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Abstract 

Background: The relationship between systemic metabolism, immune function, and lung 

cancer is complex and remains poorly defined. Seemingly paradoxically, overweight 

and obesity confer an improved response to immune checkpoint inhibition in non-small 

cell lung cancer (NSCLC); however, it is not known whether excess body weight or 

adiposity impacts the immunometabolic tumor microenvironment.  

Methods: Utilizing three complementary National Cancer Institute-funded open-source 

databases containing 18F-fluorodeoxyglucose positron-emission tomography/computed 

tomography (PET-CT) images for tumor and tissue glucose uptake, adipose tissue and 

skeletal muscle mass,  histology annotated with tumor infiltrating leukocytes, and tumor 

RNA sequencing, we performed a retrospective cross-sectional analysis to examine 

phenotypic, metabolic, and genomic intersections of adiposity and tumor immune-

metabolism in patients with lung adenocarcinoma (LUAD) versus squamous cell 

carcinoma (LUSC). 

Results: Our data reveal distinct immunometabolomic features of LUSC as compared to 

LUAD: visceral fat content was negatively correlated with both tumor glucose uptake 

and leukocyte infiltration. Subcutaneous and visceral adiposity conferred different 

effects on the tumor genetic landscapes in both tumor types. LUSC tumors showed 

greater gene expression pathways related to pyruvate, glucose, amino acid, and lipid 

metabolism, in addition to significantly greater 18F-FDG uptake compared with LUAD, 

suggesting deeper metabolic regulation within the LUSC tumor microenvironment. 

Conclusions: Several immunometabolomic characteristics of LUSC and LUAD differ, 

including tumor glucose uptake and the associated metabolic pathways in the tumor, as 
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well as the impact of visceral adiposity on tumor metabolism. These data may highlight 

opportunities to advance mechanistically targeted precision medicine approaches by 

better understanding the interplay between metabolic, immunologic, and genomic 

factors in lung cancer treatment. 

 

Introduction 

Lung cancer is one of the few tumor types that is not traditionally associated with 

metabolic dysregulation. Clinically, it has not been positively associated with excess 

body weight and obesity by the U.S. Centers for Disease Control1, and, interestingly, 

several reports have suggested that excess body weight may actually reduce the risk 

and slow the progression of lung cancer2–6, particularly in those treated with immune 

checkpoint inhibitors7,8. However, studies of how body composition and metabolism 

affect lung cancer outcomes have rarely differentiated between the subtypes of lung 

cancer, and even more rarely have differentiated between the subtypes of NSCLC. This 

knowledge gap limits the possibilities of developing metabolic strategies to combat lung 

cancer using a precision medicine approach. 

Tumor glucose uptake, most commonly measured by PET-CT with [18F]-

fluorodeoxyglucose (18F-FDG) in humans, has long been utilized as a marker of 

metabolic activity. Glucose taken up by tumors primarily fuels glycolytic metabolism, 

which produces glucose- and fructose-6-phosphate and, in turn, generates the cellular 

building blocks (nucleotides, macromolecules) needed for rapid cell division. Therefore, 

increased tumor glucose uptake is typically a poor prognostic marker. We recently 

demonstrated in an analysis of PET-CT images from TCIA that body mass index (BMI) 
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correlated negatively with the lean body mass-corrected maximum standard uptake 

value (SUVmax) in non-small cell lung cancer (NSCLC)11, consistent with the prior 

epidemiologic data. Yet, recent data in NSCLC has suggested that 18F-FDG does not 

correlate with glycolytic capacity per se, but more closely with proliferation index, 

begging both a deeper and a more comprehensive analysis of the metabolic pathways 

related to NSCLC nutrient metabolism12.  

However, when pursuing the question of how excess body weight may be 

protective in lung cancer, it is important to recall that while most of those who fall into 

the clinically defined overweight and obese categories do so because of excess body 

fat, this is not universally the case. For example, athletes are often in the overweight or 

obese categories as designated by body weight, despite having low body fat and good 

metabolic health. In addition, certain populations have healthy range BMIs with poor 

lean muscle mass and excess relative adiposity.  Consistent with this, previous 

analyses correlating anthropometric indices to visceral adipose tissue (VAT), a strong 

predictor of cardiometabolic risk, demonstrated that BMI did not correlate with VAT9,10. 

