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Abstract

A goal of single cell genome-wide profiling is to reconstruct dynamic transitions during cell
differentiation, disease onset, and drug response. Single cell assays have recently been
integrated with lineage tracing, a set of methods that identify cells of common ancestry to
establish bona fide dynamic relationships between cell states. These integrated methods have
revealed unappreciated cell dynamics, but their analysis faces recurrent challenges arising
from noisy, dispersed lineage data.  Here, we develop coherent, sparse optimization (CoSpar)
as a robust computational approach to infer cell dynamics from single-cell genomics
integrated with lineage tracing. CoSpar is robust to severe down-sampling and dispersion of
lineage data, which enables simpler, lower-cost experimental designs and requires less
calibration. In datasets representing hematopoiesis, reprogramming, and directed
differentiation, CoSpar identifies fate biases not previously detected, predicting transcription
factors and receptors implicated in fate choice. Documentation and detailed examples for
common experimental designs are available at https://cospar.readthedocs.io/.

Introduction

In tissue development, regeneration, and disease, cells differentiate into distinct, reproducible
phenotypes. A ubiquitous challenge in studying these processes is to order events occurring
during differentiation1–3, and to identify events that drive cells towards one phenotype or
another. This challenge is common to understanding mechanisms in embryo development,
stem cell self-renewal, cancer cell drug resistance, and tissue metaplasia1–3.

At least two observational strategies help to order cellular events. Single-cell genome-wide
profiling – such as by single-cell RNA sequencing (scRNA-seq) – offers a universal and
scalable approach to observing dynamic states by densely sampling cells at different
stages3–10. However, scRNA-seq alone does not identify which early differences between cells
drive or correlate with fate2,11–13. Conversely, lineage tracing offers a complementary family of
methods that can clarify long-term dynamic relationships across multiple cell cycles. To carry
out lineage tracing, individual cells are labeled at an early time point1–3. The state of their
clonal progeny is analyzed at one or more later time points (Fig. 1a).
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Recently, a number of efforts from us and others have integrated lineage-tracing with
single-cell genome-wide profiling (hereafter LT-scSeq) using unique, heritable, and expressed
DNA barcodes2,13–21. These technologies identify cells that share a common ancestor and
define their genomic state in an unbiased manner. LT-scSeq experiments have been used to
successfully identify when fate decisions occur13,14, novel markers for stem cells16, and
pathways which control cell fate choice14,16. The simplest of these methods labels cells at one
time point13 (Fig. 1b); more complex methods allow the accumulation of barcodes over
successive cell divisions to reveal the substructure of clones2,13–21 (Fig. 1c).

Emerging LT-scSeq methods have been successful at revealing novel regulators of cell
fate14,16 and the fate potential of early progenitors13,14, but they also present challenges that
may limit their utility in practice. We identified at least five technical and biological challenges
that affect experimental design and interpretation (Fig. 1f). These include stochastic
differentiation and variable expansion of clones22 (Fig. 1f-i), cell loss during analysis (Fig. 1f-ii),
barcode homoplasy wherein cells acquire the same barcode despite not having a lineage
relationship2 (Fig. 1f-iii), access to clones only at a single time point23,24 (Fig. 1f-iv), and clonal
dispersion due to a lag time between labeling cells and the first sampling (Fig. 1f-v).
Addressing these problems should greatly simplify the design and interpretation of LT-scSeq
assays and put them in the hands of a wider research community. To our knowledge, there is
not yet an analysis method that systematically overcomes these problems.

Here, we develop a robust and generalizable computational approach to analyze LT-scSeq
experiments. We begin with a model of clonal dynamics in which cells divide, differentiate, or
are lost from the sampled tissue in a stochastic manner, with rates that are state-dependent
(Supplementary Fig. 1a). We use this model to learn from the data the fraction of progeny of
cells, initially in one state, which are found to occupy a second state after some time interval
(Fig. 1d, Supplementary Fig. 1b,c). Our approach captures differentiation bias and fate
hierarchies, and can reveal genes whose early expression is predictive of future fate choice.

Results
Dynamic inference from clonal data with state information.
A formalization of dynamic inference is to identify a transition map, a matrix 7,25. We𝑇
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division, loss, and differentiation (Supplementary Fig. 1d). As will be seen, even learning
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We make two reasonable assumptions about the nature of biological dynamics to constrain
inference of the transition map. We assume the map to be a sparse matrix, since most cells
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can access just a few states during an experiment (Fig. 1e, left panel). And we assume the
map to be locally coherent, meaning that cells in similar states should share similar fate
outcomes (Fig. 1e, right panel). These constraints together force transition maps to be
parsimonious and smooth, which makes them robust to practical sources of noise in
LT-scSeq experiments (Supplementary Fig. 1e). Box 1 formalizes the two constraints and lays
out the technical foundation for inferring a transition map by coherent sparse (CoSpar)
optimization (see schema in Fig. 2a; Supplementary Fig. 2). As inputs, CoSpar requires a
clone-by-cell matrix that encodes the clonal information at time , and a data matrix for𝐼 𝑡( ) 𝑡
observed cell states (e.g. from scRNA-seq).

CoSpar is formulated assuming that we have information on the same clones at more than
one time point. More often, one might observe clones at only one time point . For these𝑡

2
cases CoSpar jointly optimizes the transition map and the initial clonal data (Fig. 2b;𝑇 𝐼(𝑡

1
)

Methods). In this joint optimization, one must initialize the transition map; we have shown that
the final result is robust to initialization (Supplementary Fig. 3e; Supplementary Fig. 4c,d). This
approach can be used for clones with nested structure (Supplementary Fig. 4f-h). Finally,
coherence and sparsity provide reasonable constraints to the common problem of predicting
dynamics from state heterogeneity alone without lineage data7. We extended CoSpar to this
case. Thus, CoSpar is flexible to different experimental designs, as summarized in Fig. 1d.

Box 1: Coherent Sparse Optimization
In a model of stochastic differentiation, cells in a clone are distributed across states with a
time-dependent density profile . A transition map directly links clonal density profiles𝑃 𝑡( ) 𝑇
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From multiple clonal observations, our goal is to learn T. To do so, we denote as a𝐼 𝑡( )
clone-by-cell matrix and introduce S as a matrix of cell-cell similarity over all observed cell
states, including those lacking clonal information. The density profiles of all observed clones
are estimated as 𝑃 𝑡( ) ≈ 𝐼(𝑡)𝑆(𝑡).

With enough clonal information could in principle be learnt by matrix inversion.,  𝑇(𝑡
1
, 𝑡

2
)

However, the number of clones will always be far less than the number of states. To constrain
the map, we require that: 1) is a sparse matrix (Fig. 1e, left panel); 2) is locally coherent𝑇 𝑇
(Fig. 1e, right panel); and 3) is a non-negative matrix. With these requirements, the inference𝑇
can be formulated as the following optimization problem:
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quantifies the sparsity of the matrix through its L1 norm, and quantifies the local‖𝑇‖
1

𝑇 ‖𝐿𝑇‖
2

coherence of ( being the Graph Laplacian of the cell state similarity graph, and being𝑇 𝐿 𝐿𝑇
the local divergence). The remaining constraints enforce the observed clonal dynamics,
non-negativity of , and map normalization, respectively. At , the minimization takes𝑇 α = 0
the form of Lasso26, an algorithm for compressed sensing. Our formulation extends
compressed sensing from vectors to matrices, and to enforce local coherence. The local
coherence extension is reminiscent of the fused Lasso problem27. An iterative, heuristic
approach solves the CoSpar optimization efficiently (Fig. 2a; Supplementary Fig. 2). See
Methods and Supplementary Notes 1-3 for further details.

Computer simulations validate that CoSpar recovers dynamics with quantitative accuracy,
and they establish that CoSpar inference is robust to two errors typical of LT-scSeq --
barcode homoplasy and clonal dispersion. We modeled cells progressing through a sequence
of gene expression states either towards a single fate (Fig. 3a) or bifurcating into two fates
(Fig. 3e), with clones sampled in a manner representative of LT-scSeq experiments13,14. With
1000 clones – typical of real experiments – mean transition rates inferred by CoSpar were
within 3 standard deviations of the actual transition rate 98% of the time (TPR>98%, Fig. 3d)
and the distribution of progeny fates showed 85% Pearson correlation to ground truth (Fig.
3j). Inferences remained similarly accurate with as few as 30 clones (Fig. 3d). CoSpar was
robust to barcode homoplasy, and only detectably lost accuracy when all lineage barcodes
mixed more than ten clones on average (Fig. 3a-d). This degree of homoplasy is far higher
than expected in most experiments. Further, CoSpar was robust to clonal dispersion,
simulated by sampling clones at increasing times post-barcoding (Fig. 3f-i). Conversely,
approaches used in previous work, which average the transitions between cells observed in
each clone at different time points13, are severely affected by both lag time and barcode
homoplasy (Fig. 3d,g,i).

CoSpar predicts early fate bias in hematopoiesis.
We applied CoSpar to published datasets from three independent experiments. The first
experiment tracked hematopoietic progenitor cells (HPCs) differentiating in culture, with
clones sampled on days 2, 4 and 6 post-barcoding (Fig. 4a,b)13.  During this time, cells
progressed from a heterogeneous pool of HPC states into ten identifiable differentiated cell
types. We used all clonal data to generate a ground truth for the early fate bias towards either
the monocyte or neutrophil fate, using the method from Weinreb et.al.13 (Fig. 4c).

As a baseline for comparison, we applied CoSpar to predict HPC fate bias using state
information alone (Fig. 4e). For this and further comparisons, we report the accuracy of fate
prediction using Pearson correlation of predicted fate bias with that observed using all clonal
data (‘ground truth’). Even without access to any clonal data, CoSpar could resolve early fate
bias at a performance close to the upper bound defined by cross-validation of the
ground-truth data (CoSpar correlation R=0.69; ground-truth R=0.72) (Fig. 4e,g;
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Supplementary Fig. 6a). This performance reflects improvements from enforcing coherence
and sparsity (R=0.51-0.54 prior to CoSpar; Fig. 4d; Supplementary Fig. 3f). However, the
prediction based on state information alone is limited because it is sensitive to the choice of
distance metric used in analysis (Fig. 4g; Supplementary Fig. 3e).

Clonal information eliminated the sensitivity to distance metric. To show this, we applied
CoSpar to data restricted in time, or restricted in its quality and depth. Using even a single
time point of clonal data (day 6), CoSpar recovered early fate bias (Fig. 4f; R=0.68), and it did
so robustly over a range of parameters and choices of distance metrics (Fig. 4g;
Supplementary Fig. 3e). Further, it recovered the differentiation hierarchy seen in the
correlation of clonal barcodes across all cell types (Supplementary Fig. 3c,d).  When using a
sub-sampled dataset from the top 15% most dispersed clones as ranked by day 4 intra-clone
distance (Fig. 4b), CoSpar performed similarly well, and outperformed the method from
Weinreb et al., which was used to analyze this data originally13 (Fig. 4h,i; Supplementary Fig.
3a,b). Thus, CoSpar successfully facilitates analysis of clones at a single time point, or using a
fraction of the original data collected in this example.

