/YuLab-SMU/ggtree.git. The R packages ggplot2 545 version 3.3.2, dplyr version 1.0.2, aplot, ggtree version 2.2.4 and inkscape version 1.0.1 546 were used for illustrations 547 Carbohydrate metabolism analyses: All representative genome clusters were annotated for CAZymes using dbCAN.⁵² The genome's nucleotide sequences were processed 548 549 with Prodigal to predict protein sequences, and then three tools were used for automatic CAZyme annotation: a) HMMER⁵³ to search against the dbCAN HMM (Hidden Markov 550 Model) database; b) DIAMOND⁵⁴ to search against the CAZy pre-annotated CAZyme 551 sequence database; and c) Hotpep⁵⁵ to search against the conserved CAZyme PPR (peptide 552 553 pattern recognition) short peptide library. To improve annotation accuracy, a filtering step

554	was used to retain only hits to CAZy families found by at least two tools. The R packages
555	ggplot2, dplyr, ComplexHeatmap version 2.4.3 and inkscape were used for illustrations.
556	Acknowledgements
557	We thank Dave J. Baker for assisting with sequencing and the anonymous donor who
558	provided faecal material for this study. We thank Dr. Judith Pell for assistance with editing
559	the manuscript.
560	Author contributions
561	All authors read and contributed to the manuscript. AR, PR and JAJ are joint first authors.
562	FJW conceived and designed the study. AR led on the preparation of the manuscript. AA and
563	GLK prepared the sequencing libraries and did the sequencing. AR and PR did the sequence
564	and bioinformatics analysis. TLV did the post-sequencing analysis. JAJ, KC and SH did the
565	model colon experiments and DNA extractions. HH enumerated the bacterial cells. RG and
566	MJP assisted with bioinformatic analysis and taxonomic descriptions. JOG provided long-
567	read sequencing and molecular biology expertise; AJP provided bioinformatics expertise;
568	and FJW provided expertise in carbohydrate structure and model colon protocols. FJW, JOG,
569	AJP secured funding, provided management oversight and scientific direction.
570	Ethical approval
571	Ethical approval was granted by the Human Research Governance Committee at the
572	Quadram Institute (IFR01/2015) and the London - Westminster Research Ethics Committee
573	(15/LO/2169). The trial is registered on clinicaltrials.gov (NCT02653001). A signed informed
574	consent was obtained from the participant prior to donation.
575	Funding statements

- 576 The authors gratefully acknowledge the support of the Biotechnology and Biological
- 577 Sciences Research Council (BBSRC). This research was funded by: the BBSRC Institute

- 578 Strategic Programme (ISP) Food Innovation and Health BB/R012512/1 and its constituent
- projects (BBS/E/F/000PR10343, BS/E/F/000PR10346); the BBSRC ISP Microbes in the Food
- 580 Chain BB/R012504/1 and its constituent projects (BBS/E/F/000PR10348,
- 581 BBS/E/F/000PR10349, BBS/E/F/000PR10352); and the BBSRC Core Capability Grant
- 582 (BB/CCG1860/1). The funders had no role in study design, data collection and analysis,
- 583 decision to publish, or preparation of the manuscript.
- 584 Data availability
- 585 Raw read data from the PromethION and NovoSeq sequencing runs can be accessed
- 586 through the NCBI SRA project number PRJNA722408. GenBank accession numbers for
- 587 individual MAG's within this ProjectID can be found in Supplementary Table 5.

588 Figure legends

- 589 Figure 1. Workflow for bioinformatics analysis of combined Illumina NovoSeq and Oxford
- 590 Nanopore PromethION metagenomics data collected in a model colon study of the
- 591 fermentation of different carbohydrate substrates with contrasting structures (Avicel, Inulin,
- 592 Normal maize (N.maize), Retrograded maize (R.maize), Potato and Hylon) by the gut
- 593 microbiota present in a human stool sample.
- 594 **Figure 2**. Hierarchical clustering of the top 30 selected gut microbial species present after
- 595 fermentation of Avicel, Inulin, N.maize, R.maize, Potato and Hylon at 0h, 6h, 12h and 24h in
- the model colon. The hierarchical clustering also includes a water sample ("the kitome").
- 597 Figure 3: Comparison of Illumina short read assemblies and hybrid assemblies: a) shows
- 598 the number of contigs per treatment, b) shows the N50, c) statistics on the largest contig, d)
- size of the total assembly for each carbohydrate treatment.
- 600 **Figure 4: MAG quality.** Dots represent each MAG. Completeness and contamination scores
- 601 were estimated using CheckM. Colours are based on the MAG standards (high quality as
- 602 >90% completeness & <5% contamination; good quality as <90%- 60% completeness and
- 603 >5% 10% contamination. The horizontal and vertical bar charts provide the number of

604 genomes with high completeness and low contamination scores.

Figure 5: Phylogenomic tree and fold changes. The phylogenetic tree was **constructed from**

- 606 concatenated protein sequences using PhyloPhlAn and illustrated using ggtree. Clades
- 607 belonging to similar bacterial family and bacterial genus were collapsed. The colour strips
- 608 represent the phylum-level distribution of the phylogenetic tree. Dot plot shows the
- 609 decrease (negative log₂ fold change; blue shades) and increase (positive log₂ fold change;
- red shades) of read proportions from 0h to 6h, 0h to 12h and 0h to 24h for all treatments.