These data highlight the need to use markers of adiposity, rather than BMI, when 

examining how excess body weight affects cancer outcomes. To address this, we 

calculated skeletal muscle mass and visceral and subcutaneous abdominal adipose 

tissue from positron emission tomography-computed tomography (PET-CT) scans 

available in The Cancer Imaging Archive (TCIA). In addition, we measured tumor and 

tissue specific glucose uptake in the scans of the same patients to more 

comprehensively assess the metabolic activity of their tumors.  
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To assess elevated genes and biological activity with more granularity, we chose 

to extend our analyses to include RNA-sequencing and quantitation of tumor infiltrating 

leukocytes to obtain a deeper understanding of how body composition and tumor 

glucose uptake may influence the immunometabolic tumor microenvironment. In light of 

recent evidence that glucose uptake as detected on PET may reflect immune cell 

metabolism rather than tumor cells13, we examined tumor infiltrating leukocytes 

identified by caMicroscope and validated by pathologists in the tumors of patients with 

available PET/CT image data. In addition, RNA-sequencing has proven to reveal 

metabolic vulnerabilities through transcriptomic analyses of the tumor 

microenvironment14, so we employed TCGA analyses to gain a deeper understanding of 

the metabolic transcriptomic tumor landscape.  

A unique aspect of the current study is the comparison between the two most 

common non-small cell lung cancer lung cancer types, LUAD and LUSC, which 

comprises 85% of all lung cancer cases. A recent analysis of data from more than 

37,000 lung cancer patients found differences in demographics and in outcomes: LUSC 

patients tend to be older, more likely male, and more likely smokers15. Furthermore, 

first-line treatment protocols of these subtypes differ, and results regarding relative 

survival rates between these NSCLC subtypes vary, with improved survival in LUSC16–

19 and LUAD15,20–23 having been reported. Further, recent genomic analyses suggest 

differences in immunogenicity between LUSC and LUAD.24  

In this study, we employed a multimodal approach to understand how body 

composition, metabolism, and immune function intersects with tumor glucose uptake, 

and tumor genomics in NSCLC. We anticipate that these results could inform new 
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precision medicine approaches to understand how body composition may alter tumor 

genomics and metabolism in lung cancer. 

 

Methods 

Utilizing three complementary National Cancer Institute-funded open-source databases, 

The Cancer Imaging Archive (TCIA), The Cancer Genome Atlas (TCGA), and the 

Quantitative Imaging in Pathology (QuIP) with caMicroscope25,26, we performed a 

retrospective cross-sectional analysis to examine phenotypic, metabolic, and genomic 

intersections of adiposity and tumor metabolism in NSCLC. All patients with an 18F-FDG 

PET/CT scan available from TCIA were studied, and RNA-sequencing and histology 

was obtained for all subjects for whom this data was available. All subjects provided 

informed consent in accordance with each site’s institutional review board. Eighteen 

patients with lung adenocarcinoma and seventeen patients with squamous-cell 

carcinoma, both located in the bronchus and lungs were included.  

18F-FDG PET/ CT Analysis 

PET/CT images of TCGA-LUSC27 and TCGA-LUAD28 were accessed and downloaded 

via the TCIA Portal. One full-body CT and 2 PET images (1 attenuation corrected and 1 

nonattenuation corrected-when available) were uploaded to the Image J platform using 

and open-source plug-in PET-CT Viewer, then co-registered and reconstructed.29 “Any” 

parameter to select any voxels meeting tissue density criteria of the PET-CT was used 

as described.11,30,31  

SUVmax and SUVmean were obtained for tumor and normal tissues including 

brain, heart, liver, subcutaneous white adipose tissue (WAT), and skeletal muscle 
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(deltoid). Tumor SUVmax was corrected to background 18F-FDG in the blood, and a 

tumor-to-descending aorta calculation was made for tumor SUV.  

