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  9 

Abstract 10 

Conventional environmental health studies primarily focus on limited environmental stressors at the 11 

population level, which lacks the power of dissecting the complexity and heterogeneity of individualized 12 

environmental exposures. Here we integrated deep-profiled longitudinal personal exposome and internal 13 

multi-omics to systematically investigate how the exposome shapes an individual's phenome. We 14 

annotated thousands of chemical and biological components in the personal exposome cloud and found 15 

thousands of internal biomolecules were significantly correlated with the external exposome, which was 16 

further cross validated using corresponding clinical data. In particular, our results showed that 17 

agrochemicals and fungi predominated in the highly diverse and dynamic personal exposome, and the 18 

biomolecules and pathways related to the individual's immune system, kidneys, and liver were highly 19 

correlated with the personal external exposome. Overall, our findings demonstrate dynamic interactions 20 

between the personal exposome and internal multi-omics and provide insights into the impact of the 21 

environmental exposome on precision health. 22 

 23 

 24 
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Introduction 26 

Human health is shaped by the personal genome, microbiome, and exposome1. Extensive studies have 27 

been conducted on the genome and microbiome, whereas the human exposome is rarely investigated, 28 

especially at the individual level. Exposomics aims to characterize all physical, chemical, and biological 29 

components collectively in the human internal and external environment. Specifically, the internal 30 

environment includes but is not limited to dietary components2–4, xenobiotics and their biotransformation 31 

products, foreign DNA/RNA, and bioactive molecules accumulated from exogenous sources5. The 32 

external environment consists of all potential exposures from the near-field to the far-field sources of 33 

exogenous chemical, biological, and physical exposures6–9. Conventional environmental health risk 34 

assessments rely on environmental epidemiology within a predefined, usually large, geographical region. 35 

However, recent studies revealed that personal exposome profiles are highly dynamic and 36 

spatiotemporally different among individuals who live in the same geographical area. For instance, 37 

studies have shown that individuals are exposed to significantly different chemical and biological 38 

stressors during the same period even if they are in the same geographical region, such as the San 39 

Francisco Bay Area or London10,11. Another limitation is that previous studies usually targeted a single 40 

group of stressors, which failed to provide a holistic picture of the exposome cloud and their 41 

interactions12. Moreover, stressor-induced physiological responses varied significantly among different 42 

individuals11. Therefore, there is a critical need to monitor exposures at the individual level and 43 

systematically integrate them with respective internal multi-omics profiles to fully characterize each 44 

individual's personal responses to environmental exposures. 45 

  46 

Multi-omics analyses enable a detailed investigation into the biological mechanisms underlying human 47 

phenotypes by integrating multiple omics, such as proteomics, metabolomics, and microbiomics13. Multi-48 

omics profiling, together with clinical measures such as cytokines and blood tests, can comprehensively 49 

assess one's health status and detect significantly correlated exposures to understand the impact of the 50 

external exposome on human biology and health10,14,15. In addition, longitudinal profiling can avoid biases 51 
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introduced by one-time sampling and provide a molecular portrait of the effect of different exposures at 52 

an individual level. 53 

  54 

In this study, we utilized our previously published datasets to integrate thousands of longitudinally 55 

measured chemical and biological components along with physical factors in the personal exposome to 56 

investigate how the exposome impacted internal -omes, such as the proteome, metabolome, the gut 57 

microbiome as well as cytokines and blood markers10,14,15. In addition, toxins and carcinogens, cytokines, 58 

and blood tests were obtained or annotated from the blood samples to understand the impact of the 59 

exposome on precision environmental health. Specifically, this study 1) improved the annotation of 60 

biological and chemical exposures in the external exposome and human blood; 2) integrated the external 61 

exposome with internal multi-omics to investigate the effect of the exposome on molecular phenotypes 62 

and pathways; and 3) correlated the environmental stressors with clinical measurements to associate the 63 

health effects of the external exposome. 64 

 65 

Results 66 

Longitudinal profiling of the exposome and internal multi-omics to monitor personal 67 

environmental health. We investigated whether the external exposome is related to the internal 68 

molecular and physiology profile at a comprehensive and personal level using the schematic shown in 69 

Figure 1a. We reanalyzed deep biological and chemical exposome data collected from our previously 70 

published study in which an individual had been continuously wearing a personal exposome collection 71 

device “exposometer” and correlated it with the internal molecular profiles. Over the 52-day period 72 

relevant for this study, the device captured organic chemicals using zeolite, followed by methanol elution 73 

and liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) analysis. 74 

Biological specimens were also captured using polyethersulfone filters and nucleic acids analyzed by high 75 

throughput sequencing of DNA and RNA. (Supplementary Data 1). General environmental factors (e.g., 76 

temperature, humidity, total particulate matter) were recorded by the device, and the other environmental 77 
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factors were also obtained from the local air quality monitoring stations (Figure 1a). Contrary to 78 

conventional exposome monitoring studies, which usually focused on the exposures at a single 79 

timepoint16–18, we captured personal exposome profiles across 18 timepoints, and annotated 1,265 genera, 80 

158 known chemical stressors among 3,299 chemical features, and 10 environmental factors which 81 

include physical stressors that may impact environmental health in this study (Figure 1b). These genera 82 

and known chemical stressors were annotated from the improved microbiome and chemical annotation 83 

pipelines that we developed (Methods).  84 

 85 

Over the same 52 days period, we also collected stool and blood samples from the same participant to 86 

profile the gut microbiome, proteome, metabolome, toxins and carcinogens, cytokines, and blood tests 87 

(Figure 1c and Supplementary Data 1). Through reanalysis pipelines, we were able to annotate 60 88 

toxins and carcinogens as well as 664 metabolites, 302 proteins, and 62 gut microbiome taxa. We also 89 

measured 62 cytokines and 46 clinical blood parameters to longitudinally monitor personal health status15. 90 

All sample collections were performed during the first quarter of 2016 from three distinct locations in the 91 

U.S. (Figure S1). However, not all sample types were collected at each time point, and the inter-omics 92 

analyses were performed only when overlaps were available (Figure 1b). Despite our limited ability to 93 

control all confounding variables, we searched for significant intra- and inter- exposome correlations and 94 

high-degree components which have the most significant correlations in each analysis as those may play 95 

important roles in the exposome-ome interactions [|r| > 0.9; False Discovery Rate (FDR) adjusted p-value 96 

(q-value) < 0.05]. 97 

 98 

Intra-exposome relationships in the highly dynamic and diverse personal exposome cloud. To 99 

annotate as many chemicals as possible, we searched through the 3,299 LC-HRMS raw features using a 100 

combination of five public exposome related databases as well as an in house database that we assembled. 101 

Using this new annotation pipeline, we were able to annotate 158 known stressors (Figure 2a, Methods). 102 

These stressors were categorized into 13 classes, with the dominant class being agrochemicals, followed 103 
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by pharmaceuticals & personal care products (PPCPs), plasticizers, and International Agency for 104 

Research on Cancer (IARC) Group 2A carcinogens, and the chemicals in each class varied dynamically 105 

during the monitoring period (Figure 2a, Figure S2 and Supplementary Data 2). To characterize the 106 

biological exposome domain, we circumvented the limited ability of 16S rRNA/18rRNA/ITS sequencing 107 

by applying metagenomic sequencing. We found 17 genera dominated during the study period, most of 108 

which were fungi and bacteria, but they varied dynamically (Figure 2b). Ten general environmental 109 

factors, measured either by personal exposometer (temperature, humidity, and total particulate matter) or 110 

local air monitoring stations (atmospheric pressure, wind speed, SO2, NO2, O3, CO, and air quality index), 111 

were also included in the study (Figure 2c). 112 

  113 

We performed intra-omics correlation analyses to investigate the potential relationships among all the 114 

exposome components (Methods, Supplementary Data 3). We found a total of 60 statistically 115 

significant correlations (|r| > 0.9 and q-value < 0.05) among 74 exposome components, including 41 116 

chemicals, 30 genera, and 3 environmental factors (Figure 2d and Figure S3). Specifically, diisononyl 117 

phthalate (a plasticizer) and butylated triphenyl (an organophosphate flame retardant) had the most 118 

significant correlations, followed by various agrochemicals, PPCPs, and IARC group 2A carcinogen. 119 