611	Figure 6: CAZyr	me profiles of	f selected-MAGs. 🛾	The colour stri	p represents th	ie ph	ylum-based
-----	-----------------	----------------	--------------------	-----------------	-----------------	-------	------------

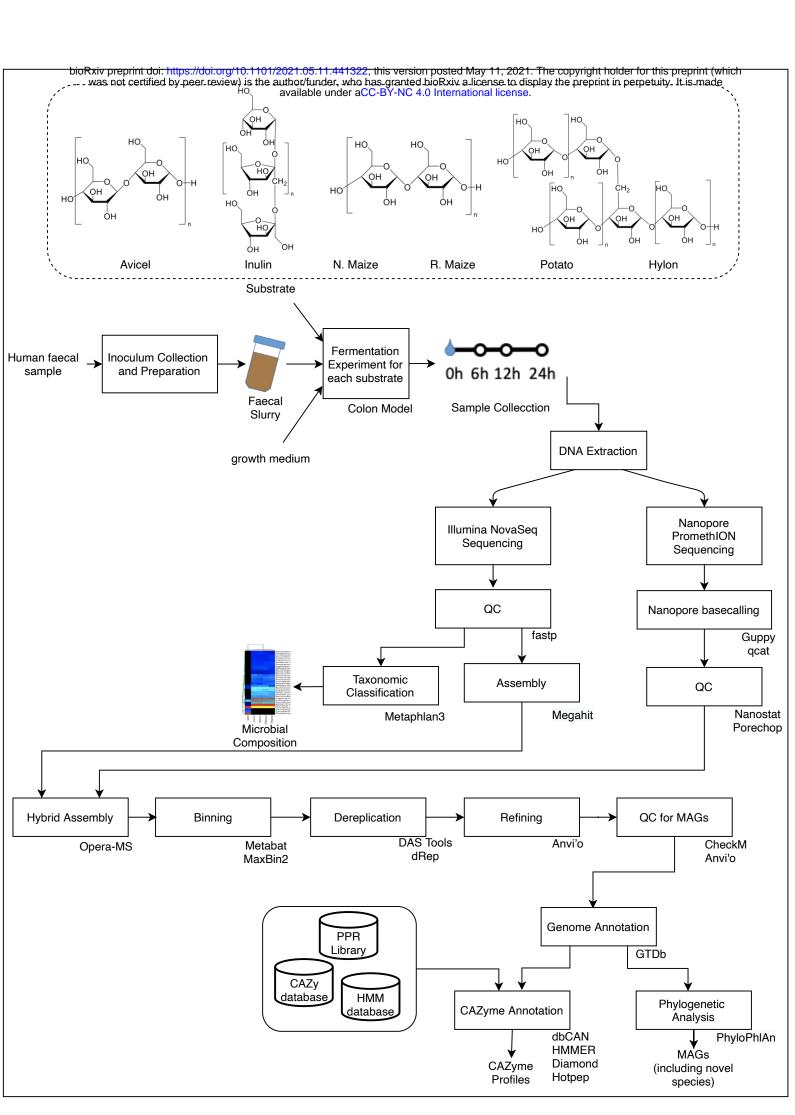
- taxonomy annotation. The heat map represents the number of proteins identified for each
- 613 CAZy protein family.
- 614 Supplementary Files
- 615 **Supplementary Table 1:** Read stats and quality metrics for PromethION and Illumina
- 616 sequence data
- 617 **Supplementary Table 2:** Taxonomy profiles of relative abundances for all treatments using
- 618 MetaPhlAn3.
- 619 **Supplementary Table 3:** Assembly stats for short read assemblies using Megahit and hybrid
- 620 assemblies using OPERA-MS
- 621 **Supplementary Table 4:** MAG genomic stats, assembly features, closest taxonomy
- 622 annotation and relative evolutionary distance for novel genus and species.
- 623 **Supplementary Table 5:** Dereplicated MAGs with representative cluster names and their
- 624 taxonomy annotations
- 625 **Supplementary Table 6:** Stats showing the diversity of GTDb taxonomy within MAGs.
- 626 **Supplementary Table 7:** Novel latin binomials for MAGs and taxa names submitted to
- 627 Genbank
- 628 Supplementary Table 8: Comparison of genome stats between MAGs from this study and
- 629 GTDb corresponding representative MAG cluster
- 630 **Supplementary Table 9:** Relative abundance, fold change and log ratio foldchange for all
- 631 MAGs
- 632 **Supplementary Table 10:** Genomes depicted as early and late degraders according to the
- time the genomes showed a 2x fold change.
- 634 **Supplementary Table 11:** MAGs and their CAZyme profiles.