Volume of visceral, subcutaneous, and total adipose tissue was obtained with 

two consecutive CT slices between the L3 and L4 vertebrae with a -190 to -30 

Hounsfield Unit cutoff.31,32 Skeletal muscle volume was obtained on the same slices by 

drawing regions of interest around all major abdominal muscles with a -29 to 50 

Hounsfield Unit cutoff.32 

RNA-seq Expression Analyses 

Differential expression analysis between LUAD and LUSC was conducted using 

processed data from XenaBrowser (https://xenabrowser.net; dataset: gene expression 

RNAseq – IlluminaHiSeq, dataset ID: TCGA.LUAD/LUSC.sampleMap/HiSeqV2, unit: 

log2(norm_count+1)).33 This public TCGA expression data was used to identify genes 

differentially expressed between high VAT subgroups in LUAD vs LUSC as well as high 

SubC groups in LUAD vs LUSC (P < 0.001; median VAT/SubC split). For TGFB 

pathway expression analysis, each gene of the 

‘KEGG_TGF_BETA_SIGNALING_PATHWAY’ gene set (https://www.gsea-

msigdb.org/gsea/msigdb/cards/KEGG_TGF_BETA_SIGNALING_PATHWAY)  was 

used to assess the correlation using the scipy.stats python package. KEGG Gene Sets 

and GO Processes barplots presented were obtained using Enrichr 

(https://maayanlab.cloud/Enrichr/) using DEGs in LUAD vs LUSC.34 Gene sets shown 

are all significantly differentially enriched between groups (Adj. p <0.05). Expression 

heatmaps were generated using the ComplexHeatmap package in R.35 

Tumor Infiltrating Leukocyte Analyses 
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Tumor infiltrating leukocyte data was obtained from a convolutional neural network 

(CNN) applied to identify patches of cell subtypes, and were confirmed by a pathologist 

for accuracy.36 In brief, over 5,000 histological images from the TCGA database were 

computationally stained, and the CNN was trained with pathologist categorization of 

extracted patches. Features were extracted and proportions of individual cell types were 

quantified from the CNN analyses. In this analysis, fraction of the tumor that was TILs, 

and the subtype of cells were selected for comparisons among these studies.  

Statistics 

In all comparisons between two groups, a student’s t test was performed to compare 

differences in means. Pearson r’s were calculated to examine relationships between 

two groups in GraphPad Prism Version 9.1. Two-tailed P values were computed. 

REMARK reporting guidelines were used where applicable.37 Statistical significance 

was determined as P values less than 0.05. 

 

Results 

Patient characteristics 

We took a multi-modal approach to understand immunometabolomic interactions in 

LUSC and LUAD, analyzing datasets available in the National Cancer Institute-

supported TCIA and TCGA databases. CT-defined visceral and subcutaneous adipose 

tissue and tissue-specific glucose uptake by 18FDG-PET, tumor RNA sequencing, and 

histological assessment of tumor-infiltrating leukocyte counts and subtypes were 

assessed (Figure 1). Comparing the two tumor types, patients were matched for age, 

weight, sex, race, and tumor stage (Supplemental Table 1), although subjects were 
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limited to 17 and 18 per tumor type due to the limited numbers of patients for whom 

each of the aforementioned data sets were available in the TCIA and TCGA databases. 

Visceral and subcutaneous adiposity differentially affect tumor gene expression in 

NSCLC 

We quantified visceral (VAT) and subcutaneous (SubQ) adipose tissue volume by PET-

CT and found it to be unchanged between subjects with LUAD and LUSC tumors 

(Figure 2A-B), as in line with the identical body weight between patients with the two 

tumor types. Skeletal muscle volume was similarly unchanged between the tumor types 

(Figure 2C-D). However, high versus low (median split) adipose tissue mass was 

correlated with differences in gene expression in NSCLC tumors: VAT mass was 

associated with differences in expression of several Kyoto Encyclopedia of Genes and 

Genomes (KEGG) metabolic pathways involved in glucose, amino acid, and fatty acid 

metabolism, whereas Gene Ontology (GO) analysis revealed that pathways involved in 

neutrophil activation and function were differentially affected by VAT volume (Figure 

2E). While KEGG pathway analysis painted a less clear picture of the physiologic 

relevance of the pathways enriched in association with SubQ adipose tissue volume, 

GO analysis again demonstrated differential expression of genes involved in neutrophil 

function and angiogenesis (Figure 2F).  