Among the biological components, Tricholoma had the highest number of significant correlations, 120 

followed by Cylindrobasidium, Piriformospora, Erysiphe, Schizophyllum, Serendipita, and Hirsutella, all 121 

of which are fungi (Figure 2e). In terms of environmental factors, only temperature and humidity 122 

collected by the exposometer as well as SO2 concentration collected by the local monitoring stations were 123 

significantly correlated with other exposome components (Figure 2d). For example, Paenibacillus was 124 

positively correlated with the temperature, consistent with the literature that members of Paenibacillus are 125 

heat resistant and grow well in relative hot temperatures19. Azoxystrobin, ethylparaben and captan are 126 

fungicides or antifungal agents20–22 that negatively correlated with different fungi (Figure 2f).  127 

 128 
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Inter-omics analyses between the exposome and multi-omics revealed physiological links to the 129 

exposome. To investigate how the exposome shapes one's phenome longitudinally, we investigated the 130 

links between the exposome and internal multi-omics. Specifically, we found 8,986 significant 131 

correlations (|r| > 0.9 and q-value < 0.05) among 1,700 factors from all -omes, and positive correlations 132 

were more predominant than negative correlations (Figure 3a, Supplementary Data 4). Biological 133 

exposome and metabolome were the most extensive -omes in the network, and they also had the greatest 134 

number of significant correlations (N = 4148; Figures 3a and 3b). Additionally, we found that the 135 

exposome and internal multi-omics networks can be divided into several subnetworks with high 136 

modularity (0.819, Figure S4a, b). 137 

 138 

Personal exposome-gut microbiome interactions. We found 1,333 significant correlations (|r| > 0.9 and 139 

q-value < 0.05) between the exposome and the gut microbiome (16S rDNA data), and the number of 140 

positive and negative correlations were approximately equal (Figure 3c). Specifically, the six highest 141 

degree bacteria (each correlates with 34 exposome components) may be involved in multiple 142 

physiological processes that respond to the personal exposome. For example, members from Alistipes 143 

were shown to play essential roles in inflammation and various diseases23, members from Eggerthella 144 

were implicated as the causes of liver and anal abscesses, ulcerative colitis, and systemic bacteremia24, 145 

members from Odoribacter were found to maintain short-chain fatty acid availability and systolic blood 146 

pressure25, members from Parasutterella were involved in bile acid maintenance and cholesterol 147 

metabolism26, whereas members from Roseburia played vital roles in producing short-chain fatty acids 148 

and anti-inflammatory pathways27. Out of the top six genera, all but Roseburia positively correlated with 149 

chemical stressors and usually negatively correlated with biological components (Figure 3d and S4d). 150 

As a result, members from Alistipes, Eggerthella, Odoribacter, and Parasutterella were more likely to be 151 

involved in proinflammatory processes, while members from Roseburia were mainly involved in anti-152 

inflammatory processes. On the exposome side, Botryosphaeria, Corynespora, and Enterobacter were the 153 
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highest degree genera (each correlated with 18 gut bacteria) among all exposome components, indicating 154 

their essential roles in interacting with the participant's gut microbiome (Figure 3c).  155 

 156 

Exposome-proteome interaction network. We found 2,054 statistically significant correlations (|r| > 0.9 157 

and q-value < 0.05) between the individual’s exposome and internal proteome. Most of the high-degree 158 

exposome components were biological components, and positive correlations were slightly more frequent 159 

than negative correlations (Figure 4a). Specifically, we found 11 highest degree substances (nine genera 160 

and two chemicals), each of which was significantly correlated with more than 22 proteins in the 161 

proteome. The high-degree biological genera were fungi and primarily positively correlated with proteins; 162 

in contrast, Xeromyces negatively correlated with proteins. Fenazaquin (a pesticide) and 163 

tetrabromobisphenol A diallyl ether (a brominated flame retardant) were two high-degree chemical 164 

stressors, both of which primarily negatively correlated with proteins. On the proteome side, 17 highest 165 

degree proteins (each correlated with 21 exposome components) were discovered, and 14 of them were 166 

directly immune-related. For instance, alpha-1-HS-glycoprotein (AHSG) promotes endocytosis, 167 

complement component 3 (C3) activates the complement system, and fibrinogen alpha chain (FGA) is 168 

involved in both innate and T-cell mediated pathways28. Additionally, we discovered significantly 169 

correlated signaling pathways when queried against GO, KEGG, and Reactome databases 170 

(Supplementary Data 5 and 6). Chemical and biological exposome shared several significantly 171 

correlated pathways, such as protein activation cascade, platelet degranulation and acute inflammatory 172 

response, whereas some pathways were uniquely correlated with the chemical exposome, such as platelet 173 

activation, signaling, and aggregation pathway (Figure 4b). Moreover, immune-related pathways were 174 

among the most common high-degree signaling pathways correlating with chemical and biological 175 

exposome, and those pathways were about half positively and half negatively correlated with the 176 

exposome (Figure 4c).  177 

 178 
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Exposome-metabolome interaction network. The blood metabolome is considered the most interactive 179 

-ome with the exposome since xenobiotics interact with endogenous metabolites initially after entering 180 

the human body. In fact, the blood exposome overlaps with the blood metabolome from an analytical 181 

perspective as current approaches cannot distinguish the sources of the molecules present in the blood. 182 

Moreover, xenobiotic biotransformation is similar to that of metabolic pathways and can even involve the 183 

same enzymes, such as cytochromes P45016,29. Therefore, it is essential to investigate the interactions 184 

between the exposome and metabolome to better understand the initial health impact of the exposome.  185 

 186 

In this study, we found 4,624 statistically significant correlations (|r| > 0.9 and q-value < 0.05) between 187 

the exposome and internal metabolome. Specifically, positive correlations were more frequent in the 188 

exposome-metabolome analysis than the exposome-proteome analysis (Figure 5a and S5). The high-189 

degree biological components were primarily fungi and usually positively correlated with the metabolites; 190 

interesting exceptions are Aegilops (a grass), the bacteria Pontibacter and Hymenobacter, and 191 

Paramecium (a ciliated protist). Salicylic acid (a PPCP), dinoseb (an herbicide), dibromoethane (an IARC 192 

group 2A carcinogen) were the three highest degree chemicals, all of which primarily positively 193 

correlated with endogenous metabolites. Importantly, we found 19 high-degree metabolites, each 194 

significantly correlated with 21 exposome substances. Several metabolic pathways were significantly 195 

correlated with both the chemical and biological exposome (Methods, Figure S7), such as protein 196 

digestion and absorption and aminoacyl-tRNA biosynthesis, whereas some pathways were only correlated 197 

with the biological exposome (Figure 5b, Supplementary Data 7 and 8). Similar to the exposome-198 

proteome analysis, we performed correlation network analysis among the exposome, metabolites, and 199 

metabolic pathways. Trimethyl phosphate (a plasticizer and organophosphate flame retardant), 200 

2,2',3,3',4,4',5-Heptachlorobiphenyl (a polychlorinated biphenyl), and tetrachloroethylene (an IARC 201 

group 2A carcinogen) were positively correlated with all the metabolic pathways, whereas 202 

tetrabromobisphenol A diallyl ether, salicylic acid, and zeranol (a mycotoxin) were negatively correlated 203 

with all metabolic pathways (Figure 5c).  204 
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  205 

Monitoring precision environmental health by investigating the exposome-clinical data 206 

correlations. Standard clinical measurements such as blood and cytokine tests directly reflect the 207 

individual's health. Thus, clinical test results are ideal indicators to investigate the health impact of the 208 

exposome. Based on our exposome-cytokine analysis, biological exposome had the most significant 209 

correlations with cytokines, followed by chemical and environmental factors. 362 significant correlations 210 