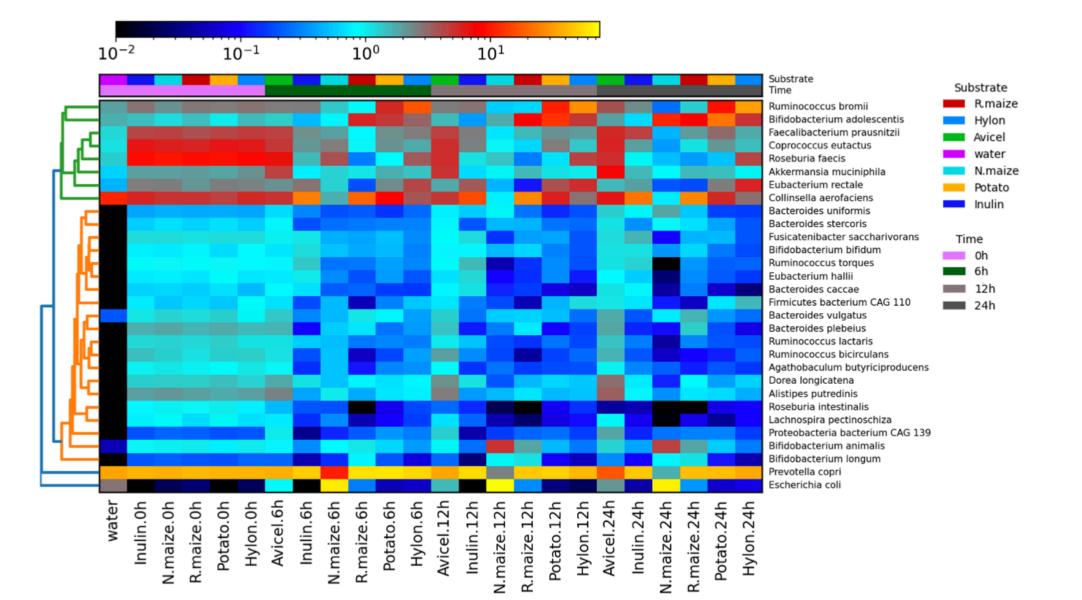
635	Supplementary	y Table	12: CaZyr	nes counts	for sele	ected MAG	clusters
-----	---------------	---------	-----------	------------	----------	-----------	----------

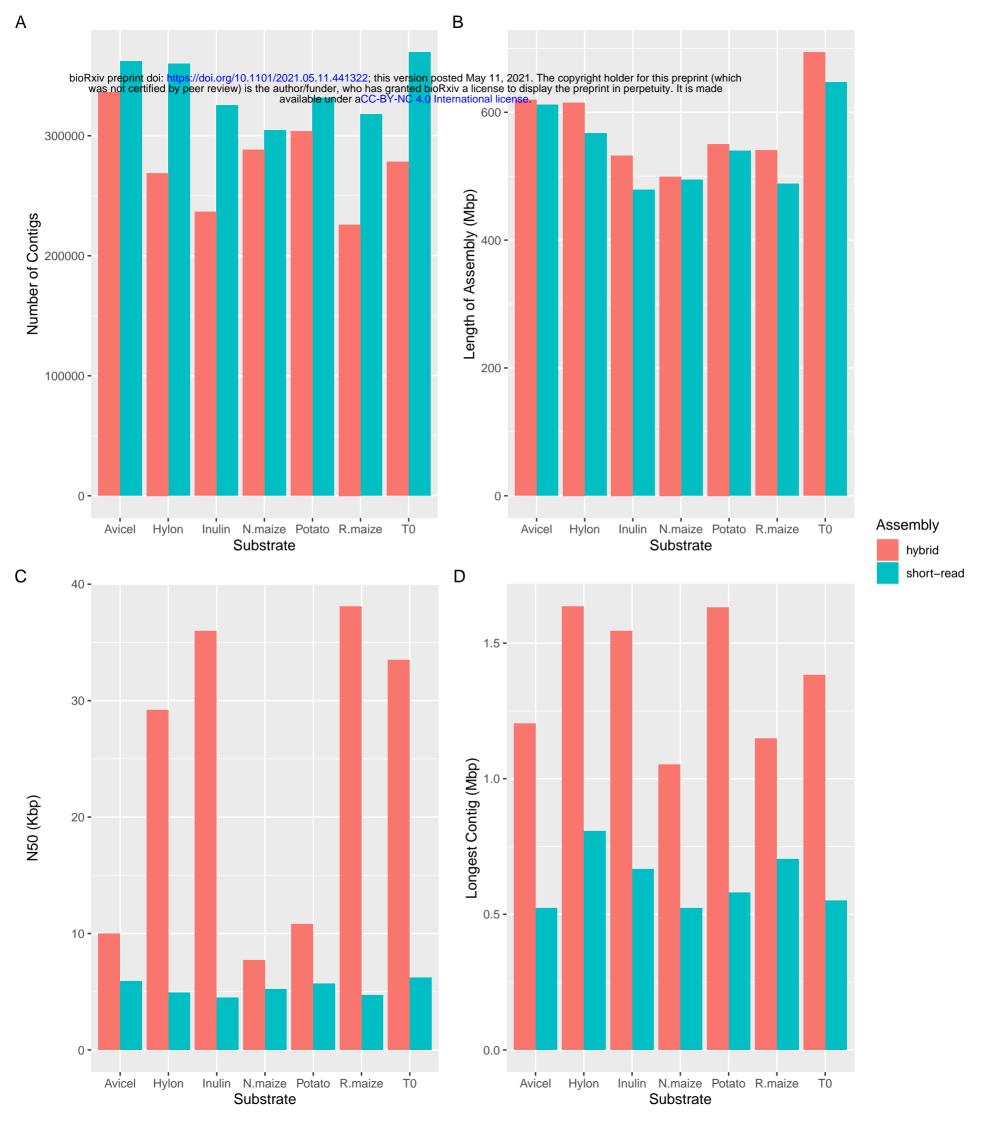
- 636 **Supplementary Table 13:** media preparation materials, sources and quantity
- 637