 

The quantity and location of adipose tissue predicts differential gene expression 

patterns between LUAD and LUSC   

Utilizing the TCIA database, we quantified tumor glucose uptake using 18F-FDG PET-

CT and found that the maximum standardized uptake value (SUVmax) normalized to 
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SUV in the descending aorta was higher in LUSC than in LUAD (p<0.0001) (Figure 3A-

C), despite unchanged body weight, stage, or adipose tissue or muscle volume. 

Consistent with a tumor-specific effect rather than a systemic effect to promote 

increased glucose uptake, no differences were observed in 18F-FDG uptake in non-

tumor tissues including heart, liver, skeletal muscle (deltoid) adipose tissue (SubQ 

abdominal) and brain (Figure 3D). Having observed differences in glucose uptake 

without overall alterations in body composition between LUSC and LUAD, we aimed to 

determine whether body composition correlated with tumor glucose uptake within each 

tumor type. While VAT volume correlated positively with tumor glucose uptake in LUAD 

(p=0.0398), we observed a relatively inverse correlation between the proportion of 

abdominal fat at L3 that was located in the visceral (as opposed to subcutaneous) 

compartment in LUSC (p=0.07) (Figure 3E-F). In contrast, tumor glucose uptake did not 

correlate with SubQ adipose tissue volume in either tumor type (Figure 3G). 

 

Next, we performed differential gene expression analysis on the tumors from NSCLC 

patients with high versus low tumor glucose uptake. This analysis revealed numerous 

differentially expressed KEGG metabolic pathways including pyruvate, glucose, amino 

acid, and fatty acid metabolism, as well as GO biological processes including 

angiogenesis and insulin signaling processes in LUSC (Figure 3H). In contrast, LUAD 

gene expression showed a less clear association between tumor glucose uptake and 

metabolic gene expression, while expression of genes in angiogenesis GO pathways 

did correlate with tumor glucose uptake in LUAD (Figure 3I). 
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Tumor infiltrating leukocytes correlate with tumor glucose uptake in both NSCLC tumor 

types 

The TCGA database provides unique access to data on tumor infiltrating leukocyte (TIL) 

density and cell type.36 Although we did not observe any differences in TIL number or 

subtype, not surprisingly, we observed a negative correlation between TIL fraction and 

tumor glucose uptake in both LUAD (p=0.017) and a trend towards an association in 

LUSC (p=0.16) (Figure 4A-E), consistent with a tumor-suppressive effect of TIL 

infiltration. Further, there was a trend towards a negative correlation between TIL 

content and VAT content in the LUSC cohort (p=0.08).  

 

TGF-β2 expression correlates differentially with visceral fat in LUSC and LUAD 

Transforming Growth Factor-β (TGF-β) was identified to be previously implicated in 

excess adiposity38,39, immune function40, and cancer progression41. To examine 

possible biological mediators of the visceral adiposity’s influence on the tumor 

microenvironment, we performed correlational analyses between enriched genes and 

visceral adipose tissue content. Of all genes in the KEGG TGF-β pathway, TGF-β2 was 

most significantly related to VAT in LUSC. We observed differential correlations 

between TGF-β2 expression and VAT in the two tumor types: visceral fat volume was 

positively correlated with tumor TGF-β2 expression (p=0.0006) in LUSC, but unrelated 

to tumor TGF-β2 expression in LUAD (Supplemental Figure 1). These data suggest 

that the impact of systemic metabolism on tumor TGF-β2 signaling deserves further 

attention in NSCLC, and highlights the importance of differentiating between NSCLC 

tumor types when investigating the impact of this pathway in lung cancer.   
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Discussion 

The relationship between systemic metabolism and subtypes of lung cancer is 

undoubtedly complicated. Although it is clear that increased tumor SUVmax predicts 

poor outcomes in lung cancer42–45, how systemic metabolism and, specifically, adiposity 

affects tumor glucose metabolism remains unclear. It appears that overweight and 

obesity improve the response to immunotherapy in lung cancer7,8; however, it is not 

known whether obesity confers improvements in prognosis in all types of lung cancer, or 

if this effect is tumor type-specific. In addition, the use of the commonly used and 

clinically accessible parameter BMI to predict cancer outcomes has come under 

scrutiny. This is in part because while BMI is tightly correlated with body fat at the 

population level, it is a poor predictor of adipose tissue mass at the individual level46,47. 