(|r| > 0.9 and q-value < 0.05) were found between the exposome and cytokines, most of which were 211 

positive correlations. After converting correlation coefficients to variable importance in projection scores, 212 

we determined the contributions of all significantly correlated exposome components on cytokines 213 

(Supplementary Data 10, Methods). Specifically, 60% of the cytokine variation was explained by the 214 

determined factors in this study. Furthermore, the top 13 cytokines, which were almost entirely 215 

contributed by exposome components (> 90%), were all proinflammatory cytokines, such as IL-23, MCP-216 

1, and VCAM-1, indicating that those cytokines may play essential roles in response to the exposome. 217 

Additionally, 14 highest degree (each correlates with > 7 exposome components) cytokines were found to 218 

be primarily positively correlated with the exposome, whereas only MCP-1 was primarily negatively 219 

correlated (Figure 6a). Most high-degree biological components were fungi, such as Wallemia, which are 220 

filamentous food-borne pathogens30. Moreover, other than  Xeromyces, most of the exposome 221 

components were primarily positively correlated with cytokines, consistent with the exposome-proteome 222 

analysis where Xeromyces primarily negatively correlated the proteins.  223 

 224 

Similar to the exposome-cytokine analysis, biological components had the most significant correlation 225 

with blood tests, followed by chemicals and environmental factors. However, fewer chemicals were 226 

correlated with blood tests than those correlated with cytokines (Figure 6a). 513 significant correlations 227 

were found between the exposome and blood tests, and the majority were positive correlations. Using 228 

similar contribution determination algorithms, 77% of the blood tests variation was explained by the 229 

determined factors in this study. Similarly, the top 13 blood tests which were almost entirely contributed 230 
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by the determined exposome components (contributions of the exposome > 95%), were primarily related 231 

to the immune system, liver, and kidney functions. Additionally, eight highest degree (each correlated 232 

with > 25 exposome components) blood tests were primarily positively correlated with the exposome 233 

while only platelet was primarily negatively correlated. Interestingly, the highest degree blood test, 234 

creatinine, correlated with 62 exposome components, which is a biomarker for kidney function (Figure 235 

6b). Unlike cytokine profiles, where we cannot draw a clear line of the individual's health status, blood 236 

tests have clinically established reference ranges facilitating the differentiation. We therefore performed 237 

correlation analyses to understand the effects of the exposome on personal health using blood test results 238 

with out-of-range values. Interestingly, we found the abnormal blood glucose level values were 239 

significantly correlated with 3 chemical stressors and 13 microbes. For instance, salicylic acid 240 

concentration was negatively correlated with glucose level, and salicylic acid has been shown to decrease 241 

glucose concentration and used as a treatment for type 2 diabetic patients31, which is consistent with our 242 

findings. Similarly, abnormal values of absolute eosinophils and urea nitrogen correlated with specific 243 

biological exposome components (Figure 6b). Previous studies were consistent with our results as 244 

eosinophilic phagocytosis consumes eosinophils during allergy and inflammation32, and various 245 

pathogenic microbes can utilize urea as a nitrogen source33. 246 

  247 

Discussion 248 

It has long been acknowledged that environmental factors affect one's health, but conventional 249 

environmental health studies face limitations. For example, a) population or cohort studies overlook the 250 

significant differences between individuals; b) single timepoint sampling fails to reflect the continuous 251 

effects of stressors; c) and focusing on a single or a class of stressors does not capture the holistic health 252 

impact of the exposome.  253 

 254 

To overcome these challenges, we generated a more comprehensive precision environmental health 255 

profile by longitudinally monitoring both the personal exposome and internal multi-omic profiles (Figure 256 
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1). In addition, we also measured standard clinical indices to investigate the health effects of the 257 

exposome. Using Spearman correlation analysis, we discovered many significant correlated physiological 258 

parameters and exposome components, indicating their interactions in the participant’s responses to the 259 

personal exposome. Additionally, our study provided vast testable hypotheses to further investigate the 260 

underlying mechanisms using analytical and experimental approaches.  261 

 262 

We were able to capture more than chemical 3,000 features, but only annotated 158 known chemical 263 

stressors by a broad annotation method that utilizes various databases, including those containing 264 

emerging contaminants34–37. This indicates that existing exposome databases still lack the power to 265 

annotate the majority of the chemical exposome. Interestingly, we found that the concentrations of most 266 

chemicals increased after January 25, 2016, when the individual transitioned from a period of residing at 267 

home to a period of high travel, indicating that the chemical exposome greatly increased with travel to 268 

other locations (Figure S2f). Agrochemicals had the highest concentrations among all annotated 269 

chemicals, indicating their ubiquitous presence in the environment. An alternative view is that 270 

agrochemicals are the most frequently studied chemical stressors, making them most easily identifiable. It 271 

is also worth noting that high concentrations do not necessarily imply high health risks since each 272 

chemical has its own safe dose, and the combined effects among them are still unclear13.  273 

 274 

The biological exposome revealed a number of interesting observations as well. The fungal genus 275 

Stereum was dominant at most time points, reflecting its high abundance in the personal exposome 276 

(Figure 2a)38. We found several interesting correlations of the biological exposome with chemical and 277 

environmental factors, such as associations of antifungals with a decrease in fungal exposures. Many of 278 

these are intended food or soil antifungal products (azoxystrobin and captan), whereas others are common 279 

preservatives (ethylparaben and anthracene) that have antifungal properties10. Overall, nearly 100 280 

significant correlations were found by intra-exposome analysis, representing the complex interactions 281 

within the exposome domains. Importantly, the negative correlations of fungi with various pesticides and 282 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442855doi: bioRxiv preprint 

https://paperpile.com/c/PBEqTT/iznL+V8O0+Mji3+LUlJ
https://paperpile.com/c/PBEqTT/se7S
https://paperpile.com/c/PBEqTT/5Okr
https://paperpile.com/c/PBEqTT/By0H+LZfd
https://doi.org/10.1101/2021.05.05.442855


 

12 
 

herbicides indicate these agrochemicals may inhibit the fungi growth as well (e.g., Tricholoma versus 283 

propoxur and Erysiphe versus bentazone). Moreover, we find several interesting tertiary relationships, 284 

such as the mycotoxin fusarin C (produced by Fusarium) negatively correlated with Cylindrobasidium, 285 

suggesting a possible competition among the different fungi (Supplementary Data 3). 286 

  287 

A recent study identified radioprotective gut microbes and internal metabolites in mice using a multi-288 

omics analysis39, demonstrating the potential of this approach to investigate essential components in the 289 

internal -omes that respond to the external environment. To this end, we performed inter-omics analyses 290 

between the exposome and gut microbiome, proteome, and metabolome, respectively. By discovering 291 

high-degree components in each analysis, we identified the critical components in the exposome-internal 292 

omes interactions. For instance, we found six highest degree gut bacteria that may be important in the 293 

responses to the personal exposome. The high-degree biological components in both exposome-proteome 294 

and exposome-metabolome analyses were mainly fungi, yet few had known human health effects. 295 

However, we identified major high-degree annotated chemicals that are known human stressors; for 296 

instance, the herbicide dinoseb exposure causes various developmental toxicities and loss of thyroid and 297 

body weight40, and brominated flame retardants like tetrabromobisphenol A diallyl ether are known 298 

neurotoxicants41. In addition to the endogenous metabolites, we were able to annotate 60 toxins and 299 

carcinogens in the individual's blood based on the exposome related databases (Figure 1c). Unlike the 300 

annotated xenobiotics in the exposome samples, most of the chemical stressors annotated in the blood 301 

were food and animal toxins. Furthermore, only 11 chemical stressors were annotated in both the external 302 

and blood exposome. This is likely to be partly due to the limited power of the current databases, since 303 

most of the databases only contain the information of parent chemicals but not their biotransformation 304 

products. Additionally, persistent hydrophobic substances tend to accumulate in adipose tissues, but not 305 

in the blood that we profiled, while non-persistent hydrophilic chemicals are efficiently excreted out of 306 

the human body13,16, limiting their identification. Finally, the bioavailability of chemicals in different 307 

external matrices also limits the exposure, dose-response, and concentration of bioavailable fraction36,42,43. 308 
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 309 