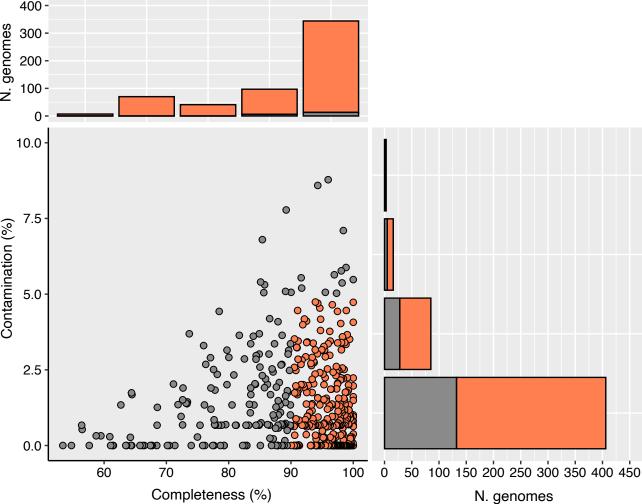
638	Supplementary	y Figure 1: Princi	ple Component Analy	ysis (PCoA) showing th	he dynamics of the

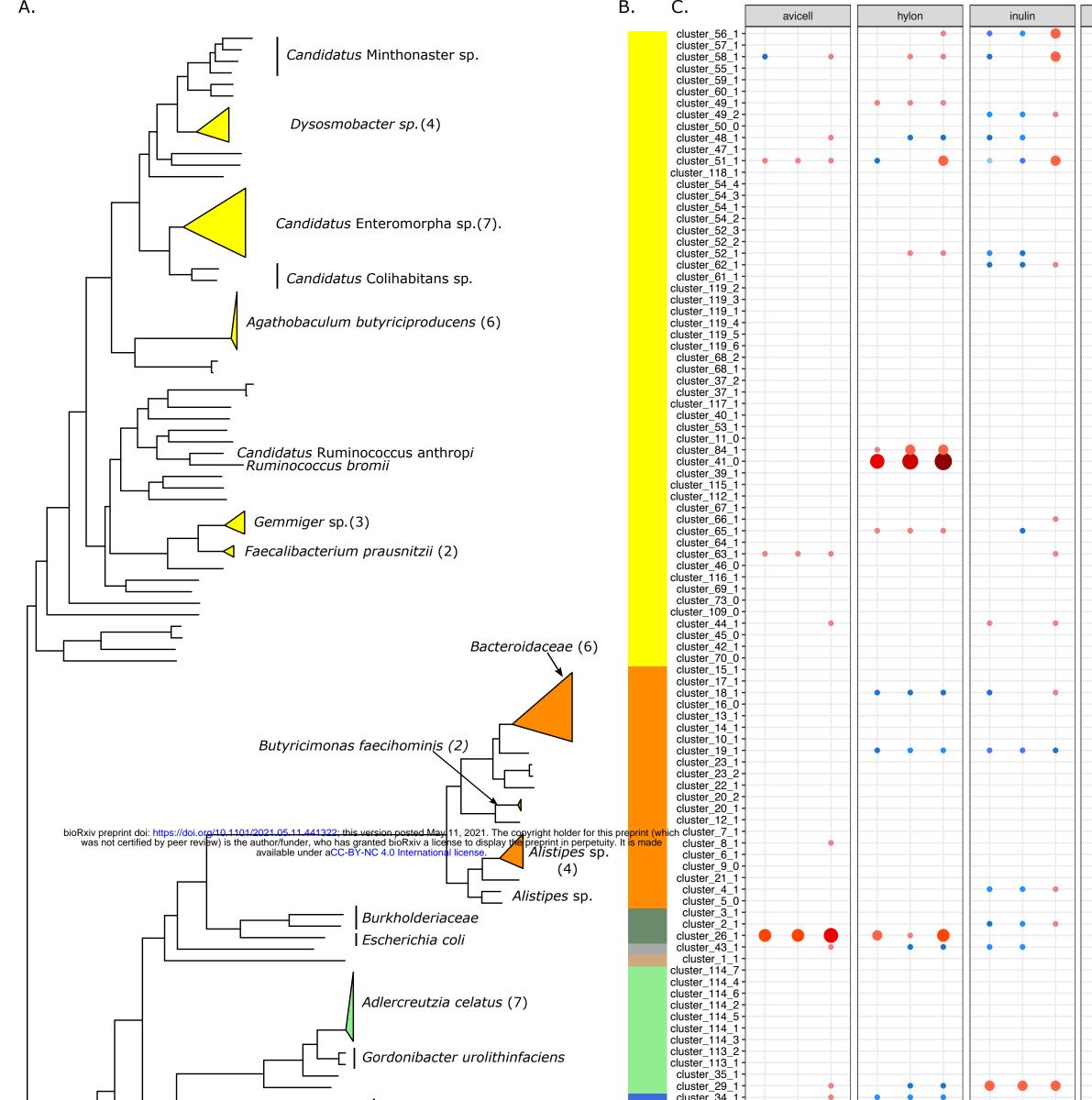
- 639 microbiome during the different time points and between the Carbohydrate treatment. PC1
- and PC2 represent the percentage of variance explained by Principle Component (PC) 1 and
- 641 2.
- 642 **Supplementary Figure 2:** Changes in inverse Simpson index between time periods of the
- 643 substrates.
- 644 Supplementary figure 3: Box plots showing the dynamic shifts in read proportions for all
- 645 **binned MAGs after 0h, 6h, 12h and 24h fermentation in the model colon.** The box
- 646 represents the interquartile range (IQR) (25th and 75th percentile); the median is shown
- 647 within the box. The whiskers indicate minimum and maximum Inter Quartile Range (IQR);
- 648 dots represent outliers.
- 649 **Supplementary Figure 4:** Distribution of CAZy families per substrate and in all the genome