These benchmarks suggest that CoSpar should be able to predict fate biases not previously
recognized. We investigated fate biases in the Gata1+ states that give rise to five mature fates:
megakaryocyte (Mk), erythrocyte (Er), mast cell (Ma), basophil (Ba), and eosinophil (Eos) (Fig.
4a,k). In culture, Mk and Er arise from a common progenitor (MEP), and Ba, Eos and Ma are
produced by a different progenitor (BEMP)30,31. Existing studies of these progenitors are
hampered by the lack of good markers. While molecular signatures of FACS-sorted MEP have
been explored recently32, less is known about the transcriptomic identity of BEMPs. This
dataset provides an opportunity to predict the molecular identity of these early progenitors.
The original method used to analyze this data finds very few genes distinguishing BEMPs and
MEPs (Supplementary Fig. 3g-i). Applying CoSpar, we predict an early fate decision boundary
between MEP and BEMPs (Fig. 4j,k), which correlates with the early expression of genes later
associated with the resulting cell types (Slc14a1 for Mk32, Thy1 for Ba33; Fig. 4l), and with the
transcription factor (TF) Cebpa that regulates Eos and Ba differentiation30. We identified 377
known and novel putative fate-associated genes (Fig. 4m; Supplementary Table 1).
Differences between the putative BEMPs and MEPs are evident in scRNA-seq data, and
clonal data integrated by CoSpar supports that the differences are associated with functional
fate bias. This analysis highlights that CoSpar can identify fate-predictive genes from limited
LT-scSeq data.

CoSpar reveals early fate bias in reprogramming.
The second experiment we analyzed tracked cells during the reprogramming of fibroblast cells
over 28 days into endodermal progenitors (Fig. 5a)14. In this experiment, approximately 30%
of cells successfully reprogrammed; the remainder failed. Clonal analysis with cumulative
barcoding was used to identify these cells early and predicted features that regulate their fate
(Fig. 5b,c). We used clones strongly enriched in one of the two fates, identified by the original
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study, to generate the ground truth for early fate bias, and we then used it to benchmark
CoSpar.

To evaluate CoSpar, we revisited this experiment after discarding over 90% of clones, and we
specifically retained clones that show the least bias in reprogramming outcomes. Despite
deliberately using down-sampled low-quality data, CoSpar recapitulated fate bias: the
predicted progenitors of reprogrammed and failed cells share 73 out of 100 marker genes with
the ground truth population (Fig. 5f), including genes previously showing strong positive and
negative association with reprogramming success (Apoa1, Spint2, Col1a2, Peg3), as well as
Mettl7a1, which was found to improve reprogramming14. These genes could be associated
with fate bias using as few as ten clones, even when deliberately selecting clones with
minimal fate bias (Fig. 5d,e; Supplementary Fig. 4b). By contrast, the analytical approach
used in the original study14 failed to identify fate-predictive gene expression after such severe
reduction in data quality (Fig. 5e,f; Supplementary Fig. 4b). Further, CoSpar performed
robustly when using only clonal data from the final time point of the experiment (Fig. 5g,h;
Supplementary Fig. 4c-e).

As in hematopoiesis, it is instructive to see the information encoded in clonal relationships.
When applying CoSpar without clonal data, we found that CoSpar could predict the same
early fate biases (Fig. 5g, Middle panel), but is again sensitive to the distance metric used (Fig.
5h). A different distance metric performs best here from the hematopoiesis dataset,
suggesting that there is no simple ‘best-practice’ approach to dynamic inference in the
absence of clonal data.

Finally, we applied CoSpar to predict fate bias at the earliest available time point after
reprogramming is initiated (day 3), where no clonal information is available and fate bias
remains unexplored14. Using clonal information, CoSpar predicts strong fate biases (Fig. 5i),
arguing that future reprogramming success is established very early on. This prediction is
supported by the differential expression of transgene FoxA1-HNF4a (a TF cocktail to induce
reprogramming), the reprogramming marker gene Apoa1, and failed trajectory marker Col1a2
and Dlk114 (Fig. 5j). We also identified multiple genes predicted to correlate with fate bias on
day 3 and whose significance in reprogramming has not been previously established (Fig. 5k;
Supplementary Table 2).

CoSpar predicts early fate bias during lung directed differentiation.
In the third experiment, human pluripotent stem cells were differentiated into distal lung
alveolar epithelial cells (induced alveolar epithelial type 2 cells, or iAEC2s)23,34. Here, clonal
and transcriptomic information were profiled jointly on day 27 after initial barcoding on day 17,
and a separate time-course experiment produced scRNA-seq data for 6 time points, including
days 17 and 21(Fig. 6a). In this study, Hurley et al. reported the existence of clones derived
from multipotent cells on day 17 but did not investigate their fate biases. A re-examination of
the clonal data, however, suggests strong fate biases as early as day 17. Out of the 272
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clones, 25% were enriched in either the iAEC2 or non-iAEC2 clusters (FDR=0.01), and clonal
compositions differed significantly from that of randomized clones (Fig. 6b). Accordingly,
clonal representation of iAEC2s anti-correlates with other fates (Supplementary Fig. 5b,c). We
investigated signatures that could predict effectors of fate bias among day 17 progenitors.

Applying CoSpar, we assigned a putative fate bias to each of the cells seen on day 17.
CoSpar predicts some cells to be strongly biased in cell fate (Fig. 6c), and also the existence
of unbiased multipotent states; these strongly overlap with highly proliferating cell states on
day 17 and are consistent with large clones hosting multiple endodermal lineages on day 27
(Supplementary Fig. 5d). As a control, we expected weaker fate biases earlier in
differentiation, which is confirmed by applying CoSpar to cells two days earlier (day 15,
Supplementary Fig. 5e-g). Among genes differentially expressed between the two biased
populations on day 17, we identified several established TFs that regulate lung differentiation:
CEBPD, NKX2-1, SOX9, SOX11 (Fig. 6d,e; Supplementary Table 3)23,35–37.

Discussion
Here we have developed a computational framework for systematically inferring dynamic
transitions by integrating state and clonal information. It extends the problem of compressed
sensing. Our method takes advantage of reasonable assumptions on the nature of biological
dynamics: that cells in similar states behave comparably, and that cells limit their possible
dynamics to give sparse transitions. Using published datasets, we demonstrated that
coherent sparse optimization relates molecular heterogeneity of cells to their future fate
outcomes in a manner that is robust to typical sources of experimental error (Fig. 1f), using as
little as 5-10% data originally collected in prior experiments. The computational methods
used in each original study to analyze clonal data were sensitive to clonal dispersion and to
down-sampling of data. CoSpar also successfully predicted early fate biases in these
datasets using only clonal information from the last time point. When clonal data was
removed entirely, results were sensitive to the choice of distance metric, and no single
approach optimally inferred fate bias across all data sets.

The robustness of CoSpar could greatly simplify the design of LT-scSeq experiments, by
enabling experiments with fewer cells, fewer clones, or fewer time points. In all three datasets
considered here, CoSpar reveals clear early fate boundaries that were not previously reported,
yet in agreement with the heterogeneity of key transcription factors and fate determinants. We
predicted novel transcription factors and markers in each case, and they could facilitate
enriching and manipulating the desired fate outcomes.

The examples we have analyzed specifically relate to LT-scSeq implemented using LARRY13,23

and CellTagging14, but CoSpar is not limited to these technologies. The state measurement
can be transcriptomic (via scRNA-seq or RNA fluorescence in situ hybridization (FISH)38), as
shown above, as well as proteomic and epigenomic; and lineage tracing can be achieved with
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static DNA barcodes13,23, endogenous mutations39, or exogenous DNA constructs that
accumulate mutations over time, like CRISPR-based editing2,17,18,40,41. CoSpar can thus
facilitate interpretation of the rapidly evolving field of LT-scSeq, and thus accelerate
exploration of development and disease.

CoSpar also has limitations, which directly follow from its central assumption. By enforcing
coherent fate choices between similar cells (Fig. 2a), CoSpar becomes sensitive to choices in
measuring cell-cell similarity, and to the degree of smoothing used in implementing the
algorithm (Supplementary Fig. 2c). Thus, CoSpar will fail to identify fate biases when
heterogeneity relevant to cell fate is not measured, or when it is filtered out during data
analysis, or due to over- or under-smoothing. In addition, when inferring progenitor bias from
clones observed at a single late time point, CoSpar necessarily leans more strongly on state
information, and it might fail when heterogeneity in the later population cannot be related to
heterogeneity in the initial population. Despite these caveats, CoSpar provided sensible
predictions in the cases examined here.