Importantly, our results indicate that the immune system, kidneys, and liver may play essential roles in 310 

response to the exposome, which are all known to regulate and respond to foreign substances17,44,45. In the 311 

exposome-proteome analysis, we found 14 out of 17 high-degree proteins were involved in immune 312 

responses (e.g., complement component 3, interleukin-1 receptor accessory protein, and immunoglobulin 313 

heavy chain proteins)45, and immune-related pathways (e.g., acute inflammatory response, humoral 314 

immune response, and complement and coagulation cascades) and were among the highest degree 315 

signaling pathways. In the exposome-metabolome analysis, we identified 19 highest degree metabolites 316 

related to protein metabolism, inflammation, kidney and liver functions (e.g., L-arginine, nutriacholic 317 

acid, epsilon-(gamma-Glutamyl)-lysine, and uracil), indicating that these metabolic pathways were 318 

involved in responses to the exposome. Moreover, certain high-degree metabolic pathways are both 319 

protein and immune-related pathways, such as alanine aspartate and glutamate metabolism, protein 320 

digestion and absorption, and beta-alanine metabolism. Specifically, particular protein metabolisms (e.g., 321 

amino acids synthesis and protein breakdown) were highly sensitive to oxidative stresses caused by the 322 

exposome components46, inflammation is often the first immunological response to foreign substances, 323 

and kidneys and liver are the main detoxification organs46, with liver and bile acids serving essential roles 324 

in responding to the foreign substances47. To further investigate the health effects of the exposome, we 325 

performed Spearman correlation analysis with cytokines and blood test results. It is important to note that 326 

we do not identify many exposome factors, such as dermal and ingestion exposures, inorganic chemical 327 

components48–51, psychosocial stressors, as well as personal lifestyle, which may affect the clinical 328 

measurements as well (Figure 6a). Proinflammatory cytokines were the most significantly correlated 329 

with the external exposome components (e.g., IL-23, MCP-1, and IL-2), and they have been previously 330 

shown to be elevated after exposure to external stressors52. Our blood test results provided further 331 

evidence as fluctuations of creatinine and urea nitrogen, biomarkers of kidney and liver functions, 332 

respectively, were correlated with specific exposome components. As a result, exposome-proteome 333 

analysis cross-validated with exposome-cytokine analysis, indicating that the proinflammatory processes 334 
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play essential roles in responding to the exposome, and the exposome-metabolome analysis cross-335 

validated with exposome-blood tests analysis, showing that liver and kidneys play significant roles in 336 

responding to the exposome. Furthermore, the exposome-microbiome analysis showed that the highest 337 

degree gut bacteria are related to the proinflammatory processes and liver metabolism. Therefore, these 338 

physiological processes and organs may be ideal candidates for testing the combined effects of multiple 339 

stressors in future studies. On the exposome side, high-degree exposome components that overlapped in 340 

more than one inter-omics analysis are significant health concerns. Specifically, Isaria, Sporothrix, and 341 

Tarenaya were among the highest-degree microbes correlated with all internal -omes. Members of these 342 

genera were found to be involved in complex physiological mechanisms and may exhibit adverse health 343 

effects. For example, species of Isaria were found to induce cell death53,  species of Sporothrix triggered 344 

skin and lung inflammatory reactions54, and the pollen of Tarenaya members are allergens and generate 345 

immunoglobulin-E mediated allergic reactions55. Also, certain types of agrochemicals, PPCPs, and flame 346 

retardants that we detected are high-degree chemical stressors known to cause epigenetic alterations, 347 

endocrine disruption, impaired nervous system function, oxidative stress, and inflammation46. Therefore, 348 

those substances would be ideal candidates for investigating the underlying mechanisms of their 349 

combined health effects in future studies. 350 

 351 

In conclusion, we found both time and location impacted the personal exposome, especially the biological 352 

components and environmental factors (Figure S2f), and the biological and chemical exposome was 353 

highly dynamic. These results emphasize the significance of individual precision environmental health 354 

over traditional environmental epidemiology studies. Undoubtedly, due to the limitation of the single 355 

participant and annotation power in this study, future research should monitor the precision environmental 356 

health of more individuals and increase the annotation confidence of the chemical and biological 357 

components in the exposome. Nonetheless, this study demonstrates the power of using a holistic approach 358 

of monitoring the exposome on personal environmental health using inter-omics analyses, and serves as a 359 

useful model to scale to the other individuals and locations. Our study also identified high-degree 360 
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components as essential components among the exposome-internal omes interactions and provided 361 

abundant testable hypotheses to further investigate their underlying mechanisms of impacting individual 362 

health. 363 

  364 
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Materials and Methods 365 

Personal exposome and internal multi-omics samples collection 366 

Exposome samples collection. The participant in the study is enrolled under Stanford University's IRB 367 

protocols IRB-23602 and IRB-34907. Modified RTI MicroPEM V3.2 personal exposure monitor (RTI 368 

International, Research Triangle Park, North Carolina, USA), termed exposometer, was used to collect 369 

chemical and biological components exposed by individuals from January 2016 to March 2016. Also, 370 

temperature, humidity, and total particulate matter were simultaneously collected by the exposometer in a 371 

real-time manner. The original sequential oiled frit impactor was removed to maximize the collection of 372 

biological components. A 0.8 mm pore-size polyethersulfone with a diameter of 25 mm filter (Sterlitech, 373 

Kent, Washington, USA) was placed in filter cassettes to collect particulates for DNA and RNA extraction. 374 

An in-house designed, 3D printed cartridge was placed at the end of the airflow, which contained 200 mg 375 

of zeolite adsorbent beads (Sigma 2-0304) to collect chemicals. Before deployment to the participant, the 376 

MicroPEM was calibrated to a flow rate of 0.5 L/min (± 5%) using a mass flow meter (TSI 4140, Shoreview, 377 

Minnesota, USA). During the study, the participant was instructed to place the exposometer on his arm or 378 

within a radius of 2 meters. Samples were collected after 1 to 3 days of use and stored at -80 °C until 379 

analysis. To minimize the potential contamination, filters and related components were handled in sterile 380 

biological safety cabinets and cleaned by ethanol before use. Clean polyethersulfone filter and zeolite 381 

adsorbent beads were included before extraction as background controls. MicroPEM log files were 382 

downloaded using Docking Station software (RTI International, Research Triangle Park, North Carolina, 383 

USA). The participant used the MOVES App to track geographic locations through GPS coordinates and 384 

daily activities10. General environmental data were collected from the exposometer or National Oceanic 385 

and Atmospheric Administration's National Climatic Data Center or National Centers for Environmental 386 

Information. 387 

 388 

Analysis of chemical exposome by LC-HRMS. LC-HRMS was performed on a platform composed of a 389 

Waters UPLC coupled with Exactive Orbitrap mass spectrometer (Thermo, Waltham, Massachusetts, USA) 390 
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using a mixed-mode OPD2 HP-4B column (4.6 mm x 50 mm) with a guard column (4.6 mm x 10 mm; 391 

Shodex, Showa Denko, Tokyo, Japan). The column temperature was maintained at 45 °C and the sample 392 

chamber at 4 °C. The binary mobile phase solvents were: A, 10 mM ammonium acetate in 50:50 (vol/vol) 393 

acetonitrile: water; B, 10 mM ammonium acetate in 90:10 (vol/vol) acetonitrile: water. Both solvents were 394 

modified with 10 mM acetic acid (pH 4.75) for positive mode acquisition or 10 mM ammonium acetate 395 

(pH 9.25) for negative mode. The flow rate was set as follows: flow rate, 0.1 ml/min; gradient, 0–15 min, 396 