Total body fat mass is a better predictor of cardiometabolic health47–50 and cancer 

risk51,52 than BMI. As subcutaneous adipose tissue is generally considered metabolically 

inert and far less of a cardiometabolic risk factor than visceral and ectopic adipose 

tissue53–55, both the quantity and the location of adipose tissue may be predictive of 

cancer outcome. Consistent with a tumor type-dependent effect of systemic metabolism 

to modulate lung cancer initiation and/or progression, patients with non-alcoholic fatty 

liver disease (i.e. increased ectopic lipid content) were more likely to have non-

squamous cell carcinoma56. 

 

Therefore, in this study, we performed a multi-modal analysis of the relationship 

between body composition, tumor glucose uptake, immune cell infiltration and subtypes, 
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and tumor genomic in the two major subtypes of NSCLC, LUAD and LUSC. 

Surprisingly, we identified opposite correlations between visceral adipose tissue volume 

and tumor glucose uptake in the two tumor types: VAT correlated positively with 

SUVmax in LUAD and strongly tended to correlate negatively with SUVmax in LUSC 

(Figure 3E-F). These data are consistent with a recent meta-analysis demonstrating 

that insulin signaling and fatty acid metabolism pathways, which tend to be 

downregulated in obesity, are enriched in LUSC but unchanged in LUAD57, suggesting 

a protective effect of obesity acting through these pathways in LUSC. This is consistent 

with both epidemiologic data7,8 and with our recent PET-CT analysis11.  

 

Both the SUVmax and RNA expression data obtained in this study are consistent with a 

greater influence of metabolism on tumor progression in LUSC as compared to LUAD. 

Despite unchanged tumor stage, adiposity, and non-tumor tissue glucose uptake, tumor 

SUVmax in LUSC was twice that of LUAD. Differentially expressed KEGG pathways in 

tumors of LUSC patients with high versus low tumor glucose uptake were enriched for 

metabolic pathways, including glucose, pyruvate, fatty acid, and amino acid metabolism, 

whereas LUAD KEGG analysis provided a less compelling argument for a critical role of 

regulation of tumor metabolism (Figure 3H-I). These data hint that metabolic adjunct 

approaches may be more likely to be effective in LUSC as compared to LUAD, and 

should consider the fact that glucose is likely not the only substrate that contributes to 

tumor progression in these tumor types. 
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As NSCLC can be a highly immunogenic tumor type responsive to immunotherapy, it is 

important to consider how systemic metabolism and body composition may intersect 

with tumor immune cell infiltration. The fraction of immune cell subtypes may correlate 

with tumor stage in NSCLC: Zhang et al. demonstrated decreases in the fraction of M0 

macrophages and memory B cells in advanced stage as compared to early stage 

LUAD, but no difference in the fraction of immune cell subtypes in advanced stage as 

compared to early stage LUSC58. In the current study, increased TILs correlated with 

lower glucose uptake, predicting improved prognosis, but neither TIL number nor 

subtype differed between LUSC and LUAD. These data suggest that tumor leukocyte 

infiltration is a metabolism-independent predictor of prognosis in NSCLC, and may posit 

that the immune cell fraction of a tumor is not the dominant glucose consumer in LUAD, 

and possibly LUSC. 

 

However, although there was no clear association of TILs themselves with NSCLC 

subtype, this should not be taken as an indication that proteins downstream of TILs may 

not be associated with systemic metabolism or body composition in a tumor type-

specific manner. Interestingly, we observed a positive relationship between visceral fat 

volume and Tgfb2 gene expression in LUSC, but no relationship in LUAD 

(Supplemental Figure 1). TGF-β2 is a cytokine that is produced by a variety of cell 

types, including lymphocytes, monocytes/macrophages, and many parenchymal cells, 

and it appears to play a complicated role in cancer: in early stages, it limits cell division 

by inhibiting cell cycle progression via inhibition of cyclin expression59; however, in late 

stages, when mechanisms of cell cycle regulation have already been overcome, it 
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promotes induction of the epithelial to mesenchymal transition60, thereby enhancing cell 

migration and metastasis. However, because in our study there was no difference in 

tumor stage between subjects with LUAD and LUSC, the differing relationship between 

VAT and Tgfb2 expression cannot be attributable to discrepancies in tumor stage. 