Coherent sparse optimization could prove useful for applications beyond dynamic inference.
Several problems require learning locally coherent maps from few and noisy measurements.
Such problems occur, for example, when integrating two sets of measurements in the same
system42,43 (batch correction and multi-omics), decoding spatial transcriptomes from
composite FISH measurements44, and inferring responses of a system to individual
perturbations from composite perturbation readouts45–47. Outside of biology, the association
of measurements in one modality with sparse measurements in another can occur in
marketing and social networks48. Forcing coherence and sparsity constraints could greatly
improve map inference in general, reducing the cost of data acquisition and enabling new
discoveries.
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Fig. 1. Integrative analysis of lineage tracing and transcriptome data. a, Lineage-tracing
single cell genomics (LT-scSeq) experiments simultaneously measure cell phenotypes and
clonal lineage (indicated by colors). b-c, LT-scSeq assays encode lineage information with
static DNA barcodes or cumulative barcoding. d, CoSpar unifies analysis of different
experimental designs to infer transition maps (see text) to reveal fate boundaries, lineage
hierarchy, putative markers, and putative fate-determinants. Here and below, the shaded gray
regions schematically show a manifold of observed single cell genomic states. e, Two key
assumptions constrain dynamic inference by CoSpar. f, Stereotypical challenges in clonal
analysis. Single labeled cells can give rise to clones with a wide dispersion in size; LT-scSeq
loses cells during analysis leading to loss of clonal structure; barcode homoplasy occurs
when cells from different clones present the same barcode due to experimental limitations;
progenitor states are not observed when clones are only observed upon tissue dissociation;
clonal dispersion occurs when early clonal states are heterogeneous due to the lag time
between barcoding and profiling.
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Fig. 2. The CoSpar algorithm. a, When clones are resampled at two time points, a transition
map is inferred by iteratively enforcing observed clonal transitions, coherence (by smoothing)
and sparsity until convergence is achieved. (See details and derivation in Methods and
Supplemental Note 3). b, When clones are observed only once, we infer their progenitor fate
bias and identity by first initializing a transition map without clonal information, then
iteratively (1) back-propagating the map to predict clonal progenitor identity and (2) learning
the transition map as in a until the map and progenitor identities jointly converge.
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Fig. 3. Proof-of-concept with simulated data. a-d, Benchmarking transition map inference
with barcode homoplasy errors. a, Schematics of a simplified simulated LT-scSeq experiment
to evaluate the accuracy of CoSpar and its robustness to barcode homoplasy errors.
Homoplasy is simulated by assigning multiple clones with the same barcode. b, UMAP
embedding of simulated data. Cells labeled with one barcode are shown, with moderate
homoplasy (10 clones / barcode). c, Distribution of true and inferred transition map matrix
elements. Observed transitions are broadly distributed due to homoplasy errors, which
associate progenitor cells and their progeny across different clones. CoSpar suppresses such
transitions by enforcing sparsity and coherence. d, CoSpar is robust to severe barcode
homoplasy, as seen from the fraction of predicted transitions within 3 standard deviations of
the true peak (TPR). e-i, Benchmarking transition map inference with clonal dispersion.
e, Schematics of a second simulated LT-scSeq experiment including variable lag times
between clonal labeling and observation. f, UMAP embedding of simulated data, with one
example clone shown. The clone is first observed 5 cell divisions after initial labeling.
g, Quantitative evaluation of dynamic inference as a function of the sampling lag time.
Growing lag time leads to higher clonal dispersion. Legend and transition peak TPR are
defined as in d. h, Progenitor bias evaluated from the true and inferred transition maps with a
simulated sampling lag time of five cell cycles. All clones are highly dispersed, providing no
observed bias among early and late states; imposing sparsity enables recovering the true
bias. i, Quantification of the correlation between true and inferred progenitor bias (shown in h),
over different sampling lag times.
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Fig. 4. Benchmarking CoSpar and prediction of progenitor bias in hematopoiesis. a,
Experimental design and SPRING visualization of the hematopoiesis dataset from Weinreb et
al.13. Early hematopoietic progenitors differentiate into megakaryocyte (Mk), erythrocyte (Er),
mast cell (Ma), basophil (Ba), eosinophil (Eos), neutrophil (Neu), monocyte (Mo), lymphoid
precursor (Ly), migratory (ccr7+) dendritic cells (mDC), plasmacytoid DC (pDC). b, Clones
ranked by intra-clone dispersion (i.e., mean intra-clone graph distance) over the observed cell
states after 4 days of differentiation. Two illustrative clones are shown. c, Bias towards Mo or
Neu fate evaluated from all clonal data using the original method in Weinreb et al13. Bias
among early progenitors (right panel) serves as ground truth for benchmarking. d,e, Baseline
inference of progenitor bias using optimal transport (OT) or CoSpar, using only state
information but no clonal data.
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f, CoSpar inference of progenitor bias using clonal data from a single-clonal time point. g,
Violin plot showing the distribution of fate prediction outcomes, quantified by the Pearson
correlation of the inferred fate bias with the ground truth. The distribution reflects differences
in parameters for the OT method (which is used to initialize CoSpar) and choice of distance
metric used, showing that clonal data reduces sensitivity to parameter choices in data
analysis. Dashed line shows the upper limit expected from cross-validation of benchmarking.
h, Fate bias inferred using only the 15% most dispersed clones (ranked in panel b). i, Violin
plots showing the distribution in inference performance with the down-sampled data
(quantified as in f) across parameter values. j-m, Predicting the transcriptional identity of
Gata1+ Mk-Er and Ma-Ba-Eos progenitors using CoSpar. j, Representative values of the
inferred transition map for 2-day transitions from 4 example cell states (indicated by *). k, Heat
map of predicted progenitor bias towards Mk-Er and Ma-Ba-Eos fates, overlaid on the state
embedding. l, Expression of selected genes correlating strongly with predicted fate bias. m,
Expression heat map for selected genes differentially expressed between the Mk-Er and
Ma-Ba-Eos progenitors. Full list of fate-associated genes is provided in Supplementary Table
1.
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Fig. 5. Progenitor bias in fibroblast reprogramming. a, Experimental design and UMAP
visualization of cell reprogramming from fibroblast cells to induced endoderm progenitors
(iEP) by ectopic expression of a transgene FoxA1-HNF4a on day 014.  Schema shows time
points for scRNA-seq only (grey arrows) and LT-scSeq (blue arrows). b, The UMAP
visualization overlaid with examples of individual clones. Cells are colored by time point as in
a. c, UMAP visualization of transcriptomes on days 15 and 21 of reprogramming, colored by
progenitor bias towards successful or failed reprogramming fates, using cells in clones
selectively filtered for strong fate bias as in the original study14. d-f, Benchmarking CoSpar
using clones with weak fate bias. d, Clones ranked by consistency in the fate outcomes of
their constituent cells [fate bias defined as -log(p-value), Fisher Exact test]. e, Accuracy in
predicting the fate outcome of cells observed on day 21 using data from progressively fewer
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fate-biased clones. Predictions use the original method (Biddy et al.14) or CoSpar. Accuracy is
assessed in the true positive rate (TPR) of identifying genes associated with fate outcomes
previously reported in Ref14. f, UMAP visualization showing the cell states on day 21 predicted
to undergo successful or failed reprogramming, when using the 10% clones with lowest fate
bias. g-h, CoSpar predicts early progenitor bias with a single clonal time point, robust to
parameters. g, Progenitor bias on days 15 and 21 predicted using only state information; or
with end-point (day 28) clonal information only. h, Violin plots as in Fig. 4g quantifying
prediction accuracy over a range of parameters, showing consistent improvement by
imposing coherence, sparsity, and enforcing clonal relationships. i-k, Predicting early fate
determination within 3 days of transgene expression. i, Predicted progenitor bias of cells on
day 3. j, Expression on day-3 states of selected genes predicted to correlate with successful
or failed reprogramming. k, Expression of additional genes differentially expressed on day 3
between cells predicted to succeed or to fail reprogramming. See the full list at
Supplementary Table 2.

Fig. 6. Progenitor bias during hPSCs differentiation into endodermal lineages. a,
Experimental design and UMAP visualization for differentiating human pluripotent stem cells
(hPSC) into induced alveolar epithelium (iAEC2) lung cells and other endodermal cell types.
b, Clones ranked by fate bias towards iAEC2 fate (bias defined as in Fig. 5d), with
representative biased (top) and dispersed (bottom) clones shown. c, Predicted progenitor bias
of cells towards iAEC2 fate on day 17 of differentiation, overlaid on the state embedding and
shown as a histogram. d,e Expression on day-17 states of selected genes predicted to
correlate with iAEC2 and non-iAEC2 fates. In e, expression is shown alongside the
corresponding expression in mature cells on day 27.

References

1. Woodworth, M. B., Girskis, K. M. & Walsh, C. A. Building a lineage from single cells:

genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244 (2017).

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and

challenges. Nat. Rev. Genet. (2020) doi:10.1038/s41576-020-0223-2.

3. Kester, L. & van Oudenaarden, A. Single-Cell Transcriptomics Meets Lineage Tracing. Cell

Stem Cell 23, 166–179 (2018).

4. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime

robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

5. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by

pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

6. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory

coordination in human B cell development. Cell 157, 714–725 (2014).

7. Schiebinger, G. et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies

Developmental Trajectories in Reprogramming. Cell 176, 928-943.e22 (2019).

8. Qiu, X. et al. Mapping Vector Field of Single Cells. 696724 (2019) doi:10.1101/696724.

9. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to

transient cell states through dynamical modeling. Nat. Biotechnol. (2020)

doi:10.1038/s41587-020-0591-3.

10. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

11. Tritschler, S. et al. Concepts and limitations for learning developmental trajectories from

single cell genomics. Development 146, (2019).

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on

dynamic inference from single-cell snapshots. Proc. Natl. Acad. Sci. U. S. A. 115,

E2467–E2476 (2018).

13. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on

transcriptional landscapes links state to fate during differentiation. Science 367, (2020).

14. Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming.

Nature 564, 219–224 (2018).

15. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis.

Nature 553, 212–216 (2018).

16. Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in

haematopoiesis. Nature (2020) doi:10.1038/s41586-020-2503-6.

17. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using

CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

18. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A.

Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).

19. Chan, M. M. et al. Molecular recording of mammalian embryogenesis. Nature 570, 77–82

(2019).

20. Bowling, S. et al. An engineered CRISPR/Cas9 mouse line for simultaneous readout of

lineage histories and gene expression profiles in single cells. Cell 797597 (2019)

doi:10.1101/797597.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


21. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the

zebrafish embryo. Science 360, 981–987 (2018).

22. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell

replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

23. Hurley, K. et al. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity

Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors. Cell

Stem Cell (2020) doi:10.1016/j.stem.2019.12.009.

24. Yao, Z. et al. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of

Embryonic Brain Development. Cell Stem Cell 20, 120–134 (2017).

25. Hormoz, S. et al. Inferring Cell-State Transition Dynamics from Lineage Trees and

Endpoint Single-Cell Measurements. Cell Syst 3, 419-433.e8 (2016).

26. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Series B

Stat. Methodol. 58, 267–288 (1996).

27. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. & Knight, K. Sparsity and smoothness via

the fused lasso. J. R. Stat. Soc. Series B Stat. Methodol. 67, 91–108 (2005).

28. Yu, V. W. C. et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous

Behavior of Hematopoietic Stem Cells. Cell 167, 1310-1322.e17 (2016).

29. Weissman, T. A. & Pan, Y. A. Brainbow: new resources and emerging biological

applications for multicolor genetic labeling and analysis. Genetics 199, 293–306 (2015).

30. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell

132, 631–644 (2008).

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


31. Ferreira, R., Ohneda, K., Yamamoto, M. & Philipsen, S. GATA1 function, a paradigm for

transcription factors in hematopoiesis. Mol. Cell. Biol. 25, 1215–1227 (2005).

32. Lu, Y.-C. et al. The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals

a Role for the Cell Cycle in Fate Specification. Cell Rep. 25, 2083-2093.e4 (2018).

33. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult

murine hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 102, 18105–18110 (2005).

34. Jacob, A. et al. Differentiation of Human Pluripotent Stem Cells into Functional Lung

Alveolar Epithelial Cells. Cell Stem Cell 21, 472-488.e10 (2017).

35. Rockich, B. E. et al. Sox9 plays multiple roles in the lung epithelium during branching

morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 110, E4456-64 (2013).

36. Perl, A.-K. T., Kist, R., Shan, Z., Scherer, G. & Whitsett, J. A. Normal lung development

and function after Sox9 inactivation in the respiratory epithelium. Genesis 41, 23–32

(2005).

37. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using

single-cell RNA-seq. Nature 509, 371–375 (2014).

38. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single

cells. Nature 541, 107–111 (2017).

39. Ludwig, L. S. et al. Lineage Tracing in Humans Enabled by Mitochondrial Mutations and

Single-Cell Genomics. Cell 176, 1325-1339.e22 (2019).

40. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate

brain. Nat. Biotechnol. 36, 442–450 (2018).

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative

genome editing. Science 353, aaf7907 (2016).

42. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography.

Nature (2019) doi:10.1038/s41586-019-1773-3.

43. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

44. Cleary, B. et al. Compressed sensing for imaging transcriptomics. bioArxiv 743039 (2020)

doi:10.1101/743039.

45. Nitzan, M., Casadiego, J. & Timme, M. Revealing physical interaction networks from

statistics of collective dynamics. Sci Adv 3, e1600396 (2017).

46. Jaitin, D. A. et al. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with

Single-Cell RNA-Seq. Cell 167, 1883-1896.e15 (2016).

47. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables

Systematic Dissection of the Unfolded Protein Response. Cell 167, 1867-1882.e21

(2016).