99% A, 15–18 min, 99% to 1% A; 18–24 min, 1% A; 24–25 min, 1% to 99% A; 25–30 min, 99% A. The 397 

MS acquisition was set as full scan mode with an ESI probe or APCI probe. The capillary temperature was 398 

275 °C, the sheath gas was 40 units, the positive mode spray voltage was 3.5 kV, and 3.1 kV for the negative 399 

mode. The capillary voltage was 30 V, the tube lens voltage was 120 V, and the skimmer voltage was 20 400 

V. The mass spectrum scan used 100,000 mass resolution, high dynamic range for AGC target, maximum 401 

injection time of 500 ms, and a scan range of 70-1,000 m/z. The details of quality assurance and quality 402 

control were described in the previous study53. 403 

 404 

Post-acquisition analysis of the chemical exposome. Analysis of chemical exposome was performed as 405 

previously described10,53. In brief, feature detection was performed with XCMS. For a conservative 406 

assessment of the number of unique chemical features, a customized Python script was used to remove 407 

potential isoforms, isotopes, and adducts from the 3,299 features enriched at least 10-fold as compared with 408 

the blank control. The annotation was based on various exposome related databases that are publicly 409 

available as well as in-house databases54–56. The annotation confidence levels of all the chemicals in the 410 

exposome were at least level 5, with at least one chemical at level 1 or 2 in each chemical class53,57. 411 

 412 

Sequencing and analysis of biological exposome. DNA and RNA sequencing and analysis were 413 

performed as previously described10,53. In brief, DNA and RNA were extracted from filters and linearly 414 

amplified for sequencing. Libraries were sequenced by Illumina HighSeq 4000 platform (2 x 151bp) that 415 

yields an average of ~50 M unique reads per sample. Sequenced reads were deduplicated, and adapters 416 
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were trimmed using Trim Galore! (version 0.4.4). Human related reads were identified using BWA mapped 417 

to the hg19 human genome and removed. Following dehumanization, non-human reads were used for de-418 

novo assembly using Megahit (1.1.1), and contigs were queried against our in-house database with 419 

BLASTN (2.3.9+) wrapper. The extensive in-house reference genome database included more than 40,000 420 

species covering all domains of life10. Taxonomy classification and abundance were determined using a 421 

customized Lowest Common Ancestor (LCA) algorithm.  422 

 423 

Blood sample collection. At the designated time point, blood was drawn from the overnight fasted 424 

participant in the Clinical and Translational Research Unit at Stanford University.  Aliquots of blood were 425 

condensed at room temperature to coagulate, and clots were subsequently pelleted. The serum supernatant 426 

was then immediately frozen at -80 °C. The blood in the EDTA tubes was immediately layered onto the 427 

Ficoll medium and spun with gradient centrifugation. Then the top layers were removed, and plasma was 428 

aliquoted and immediately frozen at –80 °C. Subsequently, blood mononuclear cells (PBMCs) were 429 

collected and counted using a cell counter. Aliquots of PBMCs were further pelleted and frozen with 430 

DMSO/FBS. For the later multi-omics analyses, PBMCs were thawed on ice and then lysed to protein 431 

fraction using Allprep Spin Columns (Qiagen) according to the manufacturer's instructions with the 432 

QIAshredder lysis option. Upon receipt of samples, blood samples were then stored at –80 °C for clinical 433 

tests. The details of the blood and cytokines tests can be found in Supplementary Data 117.  434 

 435 

Collection and analysis of the gut microbiome. Stool samples were collected according to the Human 436 

Microbiome Project-Core Microbiome Sampling Protocol A (https://www.hmpdacc.org/). Following the 437 

Human Microbiome Project-Core Microbiome Sampling Protocol A (HMP Protocol #07-001, v12.0), DNA 438 

extraction was performed. We used the MOBIO PowerSoil DNA extraction kit and proteinase K to isolate 439 

DNA in a clean fume hood. Samples were then treated with lysozyme and staphylococcal hemolysin. For 440 

16S (bacterial) rRNA gene amplification, primers 27F and 534R (27F: 5′-441 

AGAGTTTGATCCTGGCTCAG-3′ and 534R: 5′-ATTACCGCGGCTGCTGG-3′) were used to amplify 442 
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the 16S hyper-variable regions V1–V3. Unique barcode amplicons were used, and samples were sequenced 443 

on the Illumina MiSeq platform (V3; 2 × 300 bp). Illumina software handled the initial processing of all 444 

raw sequencing data. Reads were further processed by removing low-quality (average quality <35) and 445 

ambiguous base (Ns) sequences. UChime was used to remove chimeric amplicons, cluster the amplicon 446 

sequences, and select the operational taxonomic unit by Usearch based on the GreenGenes database 447 

(version in May 2013). The final biological classification assignment was performed using the RDP-448 

classifier in QIIME with custom scripts58. 449 

  450 

Untargeted proteomics by LC-HRMS. Preparation and analysis of plasma samples were performed as 451 

previously described58. In short, tryptic peptides from plasma samples were separated on the NanoLC 425 452 

system (SCIEX). 0.5 × 10 mm ChromXP (SCIEX) was used for trap-elution settings, and the flow rate was 453 

set to 5 µl/min. The LC gradient was a 43-minute gradient with mobile phase A: 0.1% formic acid in 100% 454 

water and mobile phase B: 0.1% formic acid in 100% acetonitrile. During the gradient, mobile phase B was 455 

4–32%. Then 8 µg of undepleted plasma were loaded on LC. SWATH acquisition was performed on a 456 

TripleTOF 6600 system equipped with a DuoSpray source and a 25 µm ID electrode (SCIEX). The variable 457 

Q1 window SWATH acquisition mode (100 windows) was constructed in the high-sensitivity MS2 mode. 458 

PyProphet59 was used to score the peak groups in each run statistically, and TRIC60  was used to align all 459 

runs. Finally, a matrix with a peptide level of 1% FDR and a protein level of 10% FDR was generated for 460 

subsequent analysis. The protein abundances were the sum of the first three most abundant peptides. Perseus 461 

(v 1.4.2.40) was applied to subtract the main components showing the main batch deviation to reduce batch 462 

effect58. 463 

  464 

Cytokine profiling. The levels of circulating cytokines in the blood were measured by the 62-plex Luminex 465 

antibody-conjugated magnetic bead capture assay (Affymetrix), which has been extensively characterized 466 

and benchmarked by the Stanford Human Immunological Monitoring Center. The human 62-plex 467 

(eBiosciences/Affymetrix) was utilized with the modifications described below. Briefly, beads were added 468 
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to a 96-well plate and washed using Biotek ELx405. Samples were added to the plate containing mixed 469 

antibody-linked beads, incubated at room temperature for 1 hour, and then overnight at 4 °C with shaking 470 

(500-600 r.p.m, orbital shaker). After overnight incubation, the plate was washed, and then the biotinylated 471 

antibody was added. The plate was incubated at room temperature with shaking for 75 minutes. The plate 472 

was washed, and streptavidin-PE was added for detection. After incubating for 30 minutes at room 473 

temperature, the plate was washed once, and then the reading buffer was added to the wells. The plate was 474 

read by a Luminex 200 instrument, and the lower limit of each cytokine per sample was set to 50 beads. 475 

Radix Biosolutions custom assay control beads were added to all wells. The batch effect was corrected 476 

using replicates and controls shared between batches58. 477 

  478 

Untargeted metabolomics by LC–HRMS. All blood samples were prepared and analyzed for 479 

metabolomics as previously described61. In short, plasma samples were extracted with acetone: acetonitrile: 480 

methanol (1:1:1 vol/vol/vol), evaporated to dryness under nitrogen and reconstituted in methanol: water 481 

(1:1 vol/vol) for LC-HRMS analysis. HILIC and RPLC separations were used to analyze the extractants 482 

four times in positive and negative modes, respectively. HILIC metabolomics data was obtained on a 483 