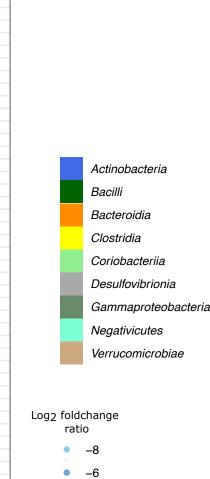

650 References


651	1	Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human
652	1	nutrition, the gut microbiome and the immune system. <i>Nature</i> 474 , 327-336 (2011).
653	2	Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes
654	4	the human gut microbiota. <i>Nature Reviews Microbiology</i> 10 , 323-335 (2012).
655	3	Chambers, E. S. <i>et al.</i> Dietary supplementation with inulin-propionate ester or inulin
656	5	improves insulin sensitivity in adults with overweight and obesity with distinct
657		effects on the gut microbiota, plasma metabolome and systemic inflammatory
658		responses: a randomised cross-over trial. <i>Gut</i> 68 , 1430-1438 (2019).
659	4	Blaak, E. <i>et al.</i> Short chain fatty acids in human gut and metabolic health. <i>Beneficial</i>
660	-	Microbes 11, 411-455 (2020).
661	5	Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human
662	5	Microbiome Project. <i>Nature</i> 550 , 61-66 (2017).
663	6	Martens, E. C., Kelly, A. G., Tauzin, A. S. & Brumer, H. The devil lies in the details:
664	0	how variations in polysaccharide fine-structure impact the physiology and evolution
665		of gut microbes. <i>Journal of molecular biology</i> 426 , 3851-3865 (2014).
666	7	Warren, F. J. <i>et al.</i> Food starch structure impacts gut microbiome composition.
667	,	Msphere 3 (2018).
668	8	Deehan, E. C. <i>et al.</i> Precision microbiome modulation with discrete dietary fiber
669	0	structures directs short-chain fatty acid production. <i>Cell Host & Microbe</i> (2020).
670	9	Carmody, R. N. <i>et al.</i> Cooking shapes the structure and function of the gut
671	5	microbiome. Nature microbiology 4 , 2052-2063 (2019).
672	10	Lapébie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use
673	10	thousands of enzyme combinations to break down glycans. <i>Nat. Commun.</i> 10 , 1-7
674		(2019).
675	11	Kujawska, M. <i>et al.</i> Succession of Bifidobacterium longum strains in response to the
676		changing early-life nutritional environment reveals specific adaptations to distinct
677		dietary substrates. (2020).
678	12	Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of
679		bacterial lower respiratory infection. <i>Nat. Biotechnol.</i> 37 , 783-792 (2019).
680	13	De Coster, W. et al. Structural variants identified by Oxford Nanopore PromethION
681		sequencing of the human genome. <i>Genome Res.</i> 29 , 1178-1187 (2019).
682	14	Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of
683		resistance determinants and mobile elements in human microbiomes. Nat.
684		Biotechnol. 37 , 937-944 (2019).
685	15	Arumugam, K. et al. Annotated bacterial chromosomes from frame-shift-corrected
686		long-read metagenomic data. <i>Microbiome</i> 7 , 61 (2019).
687	16	Singleton, C. M. <i>et al.</i> Connecting structure to function with the recovery of over
688		1000 high-quality activated sludge metagenome-assembled genomes encoding full-
689		length rRNA genes using long-read sequencing. <i>bioRxiv</i> (2020).
690	17	Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes
691		for rumen microbiome biology and enzyme discovery. <i>Nature biotechnology</i> 37 , 953
692		(2019).
693	18	Walker, A. W., Duncan, S. H., Leitch, E. C. M., Child, M. W. & Flint, H. J. pH and
694		peptide supply can radically alter bacterial populations and short-chain fatty acid