48. Aggarwal, C. C. Recommender Systems: The Textbook. (Springer, Cham, 2016).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Methods 1 
Definitions: states, transition maps, and clones. To formalize the problem of 2 
learning biological dynamics, we first define basic terminology.  The observed state of a 3 
cell can include information on its transcriptome, epigenome, proteome, metabolic state, 4 
phospho-proteome, structural organization, or a combination of all of these. It may also 5 
include information on the environment of the cell, such as the transcriptome of 6 
neighboring cells, extracellular matrix composition, etc. These are quantified by a set of 7 
! features, " ∈ ℝ%. Although " is continuous, it will be mathematically convenient to 8 
treat the accessible set of states as discrete. This is reasonable because experiments 9 
only sample a finite number of cells, so resolution into " is limited in practice. For 10 
convenience, we enumerate cell state as "&, or more concisely as state '.  11 
 12 
In a dynamical cellular system, cells are observed to occupy a distribution of states at 13 
consecutive times, with (&(*) giving the fraction of cells in state ' at time t. We consider 14 
the finite-time transition map ,&-&(*., *0) as relating between experimental timepoints 15 
through the relationship1: 16 
 (&(*0) =2(&-(*.),&-&(*., *0)

&-

 (1) 

 17 
The goal of our analysis is to learn ,&-&(*., *0), which in turn encodes information on the 18 
fate potential of cells in each state ', and the rate by which cells transition between 19 
states. In typical population-sampling experiments such as scRNA-seq, the transition 20 
map is shaped by the dynamics of cells, and by the rates of cell division and loss from 21 
the tissue (see Supplementary Note 1; Supplementary Fig. 1d). Errors in lineage tracing 22 
affect how well we can recover the transition map (see Supplementary Note 2). 23 
 24 
Previous work has sought to infer ,&-&(*., *0), from (&-(*.), (&(*0) only1. Here we greatly 25 
constrain the inference problem using the dynamics of clones. By clone we mean a set 26 
of cell states (≥ 0 cells) that arise from a common ancestor cell. Experimentally, we use 27 
“clone” to mean a set of (≥ 1) cell states that share the same barcode, a genetically 28 
heritable element. Clones may be labeled by a static barcode, or by accruing barcodes 29 
through mutation or further integration events that label sub-clones. Barcode accrual 30 
allows a cell to associate with multiple detected clonal barcodes. 31 
 32 
Data structures. Denoting the number of cells at time * as 67, and the number of 33 
clones as 8, we define: 34 
  9(*) ∈ {0,1}<×>?: clone-by-cell matrix for the observed clonal data at time *, with 35 
discrete entries 0 or 1 indicating whether a cell belongs to a clone or not. We use 9@&(*) 36 
to indicate its value for A-th clone at state '. For convenience, we sometimes use 97 to 37 
represent the matrix. 38 
 ℐ7

@: the set of cell states at time * that belong to A-th clone. 39 
 C(*) ∈ [0,1]>?×>? : state-similarity matrix among cell states at time *. 40 
 , ∈ ℝ>?F×>?G: matrix of transition probability from cell states at *. to states at *0.   41 
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 2 

 I ∈ ℝ>?F×>?G : transition matrix that only allows intra-clone transitions (inter-clone 1 
transition amplitudes are set to 0).  2 
     (J?G ∈ [0,1]

>?F: fate map, i.e., a vector of probability for each initial cell state to 3 
transition to cluster J7Gat time *0. 4 
 5 
Dynamic inference with CoSpar.  CoSpar seeks to minimize an objective function with 6 
a close connection to compressed sensing, as discussed in the main text. A heuristic, 7 
efficient algorithm implements the optimization through an iterative procedure (see main 8 
text for the objective function, and Supplementary Note 3 for its mathematical 9 
connection with compressed sensing). Referring to Fig. 2a, in each iteration, we 1) 10 
threshold the map to promote sparsity; 2) enforce clonal constraints by setting inter-11 
clone transitions to be zero and performing clone-wise normalization; 3) locally average 12 
the transition map to promote coherence. These steps are described by the following 13 
pseudo-code. Full implementation and user guide are available at 14 
https://cospar.readthedocs.io. 15 
 16 

function CoSpar (97F, 97G) 17 
 Initialization: 	,&L

(M) = 1	∀', O.   18 
 For Q ← 1, 2, … , !UV do 19 
  ! ← !V@(Q) 20 
  Build similarity matrix: C ← C(%) 21 
  I ← W XYZ,([\.), ]UV^_. 22 

Smoothing: ,([) ← [C(*.)]
`IC(*0). 23 

                      If mean& 	eCorrX,&⋅
([), ,&⋅

([\.)_j > 1 − mUV: Break 24 
 return ,([), I 25 

 26 
Here, + is a symbol for matrix transposition. Operators Y,W and C(%) are defined below: 27 
 28 
Definition of operators Y,W. Operator Y implements row-wise thresholding to promote 29 
sparsity: 30 
 31 
 [Y(,, ])]&L = n

,&L if	,&L ≥ ]	maxL		,&L
0 Otherwise

 (2) 

where ] ∈ [0,1] is a parameter that tunes sparsity. 32 
 33 
Operator W carries out clonal projection and normalization: 34 
 

[W(,)]&L =2
Iw&L
@

∑ Iw&-L-
@

&-L-
@

	,	 
(3) 
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 3 

where Iw&L@ = ,&L if the transition ' → O occurs within clone A, and otherwise Iw&L = 0. The 1 
normalization penalizes large clones, which tend to be more heterogeneous and less 2 
informative.  3 
 4 
CoSpar has two outputs: the smoothed transition map , and the map I that only allows 5 
intra-clone transitions.  6 
 7 
Similarity matrices C(%). We currently know of no natural choice for establishing the 8 
similarity of two states "&, "L. We found that a Graph diffusion process2,3 recovered 9 
ground-truth results well in the simulations and experimental down-sampling analyses. 10 
CoSpar constructs a weighted kNN graph of observed cell states from a PCA 11 
embedding using the method proposed by UMAP4, leading to a graph connectivity z&L  12 
from state ' to O that properly takes care of the heterogeneity of local cell density, with 13 
z&& = 0. To make sure that transitions between two states are reversible, we symmetrize 14 
the connectivity:    z{&L = (z&L + zL&)/2. Then, the random walk matrix is 15 

ℳ&L = �Ä&L +
(1 − �)	z{&L
∑ z{&ÅÅ

, 16 

where  � controls the probability to stay at the original state after a unit step. We then 17 
introduce a family of similarity matrices: 18 
 C(%) = [ℳ%]`. (4) 

The default method implemented in scanpy.pp.neighbors was used to construct the 19 
kNN graph at a specified neighbor number ÇUV, with � = 0.1 and ÇUV = 20. 20 
 21 
Annealing steps [!., !0, …]. CoSpar iterates through different depths ! of C(%), inspired 22 
by simulated annealing for finding the optimal solution in a rugged energy landscape5.  23 
Specifically, we use the sequence !É⃗ V@ = [!., !0,… ] to indicate the depths at each 24 
iteration.  25 
 26 
Parameter choices. The following parameters of CoSpar are adjustable: 1) parameters 27 
used for building the random walk matrices ℳ(*.,0), including � and ÇUV; 2) the 28 
sequence !É⃗ V@ = [!., !0, … ] for generating annealing similarity matrix C(%); 3) the 29 
threshold ]UV for promoting sparsity; and 4) parameters !UV and mUV used to control 30 
iteration and convergence. We found 3 iterations are sufficient to obtain a convergent 31 
map (Supplementary Fig. 2b,d). Throughout this paper, we used a fixed iteration run 32 
!UV = 3, and ignored mUV for computational efficiency. We also set ÇUV = 20 and � = 0.1. 33 
We found CoSpar is more robust to ]UV than to !É⃗ V@ (Supplementary Fig. 2a,c). Other 34 
parameters are given for each respective dataset below.  35 
 36 
 37 
Extending CoSpar to single-time clones. When clonal data are available only at a 38 
single time point, dynamic inference is implemented as shown schematically in Fig. 2b. 39 
Here only measurements on 9(*0) are available. We jointly optimize the initial clonal 40 
data 9(*.) and the transition map ,. An iterative algorithm is used as defined here:  41 
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 4 

 1 
Function JointOptimization (97G) 2 
 ,(M) ← ,&%&7 3 
 For Q ← 1, 2, … , !Üá do 4 
  Infer 9à7F(,([\.), 97G) 5 
   ,([) ← CoSpar (9à7F, 97G) 6 

If mean& 	eCorrX,&⋅
([), ,&⋅

([\.)_j > 1 − mÜá: Break 7 
 Return ,([), 9à7F  8 

 9 
Initialize the map, ,&%&7. CoSpar uses optimal transport (OT) to construct the initialized 10 
map ,(*., *0) = ,&%&7. Given an initial state distribution at *. and a later density at *0, OT 11 
finds a map ,&%7 that minimizes the transport cost to move the initial distribution to the 12 
later one. The approach is related to that developed in Waddington-OT (WOT)1, but with 13 
a minor modification. To construct the OT cost matrix1, approximated by a cell-cell 14 
distance matrix, CoSpar offers two approaches: 1) Euclidean distance in the selected 15 
PCA space, as implemented in WOT; 2) shortest path distance on a kNN graph of the 16 
state manifold. We found that shortest-path distance generally performs better than 17 
Euclidean distance (Supplementary Fig. 3e; Supplementary Fig. 4c,d). CoSpar accepts 18 
two parameters for this initialization: a Çáâ for constructing the kNN graph, and a 19 
regularization parameter máâ .  20 
  21 
Alternative initialization ,&%&7. OT provides a reasonable initialization when the cell-cell 22 
distance matrix contains sufficient information to match the state heterogeneity at 23 
selected time points. When this assumption fails (e.g. owing to large differentiation 24 
effects over the observed time window, or batch effects), we initialize , using an 25 
alternative approach, in which we generate an artificial clonal matrix based on highly 26 
variable genes at both time points: (9à7F,9à7G) ← HighVar, and then use it to calculate the 27 
initial transition map, ,&%&7 ← CoSpar	(9à7F, 9à7G). See Supplementary Note 4 for further 28 
details.  29 
 30 
Inferring the clonal matrix 	9à7F(,, 97G). Given a transition map ,, CoSpar updates the 31 
clonal matrix 9à(*.) based on the principle of maximum likelihood: 32 
 33 
 9à7F = argmax

è?F

((97F|,, 97G), (5) 

under two constraints:  34 
1) all initial states are clonally labeled, i.e. ∑ 9@&(*.) = 67F&,@ ; 35 
2) the fraction of cells with a given clonal barcode structure is constant over time. Note 36 
that this constraint represents a simplification as all clones initially derive from single 37 
cells and only develop to be heterogeneous in size over time. We provide an alternative 38 
enforcing each clone to have the same size at *., which is true for static barcoding at *.. 39 
We found that the former constraint gives robust results over all tested datasets.  40 
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 1 
These two constraints are integrated as follows. With ë⃗ ∈ {0,1}< indicating a clonal 2 
barcode combination, and ℐ7

í indicating the set of cell states at time * with barcode 3 
combination ë⃗, the total number of cells with the barcode structure ë⃗ at time t is 67

í ≡4 
|ℐ7
í|. We enforce the constraint: 5 

67F
í = 67F 	

67G
í

67G
∗ 	,		 6 

where 67G
∗  is the number of clonally labeled cells at *0. As 67F

í  is generally non-integer, 7 
we sample the cell number probabilistically from {⌊67F