Thermo Q Exactive plus, and RPLC metabolomics data was obtained on a Thermo Q Exactive. Both 484 

instruments were equipped with HESI-II probes and operated in the full MS scan mode. We only used the 485 

combined quality control samples from the study to obtain MS2 data. We used a ZIC-HILIC column (2.1 × 486 

100 mm, 3.5 µm, 200Å; Merck Millipore) and mobile phases composed of 10 mM ammonium acetate in 487 

acetonitrile: water (50:50 vol/vol) (A) and 10 mM ammonium acetate in acetonitrile/water (95:5 vol/vol) 488 

(B), and a Zorbax SB-Aq column (2.1 × 50 mm, 1.7 µm, 100Å; Agilent Technologies) and mobile phases 489 

composed of 0.06% acetic acid in water (A) and 0.06% acetic acid in methanol (B) to perform HILIC and 490 

RPLC analyses, respectively. All raw metabolomics data were processed using Progenesis QI (Nonlinear 491 

Dynamics, Waters). We also removed features that did not show sufficient linearity when diluted. Only 492 

features presented in more than ⅓ samples were retained for further analysis, and the KNN method was 493 

used to estimate missing values. To normalize the data, locally assessed scatter plot smoothness analysis 494 
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was applied62. Metabolic signatures were identified by matching retention time and fragmentation spectra 495 

to corresponding standards or comparing fragmentation patterns to public repositories, as previously 496 

reported58. Toxin and carcinogens were annotated out of the metabolome features if the feature cannot be 497 

annotated as a human metabolite. The annotations of toxins and carcinogens were based on various blood 498 

exposome related databases that are publicly available as well as in-house databases54–56. The confidence 499 

levels of blood chemical annotation were at least level 5, with the majority at least level 357. 500 

  501 

Statistical analyses  502 

General statistical analysis and data visualization. All statistical analysis and data visualization were 503 

performed using R (v3.6.0, https://www.r-project.org/) and RStudio (v 1.2.5019). Most of the R packages 504 

and their dependencies used in this study were deployed in CRAN (https://cran.r-project.org/) or 505 

Bioconductor (https://bioconductor.org/), and some of them are deployed on Github. Session information 506 

for this study is provided in Supplementary Note 1. All scripts to reproduce analysis and data visualization 507 

for this study is available on Github 508 

(https://github.com/jaspershen/precision_exposome/tree/main/R/20200511). All data from the exposome 509 

and internal -omes data were log2 transformed before analysis. According to the participant’s food log, 510 

fiber intake was adjusted for all internal -omes data to reduce fiber intake biases (Supplementary Note 2). 511 

  512 

Exposome and internal multi-omics correlation networks. Spearman correlation was used to build the 513 

correlations in the intra/inter-omics analyses. In general, for each two -omes pair, the correlation matrix 514 

was calculated as below: for each variable in one -omes, Spearman correlations and FDR adjusted p-values 515 

were generated with all features in the other -omes. Only correlations between each pair variable with 516 

absolute correlation > 0.9 and FDR adjusted p-value < 0.05 were kept to construct the final correlation 517 

networks.  518 

  519 
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Community analysis. Community analysis was performed based on edge betweenness embedded in R 520 

package igraph (https://igraph.org/). Briefly, this is an iterative process, the edges with the highest edge 521 

betweenness score were removed in each iteration, and the process was repeated until only individual nodes 522 

remain. At each iteration, modularity was calculated, and communities were analyzed at the iteration that 523 

maximized this quantity. A visualization of iteration community versus modularity is shown in Figure S6 524 

a, b. To ensure the robustness and reliability of our findings, only communities (or clusters) with at least 3 525 

nodes were kept for subsequent analysis. All the networks were visualized using R package igraph, ggraph 526 

and tidygraph. 527 

  528 

GO, KEGG and Reactome pathway enrichment for proteome. The R package ClusterProfiler (v 529 

3.18.0, https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) was used for GO, KEGG 530 

and Reactome pathway enrichment for proteomics. In general, UNIPROT and ENTREZID were obtained 531 

for proteins that connect with the exposome in correlation networks. Then the GO, KEGG and Reactome 532 

pathway databases were used for pathway enrichment (hypergeometric distribution test, p-values are 533 

adjusted by the FDR method, and the cutoff was set as 0.05). Only pathways with hitting protein number > 534 

3 were retained for subsequent analysis.  535 

 536 

Metabolic feature based dysregulated module detection. Applying the same concept from mummichog63 537 

and PIUMet64, metabolic networks from KEGG and community analysis were utilized to detect 538 

dysregulated modules based on metabolic features connecting the exposome, respectively63. In general, the 539 

metabolic network (MN) was downloaded from KEGG, which contains 1,377 nodes (metabolites) and 1561 540 

edges (reactions). The brief workflow is described below:  541 

1. All the metabolic features connecting the exposome (Lsig) were matched with the KEGG metabolite 542 

database based on different adducts (Supplementary Table 1). Then all matched metabolites 543 

(significant metabolites) are mapped in the metabolic network to get the subnetwork (SN). Non-544 

significant metabolites (hidden metabolites) that can connect significant metabolites within 3 545 
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reactions were also included in the subnetwork. Then the modules (M) were detected in the 546 

subnetwork via random walks65. Only modules with at least 3 nodes were kept. These modules 547 

were named significant modules (Msig) from real biological-related metabolic features.  548 

2. For each module, the activity score (S) was calculated to measure both the modularity and 549 

enrichment of input metabolites (I). Activity score (S) of the module (M) was calculated as follows:  550 

For a module M:  551 

S = Q*
𝑁𝐼,𝑀

𝑁𝑀
 552 

where S is the activity score, NM is the metabolite number in module M, and NI,M is the input 553 

metabolite number in  module M. Q is the adjusted Newman-Girvan modularity calculated as 554 

below: 555 

Q = √
𝑁𝐼

𝑁𝑀
∗ (

𝐸𝑀

𝑚
− ∑   

𝑖,𝑗
𝑘𝑖

2𝑚
∗

𝑘𝑗

2𝑚
) , 𝑖, 𝑗 ∈ 𝑀 556 

where ki is the degree of metabolite i in module M, m is the total number of edges in the metabolic 557 

network MN, EM is the total number of edges in module M, and NI is the number of input 558 

metabolites. The original Newman-Girvan modularity has a bias towards larger modules, and  √
𝑁𝐼

𝑁𝑀
 559 

was used to reduce this bias. 560 

3. Then the NULL metabolic features (Lnull, the same number with Lsig) were selected from all 561 

metabolic features (exclude Lsig) and then steps 1 and 2 were repeated 100 times to generate a list 562 

of NULL modules (Mnull) and their activity score (Snull).  563 

4. Using maximum likelihood estimation, Snull was modeled as a Gamma distribution, and a 564 

cumulative distribution function (CDF) was calculated. The p-value for each significant module 565 

was then calculated, and only modules with the p-value < 0.05 remained. 566 

The annotation results from this method were also compared with the annotation results from the 567 

"Untargeted metabolomics by LC-HRMS" section, provided in Supplementary Data 9. These results 568 

showed that annotations from this method have high specificity. 569 
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 570 

KEGG pathway enrichment analysis for metabolomics data. The KEGG pathway database was 571 

downloaded from KEGG (https://www.genome.jp/kegg/) using the R package KEGGREST. Pathway 572 

enrichment analysis was used in the hypergeometric distribution test, and p-values were adjusted by the 573 

FDR method, and only pathways with FDR adjusted p-value < 0.05 were kept.  574 

 575 

Exposome contributions to cytokine and blood test. To calculate the contributions of the exposome on 576 

each cytokine and blood test, principal components (PCs) were first extracted for each exposome 577 

component, and only PCs with cumulative explained variation > 80% were kept. Then the linear regression 578 

model was constructed using each cytokine/blood test as y and corresponding exposome component’s PCs 579 

as x. R2 was extracted and used to represent the contributions of the exposome to each cytokine/blood test. 580 