695		ratios within microbial communities from the human colon. Appl. Environ. Microbiol.
696		71 , 3692-3700 (2005).
697	19	Leitch, E. C. M., Walker, A. W., Duncan, S. H., Holtrop, G. & Flint, H. J. Selective
698	10	colonization of insoluble substrates by human faecal bacteria. <i>Environ. Microbiol.</i> 9 ,
		•
699	•••	667-679 (2007).
700	20	Bowers, R. M. <i>et al.</i> Minimum information about a single amplified genome (MISAG)
701		and a metagenome-assembled genome (MIMAG) of bacteria and archaea. <i>Nat.</i>
702		Biotechnol. 35 , 725-731 (2017).
703	21	Pallen, M. J., Telatin, A. & Oren, A. The Next Million Names for Archaea and Bacteria.
704		Trends Microbiol. (2020).
705	22	Machovič, M. & Janeček, Š. Domain evolution in the GH13 pullulanase subfamily
706		with focus on the carbohydrate-binding module family 48. <i>Biologia</i> 63 , 1057-1068
707		
	22	
708	23	Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from
709		microbiomes using nanopore sequencing. <i>Nature Biotechnology</i> , 1-7 (2020).
710	24	Maghini, D. G., Moss, E. L., Vance, S. E. & Bhatt, A. S. Improved high-molecular-
711		weight DNA extraction, nanopore sequencing and metagenomic assembly from the
712		human gut microbiome. <i>Nature Protocols</i> 16 , 458-471 (2021).
713	25	Aagaard, K. et al. The Human Microbiome Project strategy for comprehensive
714		sampling of the human microbiome and why it matters. <i>The FASEB Journal</i> 27 , 1012-
715		1022 (2013).
716	26	
	20	Methé, B. A. <i>et al.</i> A framework for human microbiome research. <i>Nature</i> 486 , 215
717		(2012).
718	27	Campbell, J. M., Fahey Jr, G. C. & Wolf, B. W. Selected indigestible oligosaccharides
719		affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in
720		rats. The Journal of nutrition 127 , 130-136 (1997).
721	28	Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The
722		carbohydrate-active enzymes database (CAZy) in 2013. <i>Nucleic acids research</i> 42 ,
723		D490-D495 (2014).
724	29	El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance
725		and variety of carbohydrate-active enzymes in the human gut microbiota. <i>Nature</i>
726		Reviews Microbiology 11 , 497-504 (2013).
727	30	Benítez-Páez, A., Gómez del Pulgar, E. M. & Sanz, Y. The glycolytic versatility of
	50	
728		Bacteroides uniformis CECT 7771 and its genome response to oligo and
729		polysaccharides. Frontiers in cellular and infection microbiology 7 , 383 (2017).
730	31	Moens, F., Weckx, S. & De Vuyst, L. Bifidobacterial inulin-type fructan degradation
731		capacity determines cross-feeding interactions between bifidobacteria and
732		Faecalibacterium prausnitzii. International journal of food microbiology 231 , 76-85
733		(2016).
734	32	Ramirez-Farias, C. <i>et al.</i> Effect of inulin on the human gut microbiota: stimulation of
735		Bifidobacterium adolescentis and Faecalibacterium prausnitzii. <i>British Journal of</i>
736		Nutrition 101 , 541-550 (2008).
	33	
737	22	Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of
738	<u>.</u>	complex carbohydrates in the gut. <i>Gut microbes</i> 3 , 289-306 (2012).
739	34	Bui, T. P. N. <i>et al.</i> Mutual Metabolic Interactions in Co-cultures of the Intestinal
740		Anaerostipes rhamnosivorans With an Acetogen, Methanogen, or Pectin-Degrader
741		Affecting Butyrate Production. <i>Frontiers in microbiology</i> 10 , 2449 (2019).