í ⌋, ⌈67F
í ⌉}, with a mean of 67F

í , where 8 
⌊⋅⌋ and ⌈⋅⌉ take the floor and ceil of a number, respectively.  9 
 10 
We provide a heuristic implementation for this optimization. First, rank all observed 11 
barcode structures ë⃗ from small to large values of 67F

í . Then, sequentially infer the initial 12 
structure of each clone ë⃗:  13 
1) compute from , the fate probability (

ℐ?G
ô (') that each state ' in *. transitions to ℐ7G

í , as 14 

defined below by Eq. (6);  15 
2) select among not-yet-clonally-labeled cell states at *. the top 67F

í  most likely initial cell 16 
states as the hypothetical initial states for this clone, and update the clonal matrix 9à(*.) 17 
accordingly.  18 
 19 
 20 
Parameter choices. The joint optimization accepts additional parameters 1) for 21 
initializing , (Çáâ and máâ  for the OT method, and gene selection parameter 22 
HighVar_gene_pctl for the HighVar method); and 2) for controlling iteration and 23 
convergence, i.e.,  !Üá and mUV. We found that one iteration is sufficient to obtain a 24 
convergent map for all tested datasets in this paper (Supplementary Fig. 2e). We set 25 
Çáâ = 5, máâ = 0.02, !Üá = 1 and ignored mÜá throughout this paper. The remaining 26 
parameters are provided for each dataset below.   27 
 28 
 29 
Toolkits for transition map analysis.  30 
 31 
Fate map. From a transition map ,, we can compute the probability for early states to 32 
enter a given set of states J7G (a fate cluster). This is a key output of CoSpar, and will be 33 
used to generate other important outputs including progenitor probabilities, fate 34 
boundary, and fate coupling, etc. We first row-normalize the transition map: ,õ&L =35 
,&L/∑ ,&ÅÅ .  The fate probability for an initial cell state ' is given by  36 
 37 
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 6 

 (J?G(') = 2 ,õ&L
L∈J?G

. (6) 

The fate probability satisfies	(J?G ∈ [0,1].	 1 
 2 
Progenitor map. We compute the probability that a set of later states J7G originate from a 3 
given initial state by normalizing the fate probabilities (J?G(') towards the fate cluster J7G: 4 
 

(õJ?G(') =
(J?G(')

∑ (J?G(')&
 

(7) 

The progenitor probability satisfies	(õJ?G ∈ [0,1].	 5 
 6 
Progenitor bias. We compute the bias by which an early state contributes differently to 7 
two fate clusters. Given two progenitor maps (õú and (õℬ towards cluster ú and ℬ, we 8 
compute the bias as  9 
 

û& =
(õú(')

(õú(') + (õℬ(')
 

(8) 

The progenitor bias is within the range [0,1]. We set state ' to have a neutral bias 10 
û&=0.5, if it a small contribution to both fates: (õú(') + (õℬ(') ≤ ]M	(õ

∗, where (õ∗ is the 11 
maximum progenitor probability across both fates, i.e., (õ∗ = max

&,J∈(ú,ℬ)
(õJ(').		 We set ]M =12 

0.05 in this paper.  13 
 14 
Predictive genes. We perform differential gene expression (DGE) analysis between 15 
cells with different progenitor biases. The biased population towards fate ú or ℬ are 16 
given by 17 
 18 
 ú∗ = †arg& û& > ]°&¢V,ú	£, ℬ∗ = †arg& û& < ]°&¢V,ℬ	£,									 (9) 

where ]°&¢V,ú and ]°&¢V,ℬ  are the corresponding thresholds. We perform DGE analysis 19 
between these two populations using the Wilcoxon rank-sum test with Benjamini-20 
Hochberg correction. We rank the enriched genes (FDR<0.05) according to the 21 
expression fold change between population ú∗ and ℬ∗.  22 
 23 
Fate coupling (Supplementary Fig. 3d,f). We define fate coupling as the correlation of 24 
fate maps towards two fates. Specifically, we first compute the fate map (J towards 25 
selected fate clusters. (J is a 67F × ! matrix where ! is the number of selected fates, 26 
represented by cell sets J(.)7G, … , J(%)7G. The raw coupling is given by 27 
 • = (J

`(J. (10) 
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 7 

Here,  •[[- sums over “joint probability” between fate cluster Q and Q′ across all initial 1 
states.  We normalize the coupling as •õ[[- = •[[-/ß•[-[-•[[, which brings the self-coupling 2 
•õ[[ to 1, and •õ[[- ∈ [0, 1].  3 
 4 
 5 
Clonal fate bias (Fig. 5d; Fig. 6b).  We evaluate the fate bias of a clone towards/against 6 
a given cluster as in6 by quantifying the statistical significance of a clone's occupancy of 7 
a given transcriptional state (e.g. a cluster), when compared to that expected from a 8 
random sampling of cells. The P-value (or	(®©™´¨) is computed with Fisher Exact test, 9 
accounting for the clone size. We then transform it into clonal fate bias − log.M (®©™´¨, 10 
and rank each clone accordingly. We also provide the same rank plot for randomly 11 
sampled clones.     12 
 13 
 14 
Analyzing simulated datasets.  15 
 16 
Linear differentiation (Fig. 3a-d, Supplementary Fig. 2a-c). A cell trajectory was 17 
parameterized as a one-dimensional interval of length Æ. The dynamics were simulated 18 
with a homogenous transition map corresponding to a biased random walk ,ØF,ØG =19 
∞(±0 − ±.; 1, ≥), where	∞(	⋅	; 1, ≥) is the Gaussian distribution with mean 1 and standard 20 
deviation ≥. Specifically, clones were simulated from this map by sampling 21 
±.~Uniform(0,L), and then ±0 = ±. + 1 + ∑ with ∑~ Gaussian(0,≥). Each pair (±., ±0) 22 
defines a clone. A total of N clones were simulated. To simulate barcode homoplasy, 23 
clones were randomly mixed to give M<N clonal barcodes of uniform size.  All 24 
observations of cell states were embedded in a 50-dimensional space ∏ = (π.,… , π∫M) 25 
by setting π. = ±, and adding independent Gaussian noise πÅ = 0.2∑ to each of the 26 
remaining 49 dimensions. We used ≥ = 0.5, Æ = 100, 6 = 1000. The number of 27 
detected clonal barcodes M was variable as shown in the figure panels. CoSpar was 28 
applied with ]UV = 0.2, !É⃗ V@=[5,5,5].  29 
 30 
Bifurcation and cell sampling (Fig. 3e-i).  A cell trajectory was parameterized as a one-31 
dimensional interval of length L/2 bifurcating into two one-dimensional intervals of 32 
further length L/2 corresponding to fates A and B. To simulate a clonal resampling 33 
experiment, for each clone an initial barcoded cell was seeded at ±M~Uniform(0, L) at 34 
* = 0. Cells were simulated to divide once at each unit time step, and all cells 35 
progressed along the trajectory according to a random walk, with ,ØF,ØG(*., *0) 	= ∞(±0 −36 
±.; *0 − *., ≥√*0 − *.). As each cell transitions past the bifurcation point (L/2) it chose 37 
between fates A, B with probability 1/2. At * = *., we sampled cell states in each clone 38 
with a success rate 0.5 per cell. Successfully sampled cells were removed, and the 39 
remaining unobserved cells continued to divide and progress as described. The state of 40 
all remaining cells was profiled at *0 = *. + 1. The observed cell states were embedded 41 
in a 50-dimensional observation space Z by first embedding in two-dimensions, 42 
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(π., π0) =

⎩
⎪
⎨

⎪
⎧

(±, 0), if	± < Æ/2

X
±

2
,
±

2
_ , if	± ≥ Æ/2, fate = A

X
±

2
, −
±

2
_ , if	± ≥ Æ/2, fate = B

 1 

and then adding independent Gaussian noise πÅ = 0.2∑ to each of the remaining 48 2 
dimensions. We set ≥ = 1, *. = 5, Æ = 10.	M=100 clones were simulated. CoSpar was 3 
applied with ]UV = 0.2, !É⃗ V@=[10,10,10]. 4 
 5 
Evaluating CoSpar with simulated data. We defined the TPR (Fig. 3d,g) as the fraction 6 
of rows of the inferred transition map, ,ØF,ØG, for which the maximum transition rate is 7 
within 3≥ of the expected peak position, i.e. TPR	 = ≈[∆(3≥ − |argmax«»	,»F,»F`«» − 1|)] 8 
where ≈(⋅) is the mean over all rows of T, and ∆(π)={1 for z>0; 0 otherwise}.  The 9 
progenitor bias for the bifurcation model (Fig. 3h,i) was calculated according to Eq. (8). 10 
Each of the TPR and progenitor bias comparisons (Fig. 3d,g,i) shows averages after 11 
application of CoSpar to 5 independent simulations. 12 
 13 
Benchmarking and applying CoSpar to hematopoiesis.  14 
 15 
Pre-processing. Data7 is available at Gene Expression Omnibus (GEO), accession 16 
number GSE140802.  Data was preprocessed as originally described7: 1) UMI counts 17 
were normalized in each cell to the average across all cells;  2) highly variable genes 18 
were selected using the SPRING gene filtering function (filter_genes using parameters 19 
min_vscore_pctl =85 ,min_counts=3, min_cells=3)8; and 3) genes correlated with cell 20 
cycle were excluded from the highly-variable gene list (genes with correlation … > 0.1 to 21 
the signature genes defined by Ube2c, Hmgb2, Hmgn2, Tuba1b, Ccnb1, Tubb5, Top2a, 22 
and Tubb4b). The 2-dimensional embedding and state annotation of cells were as in7, 23 
also available at the GEO website (GSE140802). We selected the top 40 Principal 24 
Components (PCs). Unless otherwise stated, we constructed kNN graph with Ç = 20 for 25 
downstream analysis.   26 
 27 
Applying CoSpar. Code detailing implementation of CoSpar to the data is provided at 28 
https://cospar.readthedocs.io/.  In brief, we evaluated the progenitor fate bias, identified 29 
putative driver genes, and computed the fate coupling as described above. The default 30 
parameters are ]UV = 0.1, !É⃗ V@ = [20,15,10], and we initialize the transition map using the 31 
OT method for joint optimization. 32 
 33 
Intra-clone dispersion (Fig. 4b). We quantified the intra-clone dispersion of a clone A as 34 
the maximum cell-cell distance  (A, *) within a clone at time *	(* = 2, 4, 6), where the 35 
distance was measured by the shortest-path distance in the kNN graph at Ç = 5. Fig. 4b 36 
shows the dispersion normalized by the mean dispersion on day 2.   37 
 38 
Transition map using the method from Weinreb et al[Citation error] (Fig. 4c,h; 39 
Supplementary Fig. 3a,b, g-i). We selected clones that have a unique fate at a later 40 
time point, where each mature fate cluster was defined as in Weinreb et al (see 41 
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annotations at Fig. 4a). Multi-fate clones were discarded. Given this clone matrix 9Õ(*), 1 
with * = 2,4,6, we computed the transition map as ,&%Õ(*., *0) = [97F