To calculate the contribution of the exposome components, partial least squares (PLS) and variable 581 

important projection (VIP) were calculated. Finally, R2 * 
𝑉𝐼𝑃𝑖

𝑠𝑢𝑚(𝑉𝐼𝑃)
 (i ∈ chemical, biological, and 582 

environment) was used to represent the contributions of the exposome components on cytokine/blood tests. 583 

 584 

Data availability 585 

The biological exposome data generated in this and previous studies were deposited to the National Center 586 

of Biotechnology Information under bioproject ID PRJNA421162. Some raw data utilized in this study are 587 

presented on the NIH Human Microbiome 2 project site (https://portal.hmpdacc.org). Some other raw and 588 

processed data are shown on the Stanford iPOP site (http://med.stanford.edu/ipop.html). The processed data 589 

used for reproductive analysis can also be found on Github 590 

(https://github.com/jaspershen/precision_exposome) and were provided in Supplementary Data 1.  591 

 592 

Code availability 593 
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All codes used in this study can be found on Github (https://github.com/jaspershen/precision_exposome). 594 

Certain in-house tools for this study can also be found on Github (https://github.com/jaspershen/metID).   595 
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757 

Figure 1. Overview of longitudinal sample collections for personal exposome and multi-omics profiling. 758 

(a) Personal exposome characterized by the exposometer includes environmental factors, biological 759 

components, and chemical stressors. Internal multi-omes include gut microbiome, metabolome, proteome, 760 

toxins and carcinogens, cytokines, and blood tests. (b) The amount and collection time of each type of 761 

multi-omics and exposome samples. (c) Sample distribution and constitution of the exposome and internal 762 

multi-omics for monitoring precision environmental health. 763 
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 764 

Figure 2. The dynamic and diverse personal exposome cloud. (a) Heat map of the annotated chemical 765 

stressors in the exposome ordered by concentrations, with the sector diagrams indicating the increased and 766 

decreased chemical groups. The abrupt concentration increase after the January 25 sample indicates the 767 

approach can monitor dramatic changes of the chemical exposome. (b) Heat map of the top abundant genera 768 

annotated in the exposome during each collection period. (c) Environmental factors collected by either the 769 

personal exposometer (temperature, humidity, total particulate matter) or local monitoring stations. TPM: 770 

total particulate matter. (d) Spearman correlation analyses within the personal exposome [|r| > 0.9; False 771 

Discovery Rate (FDR) adjusted p-value (q-value) < 0.05]. (e) Chemical and biological components that 772 

have the most significant correlations with the other substances in the exposome. (f) Representative 773 

Spearman correlation analyses between fungi and temperature/antifungal chemicals. 774 
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 775 

Figure 3. Precision environmental health network revealed by inter-omics analyses between the exposome 776 

and internal multi-omics. (a) Spearman correlation network of all longitudinally profiled exposome and 777 

internal -omes. (b) Significant Spearman correlations between the exposome and the internal multi-omics 778 

(|r| > 0.9; q-value < 0.05). (c) Spearman correlation analysis between the individual's exposome and the gut 779 

microbiome. Only gut bacteria with degrees > 20 are shown, and the highest degree bacteria are named. 780 

The complete network is provided in Figure S4c. (d) Heat map of the highest degree personal gut bacteria 781 

and significant correlations with the exposome components (|r| > 0.9; q-value < 0.05). Additional high-782 

degree gut bacteria are provided in Figure S4d. 783 
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 784 

Figure 4. Exposome-proteome interactions: proteins and signaling pathways that were significantly 785 

correlated with the exposome. (a) Spearman correlation analysis between the exposome and proteome (|r| > 786 

0.9; q-value < 0.05). Only the proteins with degree > 5 are shown. The complete network is provided in 787 

Figure S5. (b) Signaling pathways that significantly correlated with the exposome revealed by pathway 788 

analysis using KEGG, GO, and Reactome databases. Immune-related pathways are shown in bold. (c) 789 

Spearman correlation networks between chemicals, top twenty biological exposome components, immune-790 

related proteins and signaling pathways (|r| > 0.9; q-value < 0.05), with positive correlations shown in blue 791 

and negative correlations shown in red. A detailed network for each pathway was provided in Figure S6. 792 
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 793 

Figure 5. Exposome-metabolome interactions: metabolites and metabolic pathways that were significantly 794 

correlated with the exposome. (a) Spearman correlation analysis between the exposome and metabolome. 795 

(b) Significantly correlated metabolic pathways revealed by pathway analysis using KEGG database (|r| > 796 

0.9; q-value < 0.05). (c) Significant correlations between chemicals and top twenty biological exposome 797 

components and metabolites (represented by KEGG compound entry) and metabolic pathways revealed by 798 

Spearman correlation networks (|r| > 0.9; q-value < 0.05), with positive correlations shown in blue and 799 

negative correlations shown in red. The complete network was provided in Figure S8. 800 
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 801 

Figure 6. Effects of the exposome on precision environmental health. (a) Relative contributions of various 802 

exposome components on the alterations of personal cytokines and blood tests (|r| > 0.9; q-value < 0.05). 803 

(b) Representative blood test results with corresponding reference ranges (green areas) and their 804 

significantly correlated exposome components.  805 
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Supplementary Materials 807 

 808 

Figure S1. A detailed overview of sample collection. (a) Sample collection time points/periods for all 809 

exposome and internal multi-omics datasets. Corresponding fiber intake and geographical locations were 810 

also provided. (b) Collection locations for the exposome samples. 811 
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 812 

Figure S2. Overview of the exposome data. (a) PCA plot shows the data quality of chemical exposome 813 

data. For each sample, 3 repeats were acquired. (b) The number and percentage of biological exposome 814 

data at different taxonomic ranks. (c) Correlation plots between all environmental factors. (d) Sample 815 

matching for 3 exposome domains. (e) Intra correlation network for the chemical exposome. (f) PCA 816 

plots of the 3 exposome domains based on the sampling time and locations. 817 
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818 

Figure S3. Representative Spearman correlation plots between environment factors and microbes. 819 
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 820 

Figure S4. The exposome and internal multi-omics analyses. (a) The maximum modularity in the 821 

exposome and internal-omes correlation network community analysis was 0.819. (b) Node and edge 822 

numbers for all the subnetworks in the community analysis. (c) The complete correlation network 823 

between the exposome and the gut microbiome (|r| > 0.9; q-value < 0.05).  (d) Representative personal gut 824 

bacteria that has 34 significant correlations with the exposome components (|r| > 0.9; q-value < 0.05).  825 
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 826 

Figure S5. The complete correlation network between the exposome and proteome (|r| > 0.9; q-value < 827 

0.05).  828 
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 829 

Figure S6. The detailed networks between the exposome and proteins for each signaling pathway (|r| > 830 

0.9; q-value < 0.05). 831 
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 832 

Figure S7. Feature-based network analysis for metabolic features significantly correlated with the 833 

exposome (Methods). (a) Chemical exposome. Left panel, the null distribution of activity scores and only 834 

module 1 was significant. Right panel, network constructed by significant modules. (b) Biological 835 

exposome. Left panel, the null distribution of activity scores and modules 1, 2 and 3 were significant. 836 

Right panel, network constructed by significant modules. 837 
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 838 

Figure S8. The complete network between the exposome and metabolite for each metabolic pathway 839 

(|r| > 0.9; q-value < 0.05).  840 

 841 
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Supplementary Note 842 

Note 1. The session information in the study 843 

R version 4.0.3 (2020-10-10) 844 

Platform: x86_64-apple-darwin17.0 (64-bit) 845 

Running under: macOS Big Sur 10.16 846 

 847 

Matrix products: default 848 

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib 849 

 850 

locale: 851 

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 852 

 853 

attached base packages: 854 

[1] parallel stats4    grid      stats     graphics grDevices utils     datasets methods   855 