However, these results raise the intriguing possibility that TGF-β2 may be a 

metabolism-responsive biomarker which may have differential implications for prognosis 

in LUAD and LUSC. In addition, TGF inhibitors have been used clinically, and it should 

be further examined whether TGF-β2 inhibition could play a role in tumor suppression in 

LUSC patients with visceral adiposity.  

 

In summary, here we performed a comprehensive analysis of the impact of body 

composition on human tumor glucose metabolism, transcriptomic landscape, and 

immune cell infiltration and subtypes using the publicly available NCI-supported TCIA 

and TCGA databases. Subcutaneous and visceral fat content is differentially related to 

the tumor metabolic landscape in LUAD vs. LUSC tumor types. In addition to having 

higher tumor glucose uptake, the LUSC cohort had a much greater enrichment of 

metabolic genes, suggesting that nutrient metabolism (not only glucose, but fatty acids 

and amino acids as well) plays a dominant role in the progression of LUSC, and to a 

lesser degree in LUAD. Further, our clinical data suggest that higher TILs did not have a 

positive association with tumor glucose uptake in either NSCLC subtype, in contrast to 

findings from recent animal model data.13 In this study, we ultimately provide insight into 

the differential immunometabolic physiology in LUAD and LUSC tumor types, and 
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suggest that adjunctive metabolic cancer therapy may be a more promising approach in 

LUSC.  
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Figure Legends 

Figure 1. Overview of multimodal approach to immunometabolic phenotyping of Non-

Small Cell Lung Cancer. 18F-FDG PET/CT images were analyzed to quantify visceral 

and subcutaneous adipose tissue and tissue specific glucose uptake. Within the tumors 

of NSCLC patients, we analyzed tumor infiltrating leukocyte profiles and RNA 

sequencing data all within the same cohort of patients. Data obtained from the TCGA 

and TCIA. 

Figure 2. Visceral and subcutaneous adiposity differentially affect tumor gene 

expression in NSCLC. (A and B) visceral and subcutaneous adipose tissue was 

quantified from CT scans from the L3-L4 vertebral level in all patients. (C and D) 

abdominal skeletal muscle volume was quantified as the sum of five muscle groups at 

the L3-L4 vertebral level in all patients. Differential gene expression analyses with 

associated KEGG and GO processes for significantly differentially expressed (p<0.05) 

pathways was performed between LUAD and LUSC cohorts based on being in the top 

half of (E) VAT volume and (F) SubQ volume.  

Figure 3. Tumor glucose uptake and metabolic genes within the tumor differ between 

LUAD and LUSC. (A) representative maximal intensity projection and (B) coronal 

PET/CT slice identifying the lung tumor. Tumor glucose uptake was quantified as a 

tumor to background ratio (C) and as SUVmax in healthy tissues (D). Correlation 

analyses between tumor glucose uptake and (E) absolute visceral adipose tissue 

volume, (F) proportion of adipose tissue volume that is visceral, and (G), absolute 

subcutaneous adipose tissue volume. Differential gene expression analyses with 

associated KEGG and GO processes for significantly differentially expressed (p<0.05) 
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pathways was performed in (H) LUSC and (I) LUAD based on a median split within 

each cohort of ranked tumor glucose uptake values.  

Figure 4. Tumor infiltrating leukocytes are negatively correlated with tumor glucose 

uptake and visceral fat content in LUSC and LUAD. A representative histological tumor 

slice with (A) H&E only, or (B) clusters identifying different immune cell populations 

within the tumor slide. (C) the subtyping of the tumor infiltrating leukocytes (TILs) in 

LUAD and LUSC tumors. (D) proportion of tumor cells that were identified as TILs in 

both cohorts. Correlation analyses between TIL fraction and (E) tumor glucose uptake 

and (F) visceral adipose tissue volume.  

Supplemental Figure 1. TGFB2 is positively correlated with VAT in LUSC but not 

LUAD. Correlations were performed between visceral fat volume and TGFB2 mRNA 

expression in the tumor of (A) LUSC and (B) LUAD.  

Supplemental Table 1. Patient demographics for LUAD and LUSC cohorts. N/A 

indicates that the data were not available.   
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