Õ]`97G
Õ, where any initial 2 

cell state has the same probability to transition to any later cell state observed in the 3 
same clone. The ground truth progenitor bias in Fig. 4c shows the progenitor bias û& on 4 
day 2 and day 4 computed from ,&%Õ(2, 4), ,&%Õ(2, 6), ,&%Õ(4, 6) using Eq. (8). 5 
 6 
Fate map reconstruction error (Supplementary Fig. 3a,b). To allow comparison between 7 
methods, we used I(4, 6) from CoSpar with ]UV = 0.2 or ,&%Õ(4, 6) from the Weinreb 8 
method, constructed from sub-sampled clones on day 4-6, to compute the fate map 9 
(J(', * = 4) towards cells annotated with a given fate (cell set J) according to Eq. (6). 10 
We evaluated the inferred maps by comparing them to a ground-truth fate map 11 
(J
7Œœ–(', * = 2) from the Weinreb method with all clones from day 2-4.  We evaluated the 12 

prediction using the Wasserstein distance9 between the two distribution (J and (J7Œœ–, 13 
restricted to the progenitor state space J̅ (i.e., excluding states belonging to fate J). 14 
Note that (J(', * = 4)  maps the fate probability of cells sampled on day 4, while 15 
(J
7Œœ–(', * = 2) is for cells sampled on day 2. To compare the fate maps for these non-16 

overlapping cell subsets, we computed the OT map ,áâ from day-2 states to day-4 17 
states with Çáâ = 5 and máâ = 0.02, using shortest-path distance. The Wasserstein 18 
distance is given by  Õ¢VV = ∑ (J('),&L

áâ(J
7Œœ–(O)&,L∈J̅ . We computed the Wasserstein 19 

distance for 3 major fates: Neutrophils, Monocytes, and Basophils, and reported the 20 
average.   21 
 22 
Waddington-OT (Supplementary Fig. 3f; Supplementary Fig. 4e).   Results shown were 23 
obtained using the WOT package (https://github.com/broadinstitute/wot)1, using default 24 
parameters: máâ = 0.05, “. = 1, “0 = 50. 25 
 26 
Benchmarking and applying CoSpar to fibroblast reprogramming.  27 
 28 
Pre-processing. Data was downloaded from GEO, accession number GSE99915.  We 29 
followed the same processing as described above for hematopoiesis, and removed cell-30 
cycle-correlated genes with correlation score |…| > 0.03. We used UMAP 31 
(scanpy.tl.umap with min_dist=0.3) to generate the embedding.  32 
 In this dataset, cells were barcoded at three time points (day 0, 3, and 13).  33 
Following Biddy et.al.6, we concatenated day-0 and day-3 barcodes to form a unique 34 
clonal ID for downstream analysis. However, keeping 3 barcodes per cell, thus allowing 35 
nested clonal structure, works equally well (Supplementary Fig. 4f-h).  We also inherited 36 
their annotation for the reprogrammed cluster (obtained by email communication with 37 
the authors), and used their selected clones to define the ground truth for 38 
reprogramming and failed trajectories. The failed cluster (Fig. 5a) was defined as a 39 
leiden cluster (scanpy.tl.leiden with resolution=1.5) in the cells sampled at day 28, which 40 
highly expresses Col1a2 (Supplementary Fig. 4a), a gene expressed in fibroblasts that 41 
failed reprogramming6. The reprogrammed and failed cluster were used to define the 42 
progenitor bias in this dataset.   43 
  44 
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Applying CoSpar. The default parameters are ]UV = 0.2, !É⃗ V@ = [15,10,5], and we 1 
initialize the transition map using the OT method for joint optimization. See jupyter 2 
notebook implementation at https://cospar.readthedocs.io/. 3 
 4 
Selecting dispersed clones (Fig. 5d,e). We first calculated for each clone the fraction ”‘ 5 
of cells within the reprogrammed cluster. Dispersed clones are defined as occupying 6 
both the reprogrammed cluster and other states on day 28, thus having intermediate 7 
values of ”‘. We selected dispersed clones satisfying ’\ ≤ ”‘ < ’`, where ’\ = ±	and 8 
’` = 0.4 − 2±, and ± parameterizes the window. This parameterization was chosen so 9 
that we could evenly exclude clones at both sides of the window when adjusting ±. The 10 
fraction of clones within this window was used as an indicator for each sub-sampled 11 
dataset in Fig. 5e. 12 
 13 
Transitions using the method from Biddy et al (Fig. 5e,f). Following Biddy et.al.6, we first 14 
identified clones that are enriched or depleted in the reprogrammed cluster according to 15 
Fisher’s Exact test. Among statistically significant clones ((÷¢[œ– ≤ 0.05), we selected 16 
cell states belonging to reprogramming clones (”‘ > 0.4) as putative reprogramming 17 
population ◊Œ, and classified cell states of low-reprogramming clones (”‘ < 0.4) as 18 
putative failed population ◊ÿ.   19 
 To boost the performance for downstream analysis, we made the following 20 
modification to the original method in Biddy et.al.6. For a putative population (◊Œ or ◊ÿ), 21 
we enriched for high-fidelity states by iteratively excluding clones with ”‘ closest to 0.4 22 
until the total number of cells in ◊Œ or ◊ÿ was at or below 3,000. 23 
 24 
Calculating marker gene TPR (Fig. 5e,f, Supplementary Fig. 4b). For a putative 25 
reprogramming (◊Œ) and failed (◊ÿ) population predicted by either CoSpar or the Biddy 26 
method, we assessed their accuracy by the overlap of their top differentially expressed 27 
genes with those from the reference population (defined by the fate-biased clones 28 
selected by Biddy et.al.6).  29 
 To predict population ◊Œ and ◊ÿ with CoSpar, we inferred , with ]UV = 0.4 and 30 
threshold the fate map (J built from the intra-clone transition map I = WZY(,, 0)^ as 31 
follows:  32 

◊Ø = †arg& (JŸ(') > ]7 max (JŸ£,			± ∈ {⁄, €} 33 
where, to enrich for high-fidelity states, ]7 = max	(0.5,‹) and ‹ was chosen such that 34 
|◊Ø| is the largest value below 500.   35 
 For both CoSpar and the Biddy prediction, when |◊Ø| ≤ 200, we increased the total 36 
cell number up to 200 by adding the nearest neighbors of selected cell states using the 37 
kNN graph defined by the full dataset. This step supports the statistical power of the 38 
differential gene expression (DGE) analysis. 39 
 Finally, we performed DGE analysis between ◊Œ and ◊ÿ, identified enriched genes 40 
for each population, and compared them with the reference. Specifically, we first 41 
calculated the P-value for each gene using the Wilcoxon rank-sum test, with Benjamini-42 
Hochberg correction. We ranked them according to the expression fold change between 43 
◊Œ and ◊ÿ, kept the top 50 genes enriched in ◊Œ and another top 50 in ◊ÿ, and excluded 44 
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statistically insignificant ones (adjusted P-value ≥ 0.05). Denoting the resulting gene set 1 
for predicted population ◊Ø as ℰØ, and that from the corresponding reference population 2 
as ℰØ7Œœ–, the marker gene TPR for this putative population is given by  3 

,(’Ø =
|ℰØ ∩ ℰØ

7Œœ–|

max{|ℰØ|, |ℰØ
7Œœ–|}

, ± ∈ {⁄, €} 4 

The final marker gene TPR for a given method (CoSpar or the Biddy method) was 5 
(,(’Œ + ,(’ÿ)/2. 6 
 7 
Application of CoSpar to in vitro differentiation of lung endoderm.   8 
 9 
Pre-processing. Data was downloaded from GEO, accession numbers GSE137805 and 10 
GSE137811. We selected highly variable genes using filter_genes function 11 
(min_vscore_pctl=80 ,min_counts=3, min_cells=3), and normalized the UMI counts per 12 
cell to 10000. We used the top 40 PCs to construct kNN graph with Ç = 20 for 13 
downstream analysis. We inherited the original embedding on day 17 and 21 by Hurley 14 
et.al.10 (available at 15 
https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.html?cgi-16 
bin/client_datasets/nacho_springplot/allMerged), and used UMAP (scanpy.tl.umap with 17 
min_dist=0.3) to generate the embedding for day-15 and day-27 cells. The iAEC2 18 
cluster is defined as the day-27 leiden cluster (scanpy.tl.leiden with resolution=0.5) that 19 
highly express SFTPB and SFTPC (Supplementary Fig. 5a), marker genes for iAEC2 20 
cells10.  21 
 22 
Applying CoSpar. To apply joint optimization (Fig. 6c; Supplementary Fig. 5f,g), we 23 
initialized the transition map using the HighVar method with HighVar_gene_pctl=80, and 24 
ran CoSpar with ]UV = 0.2, !É⃗ V@ = [20,15,10]. See jupyter notebook implementation at 25 
https://cospar.readthedocs.io/. 26 
 27 
 28 
Data availability 29 
All data analyzed in this article are publicly available through online sources. 30 
The annotated data, results, and Python implementation are available at 31 
https://cospar.readthedocs.io/. The raw data for the hematopoiesis dataset can be 32 
accessed at Gene Expression Omnibus (GEO) database with accession number 33 
GSE140802, the reprogramming dataset via GSE99915, and the lung dataset with 34 
GSE137805 and GSE137811.  35 
 36 
Code availability 37 
The results reported in this paper and our Python implementation are available at 38 
https://cospar.readthedocs.io/.  39 
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 2 

 1 
Supplementary Fig. 1. Models, assumptions and limitations of Coherent Sparse Optimization. 2 
a, Simple example of the class of stochastic models that CoSpar seeks to learn. In such models, 3 
each node represents an observed cell state. In practice, thousands of measured states are included; 4 
here only five are shown. At each state cells self-renew, die, or differentiate with state-specific rates. 5 
The mean fraction of cells in each state evolves according to coupled first-order equations as shown. 6 
See Supplementary Note 1 for details.  7 
b, The empirically-observed finite-time transition map can be interpreted through its relation to the 8 
transition rate matrix K (see panel a). See Supplementary Note 1 for details. 9 
 10 
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 3 

c, Schematics illustrating the operational, experimentally-accessible definition of a transition 1 
probability, as the average fraction of progeny derived from an initial cell i at t0 that differentiates into 2 
a target state j at later times. As defined, transition probabilities are sensitive to biases in fate choice, 3 
and to differential rates of cell division and cell loss.  4 
d, Schematics exemplifying that transition maps cannot distinguish fate bias from differences in net 5 
rates of cell expansion (division – loss). Three different underlying dynamics lead to the same 6 
transition maps. 7 
e, Schematics clarifying the robustness of CoSpar to clonal dispersion (demonstrated in Fig. 3).  i), 8 
When cells undergo extensive proliferation prior to fate bifurcation and clonal sampling, each clone 9 
densely samples several differentiation trajectories. By imposing sparsity and coherence, CoSpar re-10 
enforces a minimal number of transitions that explain dynamics across all clones.  ii), At lower rates of 11 
proliferation, fewer cells from each clone are sampled, and it may lead to observing clonally-related 12 
cells at different time-points on different trajectories, as shown (blue clone sampled towards fate A at 13 
t1, and towards fate B at t2). By enforcing coherence between clones rooted in neighboring states, 14 
CoSpar may still recover a correct transition map. In this case, there is a trade-off in the CoSpar cost 15 
function between minimizing the clone transition map error and maximizing coherence. iii), Lacking 16 
proliferation, one cannot establish clonal relationships that constrain dynamic inference. 17 
 18 