742	35	Ze, X. <i>et al.</i> Unique organization of extracellular amylases into amylosomes in the
743		resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii.
744		MBio 6 (2015).
745	36	Upadhyaya, B. <i>et al.</i> Impact of dietary resistant starch type 4 on human gut
746		microbiota and immunometabolic functions. <i>Scientific reports</i> 6 , 28797 (2016).
747	37	Xie, Z. et al. In vitro fecal fermentation of propionylated high-amylose maize starch
748		and its impact on gut microbiota. <i>Carbohydrate polymers</i> 223 , 115069 (2019).
749	38	Ryan, S. M., Fitzgerald, G. F. & van Sinderen, D. Screening for and identification of
750		starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains.
751		Applied and Environmental Microbiology 72 , 5289-5296 (2006).
752	39	Crittenden, R. <i>et al.</i> Adhesion of bifidobacteria to granular starch and its implications
753		in probiotic technologies. Applied and Environmental Microbiology 67 , 3469-3475
754		(2001).
755	40	Williams, B. A., Bosch, M. W., Boer, H., Verstegen, M. W. & Tamminga, S. An in vitro
756		batch culture method to assess potential fermentability of feed ingredients for
757		monogastric diets. <i>Anim. Feed Sci. Technol.</i> 123 , 445-462 (2005).
758	41	De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack:
759		visualizing and processing long-read sequencing data. <i>Bioinformatics</i> 34 , 2666-2669,
760		doi:10.1093/bioinformatics/bty149 (2018).
761	42	Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
762		preprocessor. <i>Bioinformatics</i> 34 , i884-i890 (2018).
763	43	Truong, D. T. <i>et al.</i> MetaPhlAn2 for enhanced metagenomic taxonomic profiling.
764	15	Nature methods 12 , 902-903 (2015).
765	44	Li, D., Liu, CM., Luo, R., Sadakane, K. & Lam, TW. MEGAHIT: an ultra-fast single-
766	•••	node solution for large and complex metagenomics assembly via succinct de Bruijn
767		graph. <i>Bioinformatics</i> 31 , 1674-1676 (2015).
768	45	Li, D. <i>et al.</i> MEGAHIT v1. 0: A fast and scalable metagenome assembler driven by
769		advanced methodologies and community practices. <i>Methods</i> 102 , 3-11 (2016).
770	46	Bertrand, D. <i>et al.</i> Hybrid metagenomic assembly enables high-resolution analysis of
771	10	resistance determinants and mobile elements in human microbiomes. <i>Nat.</i>
772		<i>Biotechnol.</i> 37 , 937-944, doi:10.1038/s41587-019-0191-2 (2019).
773	47	Wu, YW., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning
774	.,	algorithm to recover genomes from multiple metagenomic datasets. <i>Bioinformatics</i>
775		32 , 605-607 (2016).
776	48	Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately
777	10	reconstructing single genomes from complex microbial communities. <i>PeerJ</i> 3 , e1165,
778		doi:10.7717/peerj.1165 (2015).
779	49	Sieber, C. M. K. <i>et al.</i> Recovery of genomes from metagenomes via a dereplication,
780	15	aggregation and scoring strategy. <i>Nat. Microbiol.</i> 3 , 836-843, doi:10.1038/s41564-
781		018-0171-1 (2018).
782	50	Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
783	50	assessing the quality of microbial genomes recovered from isolates, single cells, and
784		metagenomes. <i>Genome Res.</i> 25 , 1043-1055, doi:10.1101/gr.186072.114 (2015).
785	51	Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate
786	51	genomic comparisons that enables improved genome recovery from metagenomes
787		through de-replication. <i>The ISME journal</i> 11 , 2864-2868 (2017).
, 07		


- 788 52 Zhang, H. *et al.* dbCAN2: a meta server for automated carbohydrate-active enzyme
 789 annotation. *Nucleic Acids Res.* 46, W95-W101 (2018).
- Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence
 similarity searching. *Nucleic acids research* 39, W29-W37 (2011).
- 79254Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using793DIAMOND. Nature methods 12, 59-60 (2015).
- 55 Busk, P. K., Pilgaard, B., Lezyk, M. J., Meyer, A. S. & Lange, L. Homology to peptide
 pattern for annotation of carbohydrate-active enzymes and prediction of function. *BMC bioinformatics* 18, 214 (2017).
- 797