[10] base      856 

 857 

other attached packages: 858 

 [1] ReactomePA_1.34.0      org.Hs.eg.db_3.10.0    AnnotationDbi_1.52.0   IRanges_2.24.1         859 

 [5] S4Vectors_0.28.1       Biobase_2.50.0         BiocGenerics_0.36.0    clusterProfiler_3.18.0 860 

 [9] circlize_0.4.11        ComplexHeatmap_2.6.2   patchwork_1.1.1        plsVarSel_0.9.6        861 

[13] pls_2.7-3              openxlsx_4.2.3         plyr_1.8.6             ggalluvial_0.12.3      862 

[17] tidygraph_1.2.0        ggraph_2.0.4           igraph_1.2.6           forcats_0.5.0          863 

[21] stringr_1.4.0          dplyr_1.0.2            purrr_0.3.4            readr_1.4.0            864 

[25] tidyr_1.1.2            tibble_3.0.4           ggplot2_3.3.3          tidyverse_1.3.0        865 

 866 

loaded via a namespace (and not attached): 867 
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  [1] readxl_1.3.1            shadowtext_0.0.7        backports_1.2.1         868 

  [4] fastmatch_1.1-0         sxtTools_0.99.01        splines_4.0.3           869 

  [7] BiocParallel_1.24.1     crosstalk_1.1.0.1       digest_0.6.27           870 

 [10] htmltools_0.5.0         GOSemSim_2.16.1         rsconnect_0.8.16        871 

 [13] magick_2.5.2            viridis_0.5.1           GO.db_3.10.0            872 

 [16] wesanderson_0.3.6       fansi_0.4.1             magrittr_2.0.1          873 

 [19] checkmate_2.0.0         memoise_1.1.0           cluster_2.1.0           874 

 [22] graphlayouts_0.7.1      modelr_0.1.8            matrixStats_0.57.0      875 

 [25] bdsmatrix_1.3-4         prettyunits_1.1.1       enrichplot_1.10.1       876 

 [28] colorspace_2.0-0        blob_1.2.1              rvest_0.3.6             877 

 [31] rappdirs_0.3.1          ggrepel_0.9.0           xfun_0.19               878 

 [34] haven_2.3.1             crayon_1.3.4            jsonlite_1.7.2          879 

 [37] graph_1.68.0            scatterpie_0.1.5        glue_1.4.2              880 

 [40] polyclip_1.10-0         gtable_0.3.0            webshot_0.5.2           881 

 [43] genalg_0.2.0            GetoptLong_1.0.5        graphite_1.36.0         882 

 [46] shape_1.4.5             scales_1.1.1            DOSE_3.16.0             883 

 [49] mvtnorm_1.1-1           DBI_1.1.0               miniUI_0.1.1.1          884 

 [52] Rcpp_1.0.5.4            progress_1.2.2          xtable_1.8-4            885 

 [55] viridisLite_0.3.0       clue_0.3-58             gridGraphics_0.5-1      886 

 [58] bit_4.0.4               reactome.db_1.70.0      htmlwidgets_1.5.3       887 

 [61] httr_1.4.2              fgsea_1.16.0            RColorBrewer_1.1-2      888 

 [64] ellipsis_0.3.1          pkgconfig_2.0.3         farver_2.0.3            889 

 [67] dbplyr_2.0.0            utf8_1.1.4              manipulateWidget_0.10.1 890 

 [70] later_1.1.0.1           ggplotify_0.0.5         tidyselect_1.1.0        891 

 [73] labeling_0.4.2          rlang_0.4.10            reshape2_1.4.4          892 

 [76] munsell_0.5.0           cellranger_1.1.0        tools_4.0.3             893 
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 [79] downloader_0.4          cli_2.2.0               generics_0.1.0          894 

 [82] RSQLite_2.2.1           broom_0.7.3             evaluate_0.14           895 

 [85] fastmap_1.0.1           yaml_2.2.1              knitr_1.30              896 

 [88] bit64_4.0.5             fs_1.5.0                zip_2.1.1               897 

 [91] rgl_0.103.5             mime_0.9                praznik_8.0.0           898 

 [94] DO.db_2.9               xml2_1.3.2              compiler_4.0.3          899 

 [97] rstudioapi_0.13         MSQC_1.0.2              png_0.1-7               900 

[100] reprex_0.3.0            tweenr_1.0.1            stringi_1.5.3           901 

[103] lattice_0.20-41         Matrix_1.2-18           ggsci_2.9               902 

[106] vctrs_0.3.6             pillar_1.4.7            lifecycle_0.2.0         903 

[109] BiocManager_1.30.10     GlobalOptions_0.1.2     data. table_1.13.6       904 

[112] cowplot_1.1.1           httpuv_1.5.4            qvalue_2.22.0           905 

[115] R6_2.5.0                promises_1.1.1          gridExtra_2.3           906 

[118] sessioninfo_1.1.1       MASS_7.3-53             assertthat_0.2.1        907 

[121] rjson_0.2.20            withr_2.3.0             hms_0.5.3               908 

[124] rmarkdown_2.6           rvcheck_0.1.8           Cairo_1.5-12.2          909 

[127] ggnewscale_0.4.4        ggforce_0.3.2           shiny_1.5.0             910 

[130] lubridate_1.7.9.2       911 

 912 

Note 2. The food log (fiber intake) of the participant in this study 913 

From 1/15/2016 to 1/31/2016, the participant took 20 grams of arabinoxylan daily. From 2/22/2016 to 914 

3/17/2016, the participant took 10 grams of guar gum daily. 915 

 916 

Supplementary Table 1. Adduct list for metabolite annotation in this study. 917 

Mode Adduct 
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RPLC positive mode (M+H)+, (M+H-H2O)+, (M+H-2H2O)+, (M+NH4)
+, 

(M+Na)+, (M-H+2Na)+, (M-2H+3Na)+, (M+K)+, 

(M-H+2K)+, (M-2H+3K)+, (M+CH3CN+H)+, 

(M+CH3CN+Na)+, (2M+H)+, (2M+NH4)
+, 

(2M+Na)+, (2M+K)+, (M+HCOO+2H)+ 

RPLC negative mode (M-H)-, (M-H2O-H)-, (M+Na-2H)-, (M+K-2H)-, 

(M+NH4-2H)-, (2M-H)-, (M+F)- 

HILIC positive mode (M+H)+, (M+H-H2O)+, (M+H-2H2O)+, (M+NH4)
+, 

(M+Na)+, (M-H+2Na)+, (M-2H+3Na)+, (M+K)+, 

(M-H+2K)+, (M-2H+3K)+, (M+CH3CN+H)+, 

(M+CH3CN+Na)+, (2M+H)+, (2M+NH4)
+, 

(2M+Na)+, (2M+K)+, (M+HCOO+2H)+ 

HILIC negative mode (M-H)-, (M-H2O-H)-, (M+Na-2H)-, (M+K-2H)-, 

(M+NH4-2H)-, (2M-H)-, (M+CH3COO)- 

 918 

Supplementary Data 919 

Supplementary Data 1. All exposome and internal multi-omics data used in this study. 920 

Supplementary Data 2. The detailed information of the intra-correlation network of the chemical 921 

exposome. 922 

Supplementary Data 3. The detailed information of the personal exposome cloud. 923 

Supplementary Data 4. The detailed information of the inter-correlation network of the exposome and 924 

internal-multi-omics data. 925 

Supplementary Data 5. Pathway enrichment results for proteins connected with the chemical exposome. 926 
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Supplementary Data 6. Pathway enrichment results for proteins connected with the biological 927 

exposome. 928 

Supplementary Data 7. Pathway enrichment results for metabolic peaks connected with the chemical 929 

exposome. 930 

Supplementary Data 8. Pathway enrichment results for metabolic peaks connected with the biological 931 

exposome. 932 

Supplementary Data 9. The comparison between metabolite annotations from traditional methods and 933 

metabolic feature-based network analysis. 934 

Supplementary Data 10. The contributions of the exposome on blood tests and cytokines. 935 
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