19 
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 4 

 1 
Supplementary Fig. 2. Evaluating CoSpar performance across parameter sweeps.  2 
a-c, Performance of CoSpar using simulations as in Fig. 3a-d with a range of algorithm parameters 3 
(see Methods for parameter definitions): (a) sparsity threshold "#$ ∈ [0,1]; (b) number of iterations, 4 
showing convergence; (c) smoothing kernel exponent.  5 
d,e, Demonstration of algorithm convergence, seen in the correlation between maps from 6 
consecutive iterations against the number of iterations, for the two algorithms (CoSpar, and Joint 7 
CoSpar, see Methods). The maps analyzed here correspond to those from the down-sampled 8 
hematopoietic dynamics (Fig. 4h).  9 
f, Computational time to convergence, as a function of total cell number.  In the first run, CoSpar will 10 
generate (and save) a similarity matrix, which is very costly (red curve). CoSpar can use similarity 11 
matrices generated previously to speed up computation (blue curve). 12 
 13 
 14 
 15 
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 5 

 1 
 2 
Supplementary Fig. 3. Benchmarking CoSpar in hematopoiesis.  3 
a, CoSpar reconstructs transition maps from sub-sampled and dispersed clonal data. Here, we 4 
evaluate the prediction error as the Wasserstein distance between fraction of cell progeny predicted 5 
to occupy a given fate, compared to that obtained from the ‘ground truth’ transition map constructed 6 
using all clonal data rooted in day 2 clones (see main text). In a, the prediction error is assessed for a 7 
decreasing fraction of day 4-6 clones, obtained by progressively excluding less dispersed clones that 8 
contribute the strongest signal (see Fig. 4b). Green curve is obtained by applying the method from 9 
the original paper.  A lower bound on the error (random split distance) is the Wasserstein distance 10 
between random 50% partitions of the ground-truth data.  The largest observed errors are 11 
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comparable to the Wasserstein distance between populations separated by two days of progressive 1 
differentiation (upper grey arrow).   2 
b, The ground truth and predicted fate maps for neutrophils cluster using the 15% most dispersed 3 
clones. These plots illustrate one value on the plot in a. 4 
c, The normalized covariance of clonal barcode abundances between different cell types, calculated 5 
using all data on day 4 of differentiation1. 6 
d, The correlation of predicted transition probabilities of progenitors, inferred with CoSpar using 7 
different data indicated (See Methods). 8 
e, Joint CoSpar optimization is robust to initialization and choice of distance metric. This panel 9 
accompanies Fig. 4g.  Plots show the correlation of progenitor biases calculated from the transition 10 
maps for different initialization choices of the transition map. Optimal transport (OT) is used to 11 
initialize the transition map from state information alone prior to CoSpar. Plots scan the OT entropic 12 
regularization strength +,- .   13 
f, Application of Waddington-OT (WOT) to hematopoiesis dataset. WOT was applied to the same 14 
data in Ref2, where clonal data was used to tune the local cell proliferation rates. When WOT is 15 
applied without access to any clonal information, performance is degraded as seen by comparing the 16 
plots here to the ground truth. Plots are to be compared with those in panels c,d and Fig. 4c. WOT is 17 
applied with default parameters (+,-  =0.05). 18 
g-i, Predicting early fate boundaries in the Gata1+ lineages using the original method from Ref2. g, 19 
Predicted progenitor bias among the Gata1+ cells on the state embedding. h, Comparison of the 20 
number of differentially expressed genes (FDR<0.05) identified from different methods of clonal 21 
analysis. i, Gene expression heat map for all differentially expressed genes identified with the 22 
Weinreb method2. 23 
 24 

25 
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 1 
 2 
Supplementary Fig. 4. Benchmarking CoSpar in fibroblast reprogramming.  3 
a, Expression of selected marker genes on UMAP visualizations from day 15, 21 and 28.  4 
b, Reproduction of results in Fig. 5e using a similarity matrix obtained from each sub-sampled 5 
dataset. Results are seen to be robust to sub-sampling strategies. 6 
c-e, Transition maps inferred by CoSpar with access only to end-point clonal information are robust to 7 
the choice of initialization.  These panels accompany Fig. 5h. c, Visualization of the progenitor bias 8 
derived from the initialized transition map and the corresponding CoSpar prediction, for different 9 
entropic regularizations and distance metrics as indicated. d, Parameter sweep quantifying the 10 
stability of the predicted progenitor bias. e, Progenitor bias prediction from Waddington-OT3, which 11 
relies only on state information. Upper panel: the predicted progenitor bias on the state manifold at 12 
+,-=0.05. Lower panel: progenitor bias correlation with ground truth across different +,-  values.  13 
f-h, CoSpar analysis with clonal barcodes integrated at sequential time points. The analysis was done 14 
with clonal data on day 28. f, The cumulative barcoding scheme in the reprogramming experiment. 15 
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 8 

Cells were barcoded on day 0, 3, and 13. g, A progenitor bias prediction generated by concatenating 1 
all tags from all three time points into a single clonal barcode for each cell, thus ignoring the nested 2 
clonal structure in the data. h, Equivalent results of CoSpar analysis with nested clonal structure, 3 
carried out by treating Tag0, Tag3 and Tag13 as independent barcodes for a cell, such that each cell 4 
may have up to three barcodes.  Left panel shows the histogram of barcode number per cell.  5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 

 14 
Supplementary Fig. 5. Marker gene expression and clonal structure during differentiation into 15 
alveolar cells and other endodermal cells.  16 
a, Expression of genes associated (in Ref4) with iAEC2 cells, non-lung endoderm (NLE), gut 17 
endoderm, and pulmonary neuroendocrine cells (PNEC).  18 
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 9 

b, Leiden clustering of day-27 cell states. Cluster are named based on their corresponding gene 1 
expression.  2 
c, Normalized barcode covariance on day 27 among all clusters, showing evidence of clonal 3 
partitioning of iAEC2 cells.  4 
d, Expression of two representative genes marking proliferating cells (TOP2A and MKI67) on day 17 5 
and 27 state manifold, showing that cells predicted by CoSpar to show low commitment on day 17 6 
appear proliferating (Fig. 6c).  7 
e-g, CoSpar predicts that lineage restriction occurs after day 15, except for a rare fraction of cells 8 
committed to non-iAEC2 fates. e, UMAP visualization of cell states on day 15 and 27. f, CoSpar-9 
predicted progenitor bias among cells on day 15. g, Histogram of the progenitor bias on day 15 10 
(shown in panel f). Unlike on day 17 (Fig. 6c), here progenitor bias is concentrated at 50%. 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 

 27 
 28 
Supplementary Fig. 6. Establishing upper bounds for fate prediction after data loss. In this 29 
paper, performance of CoSpar was compared to previously published methods by discarding clonal 30 
data and then examining the fidelity of fate predictions in the face of data loss. Supporting the results 31 
reported in Figs. 4g,i and 5h, we obtain an upper bound for fate prediction, by randomly sampling 32 
50% cells from the full ground-truth dataset in each case to predict the progenitor bias of remaining 33 
cells, with different smoothing exponents n.  Prediction was carried out by first inferring the progenitor 34 
bias ./01  from the training data (denoted by tr) to predict the bias ./0$0  of the test data, by imputation 35 
via graph diffusion: ./0$0 = ∑ 4/5(7).5015 . Results show that, in all the three cases considered, a 36 
smoothing exponent n=3 provided the best correlation between the imputed and actual values of ./0$0 . 37 
These correlation values are indicated by the upper dashed grey lines in Figs. 4g,i and 5h. 38 
 39 
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Supplementary Note 1: Connecting transition maps to models of di↵erentiation8

This note grounds the finite-time transition map in a stochastic model of cell di↵erentiation. In doing so it also9

clarifies what cannot be learnt from the transition map.10

11

We begin by considering a Markov model of di↵erentiation represented by an arbitrary graph of finite size, where12

each node represents a cell state. In this model, each cell probabilistically undergoes proliferation, death, and13

di↵erentiation with rates that are specific to the cell state. A clone is a realization of such a stochastic branching14

process, seeded as a single barcoded cell in some cell state. Starting from a cell state i, kij is the di↵erentiation rate15

to a di↵erent state j; bi is the probability of a cell dividing into two cells; and di is the cell loss rate for cells in state16

i. We assume that these rates are first-order (independent of the number of cells in a state). These rates can vary17

with time to reflect changes in the tissue environment. Supplementary Fig. 1a shows a simplified example of such a18

model.19

20

This model is useful in its simplicity, but it is clearly not general: being a Markov process, it assumes that we have21

a complete measurement of the variables that could a↵ect state dynamics, such as the transcriptome, epigenome,22

and extracellular environment. This is unlikely to be true. Incomplete state measurement leads to a non-Markovian23

dynamics5. Nonetheless, our model may be a useful approximation as it generates predictions of biomarkers and fate24

regulators, and their correlation with fate bias.25

26

Our goal in this paper is to learn the structure of such a graphical model (e.g. Supplementary Fig. 1a) and its rate27

constants, from LT-scSeq data. To learn a model from data, we focus most simply on the mean dynamics of cell number28

at each state. To do so, one could consider a complete stochastic description using the chemical master equation6,29

which gives the distribution evolution over the extended state space N ⇥ X = {(Ni, Xi) 8 i; and Ni = 1, 2, ...},30

where Ni is the number of cells at state i and Xi is the corresponding state. However, because we assume a first-order31

model, there exists a closed-form equation for the dynamics of average cell number N̄i(t) at state i and time t,32

d

dt
N̄i(t) =

X

j

N̄j(t)Kji, (1)

where Kij ⌘ (1 � �ij)kij + �ij(bi � di �
P

k 6=i kik), with �ij = {1 if i = j; otherwise 0}, is the instantaneous33

transition rate from state i to j that includes all cellular processes: division, cell death, and di↵erentiation. This34

mean dynamics only captures the net e↵ect of cell number change (bi � di), and does not distinguish whether it is35

from cell proliferation or loss.36

37

To make contact with experiment, we represent the number of cells at each state as a fraction of the total cell38

number to obtain the cell density:39

Pi(t) ⌘
N̄i(t)

N̄(t)
, (2)

where N̄(t) ⌘
P

j N̄j(t) is the total cell number at time t. The dynamics of the cell density Pi(t) is40

d

dt
Pi(t) =

X

j

PjK̃ji(t), (3)

where K̃ji(t) ⌘ Kji � �ji↵̄(t), and ↵̄(t) ⌘
P

k Pk(t)(bk � dk) is the average growth rate of the population at time t.41

Diagonal elements in K̃ reflect whether net growth in each state is larger (positive) or smaller (negative) than the42

population average.43
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We now can ground the transition map T in terms of the model. Integrating Eq. (3) from time t1 to t2 leads to the44

relation45

Pi(t2) =
X

j

Pj(t1)Tji(t1, t2), (4)

where the intrinsic finite-time transition map46

T = exp
⇣Z t2

t1

K̃dt

⌘
(5)

is obtained from matrix exponentiation of the corrected instantaneous transition rate matrix K̃.47