-5

-4

-3

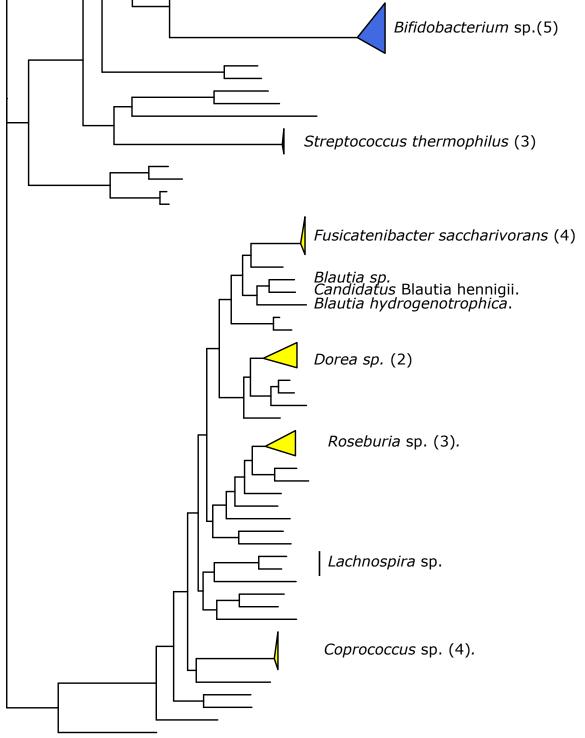
-2

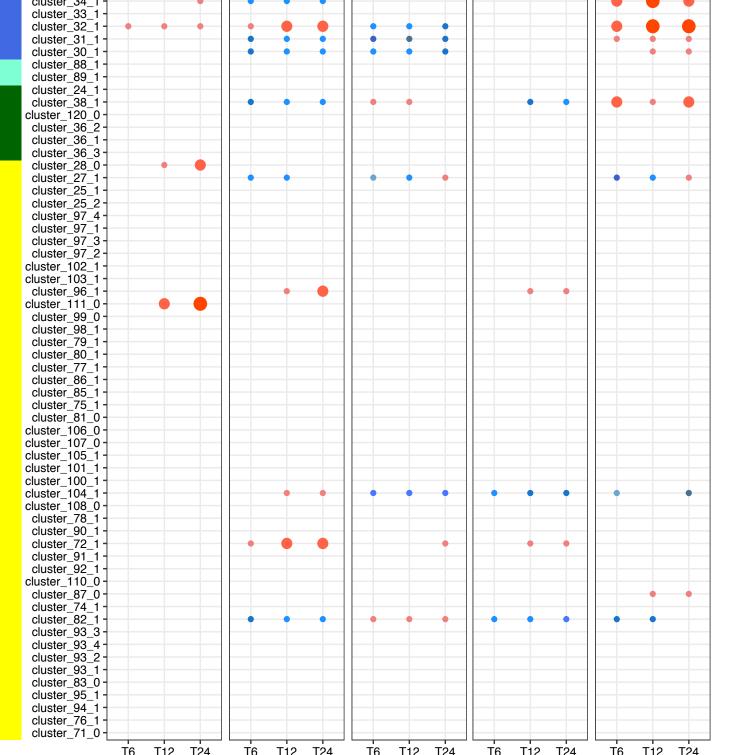
1

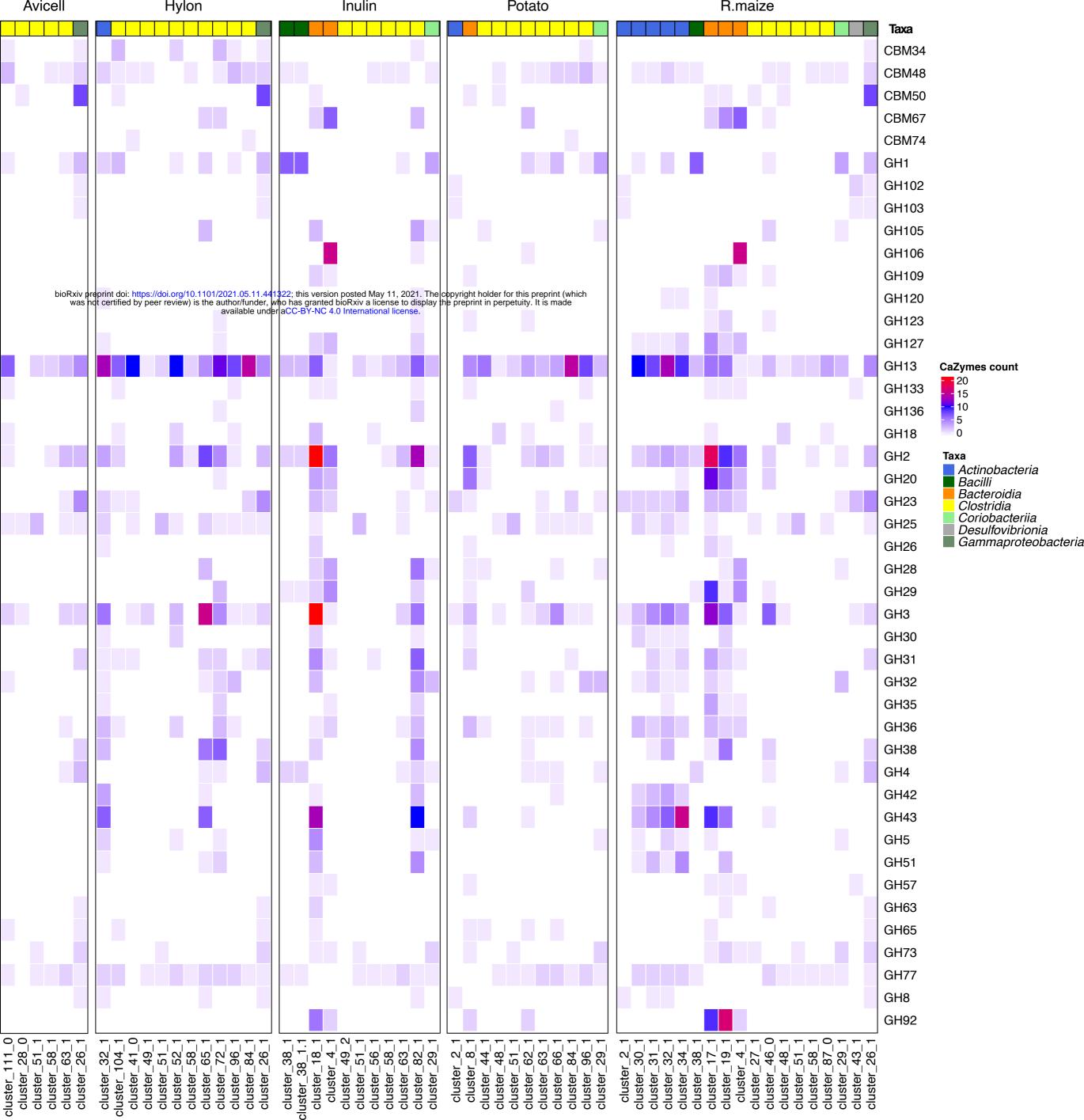
2

3

4


5


6


-1

pstarch

rmaize