The transition probability Tij is the fraction of progenies from initial state i that ends at later state j (Supplementary48

Fig. 1b). To see this, we can sum over all states in Eq. (4), and noting that
P

i Pi(t) = 1, we have 1 =
P

j Pj(t1)
P

i Tji.49

This equation is valid for any distribution Pj(t1) and therefore the transition map satisfies the conservation property50

X

j

Tij = 1. (6)

Owing to its normalization (Eq. 6), the transition map that is experimentally accessible captures the most interesting51

property we want: the probability of a cell to di↵erentiate into di↵erent cell types. A certain initial state i can transition52

to multiple states over time window t, i.e., T has multiple non-zero entries associated with the i-th row.53

Nonetheless, it is important to note that Tij is shaped both by di↵erences in transition rates between states, and54

by the collective e↵ect of proliferation and cell death along the trajectories between state i and j. Mathematically,55

although proliferation and cell death only a↵ect the diagonal terms in the instantaneous transition matrix K̃, the56

matrix exponentiation in Eq. (5) will propagate this e↵ect to the o↵-diagonal terms in the finite-time transition57

matrix T . For this reason, empirical transition maps alone obscure di↵erences between biases in proliferation and58

choice towards competing fates, as illustrated in Supplementary Fig. 1d.59

Supplementary Note 2: The e↵ect of noisy measurement on transition map inference60

In Eq. (5), the transition map is seen to emerge from stochastic state transitions accumulating over time. In61

practice, an inferred map is also shaped by sources of noise associated with measurement and subsequent dimen-62

sionality reduction of the data. In this note, we examine the errors propagated from di↵erent technical sources into63

the observed transition map T . As might be expected, we show that technical sources of error lead to a ‘blurred’64

transition map, delocalized over the cell state graph. The smoothing kernels connecting the true and observed transi-65

tion map can be understood as a matrix product of error kernels associated with each individual source of uncertainty.66

67

a. Measurement errors. We will consider the errors associated with correctly assigning transition rates from a
state i at time t1 to state j at time t2. Such a transition contributes to mass at matrix element Tij(t1, t2) of the
transition map. At time t2, errors in measurement re-assign cells from state j to another state k, with a probability ✏jk

normalized such that
P

k ✏jk = 1. With such an error, the observed transition map now becomes T (obs.)
ij =

P
k Tik✏kj .

A similar error may occur at t1. Because technical errors may di↵er between time points, we will denote ✏
(i) as the

error in measuring the state of a cell at time ti. Accounting for errors in two time points, the observed transition map
now becomes:

T
(obs.)
ij =

X

k,l

✏
(1)
ki Tkl✏

(2)
lj .

b. Clonal dispersion. In LT-scSeq experiments, the cells sampled at t1 are clonally related to those that give
rise to cells sampled at t2. But being distinct, they may occupy di↵erent states. As above, we consider the error in
estimating transition rates from state i at t1 to state j at t2. At t1, a clonally-related state, k, is observed instead of
state i, with a probability that we shall denote �ik. This probability satisfies normalization

P
k �ik = 1. Accounting

for this clonal dispersion, the observed transition map relates to the true transition map through the relation:

T
(obs.)
ij =

X

k

�kiTkj .
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Note that because cells divide, more than one cell may be observed in a clone at time t1. In this case, the error68

kernel �ki no longer has a unique definition because choices in constructing the transition map may assign more or69

less weight to particular cells within each clone. By enforcing local coherence, CoSpar strongly weights �ki towards70

states k that are close to i, thus reducing errors in the transition map as compared to using a ‘naive’ clonal analysis71

method such as we have previously reported2, which weights all cells in a clone at t1 equally.72

Compounding clonal dispersion and measurement error, we recognize the the observed transition map has the form:

T
(obs.)(t1, t2) = S

T
1 T (t1, t2)S2,

where S1 = ✏
(1)

� and S2 = ✏
(2).73

Supplementary Note 3: Coherent sparse optimization74

Our goal in dynamic inference is to learn the finite-time transition map, as defined in Eq. (4), for the set of observed75

cell states in a given experiment. After imposing sparsity and coherence constraints (see main text), we obtain the76

cost function,77

min
T

||T ||1 + ↵||LT ||2, s.t.
X

m

||P (t2;m)� P (t1;m)T (t1, t2)||2  ✏; T � 0; Normalization. (7)

Here, P (t1,2;m) is a row-vector representing the distributions of cell states within the m-th clone. Lij = 1 �78

w̄ij/
P

j w̄ij is the normalized graph laplacian, with wij the graph connectivity of the nearest neighbor kNN graph79

of cell states. Defining P(t) as a clone-by-cell matrix resulting from concatenation of individual clonal distribution:80

{P (t;m),m = 0, 1, 2...}, we note that
P

m ||P (t2;m)�P (t1;m)T (t1, t2)||2 = ||P(t2)�P(t1)T (t1, t2)||2, which gives the81

form of the cost function given in the main text. For joint optimization, the cost function is additionally minimized82

over P(t1), i.e. minP(t1)[· · · ].83

Before continuing, we note the relationship of this optimization problem to past literature. Absent the coherence84

constraint (↵ = 0), this optimization problem reduces to sparse optimization by lasso regression. To our knowledge,85

only one study has explored the extension of lasso to enforce coherence with relation to a data embedding, called86

‘fused lasso’ optimization7. Fused lasso is however di↵erent in three important ways from Eq. (7). First, it suppresses87

the first-order derivative of the inference target to promote coherence. Second, fused lasso was developed for 1-d88

or 2-d datasets, assuming a natural ordering for the observed cell states. Third, like lasso, the inference object of89

fused lasso is a vector. In contrast, the coherent sparse optimization in Eq. (7) is generalized to arbitrary graphs;90

it suppresses the second-order derivative (the curvature) to enforce coherence; and it is generalized to matrix inference.91

92

Our goal is now to ground the optimization problem in LT-scSeq data, and to propose an algorithm that approx-93

imates solution of Eq. (7). To make connection with raw clonal data, we approximate the density profile matrices94

P(t) as,95

P(t) = I(t)S(t), (8)

where I(t) is a clone-by-cell matrix observed at time t, and S(t) is a cell-cell similarity matrix at time t. Note that96

Eq. (8) integrates the state information (encoded in S(t)) and clonal information (encoded in I(t)) into P. This local97

smoothing operation indirectly imposes coherent transitions in this system.98

99

We now discuss implementation of the optimization problem. Eq. (7) might be formulated as a quadratic program-100

ming problem, and be solved accordingly as in fussed lasso7. However, this strategy is very expensive computationally7.101

There could be ways to solve the optimization e�ciently and exactly, and we leave it as an open problem. Instead,102

we provide an e�cient yet heuristic way to solve the optimization. Specifically, we break down individual elements of103

the objective function, and propose a simple alternative for each of them.104

1. Sparsification. Instead of including the sparsity term ||T ||1 into the objective function, we directly apply a105

pre-defined thresholding to the transition map at each iteration: T  ✓(T, ⌫), where106

[✓(T, ⌫)]ij =

(
Tij , if Tij � ⌫maxj Tij

0, Otherwise
(9)
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2. Transitions within clones. To enforce Eq. (4) for each observed clone, we consider a clonal transition map ⇡
m

107

for the m-th clone, which allows only intra-clone transitions and conserves the total transition flux within a108

clone. We do so by projecting the transition map T and performing clone-wise normalization: ⇡m  Pm(T ):109

[Pm(T )]ij =
⇡̃
m
ijP

i0j0 ⇡̃
m
i0j0

, (10)

where ⇡̃
m
ij = Tij if the transition i ! j occurs within clone m, and otherwise ⇡̃

m
ij = 0. The composite map110

capturing all intra-clone transitions is then,111

P(T ) =
X

m

Pm(T ) (11)

A map constructed in this way, ⇡ = P(T ), will satisfy the following equation approximately:112

I(t2) ⇡ I(t1)⇡(t1; t2), (12)

which is the clonal constraint for directly observed cell states8. The map ⇡(t1; t2) can be used to specify T , but113

being constrained to clones it is no longer coherent.114

3. Coherence. To enforce coherence, we begin by noting that Eqs. (4), (8) and (12) together lead to the relationship115

T (t1; t2) = S
�1
t1 ⇡(t1; t2)St2 . As similarity matrices S are generally non-invertable, we introduce a pseudo-inverse,116

T (t1; t2) ⇡ S
+
t1⇡(t1; t2)St2 . (13)

Eq. (13) smoothes the transition map learnt within-clones, ⇡, over nearby states to get a transition map T117

across all states. T is now a locally continuous map and satisfies the coherence constraint: similar initial cell118

states have similar fate outcomes.119

This approach to calculating T leads to minimization of the term ↵||LT ||2 in Eq. (7), although the parameter120

↵ establishing the relative weight of coherence is no longer explicitly identifiable in the procedure. It is instead121

reflected in the extent of smoothing.122

These three steps, carried out sequentially and iteratively, define the CoSpar algorithm given in methods. Note that123

normalization is performed clone-wise in Eq. (11). The non-negativity constraint, T � 0, is implicitly satisfied in the124

above steps. In our strategy, Eq. (13) is the most time-consuming step as it involves multiplication of large matrices.125

CoSpar is nonetheless e�cient as it carries out matrix multiplication only at Eq. (13), and we find that it converges126

within a few iterations (Supplementary Fig. 2d).127

Supplementary Note 4: Transition map initialization with HighVar128

The HighVar method provides an approach to initialize the joint optimization of T and I(t1) (see Methods). The129

approach is loosely motivated by the expectation that cells similar in gene expression between time points may share130

clonal origin. This expectation can be violated; we use it only to initialize numerical optimization.131

HighVar consists of three steps: 1) Select highly variable genes that are expressed at both t1 and t2; 2) For each132

highly variable gene (indexed by m), threshold its expression to form a binary expression matrix x̂im 2 {0, 1} for all133

states observed at t1 and t2 to generate pseudo clonal data Î(t1) and Î(t2) from the binary expression matrix; 3) Run134

CoSpar with Î(t1) and Î(t2). The pseudo-clonal data Î(t1) and Î(t2) are discarded, and the resulting map T is used135

to initialize CoSpar with the true clonal data.136

For the first step, we use the SPRING gene filtering function filter genes with an adjustable gene variability percentile137

parameter HighVar gene pctl to select highly variable genes9. For the second step we discretize the gene expression138

of each highly-variable gene, sequentially, with a gene-specific threshold ⌘m:139

Îim = H

⇣
xi(m)� ⌘m

⌘
⇥ Zim,

where H(·) is the Heaviside step function (H(x) = 1 if x > 0; otherwise 0), Zim = [1 � H(
Pm�1

m⇤=0 Îim⇤)] sums140

over previously considered genes to ensure that the same cell is not assigned to more than one pseudo-clone. The141

gene-specific threshold ⌘m is chosen such that every pseudo clone has the same number of cells at each time point142

Nt/M , where Nt is the number of observed cells at time t and M is the total number of highly variable genes (i.e.,143
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pseudo clones). In case Nt/M is not an integer, we use its ceil, i.e., dNt/Me, and stop the clonal matrix update when144

all cells are clonally labeled.145
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