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ABSTRACT 62	

The in vitro micronucleus assay is a globally significant method for DNA damage quantification 63	

used for regulatory compound safety testing in addition to inter-individual monitoring of 64	

environmental, lifestyle and occupational factors. However it relies on time-consuming and user-65	

subjective manual scoring. Here we show that imaging flow cytometry and deep learning image 66	

classification represents a capable platform for automated, inter-laboratory operation. Images were 67	

captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using 68	

methyl methanesulphonate (1.25 – 5.0 µg/mL) and/or carbendazim (0.8 – 1.6 µg/mL) exposures to 69	

TK6 cells. Human-scored image sets were assembled and used to train and test the classification 70	

abilities of the “DeepFlow” neural network in both intra- and inter-laboratory contexts. Harnessing 71	

image diversity across laboratories yielded a network able to score unseen data from an entirely new 72	

laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 73	

85% were achieved for ‘mononucleates’, ‘binucleates’, ‘mononucleates with MN’ and ‘binucleates 74	

with MN’, respectively. Successful classifications of ‘trinucleates’ (90%) and ‘tetranucleates’ (88%) 75	

in addition to ‘other or unscorable’ phenotypes (96%) were also achieved. Attempts to classify 76	

extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less 77	

successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus 78	

frequency data yielded quantitation of the same equipotent dose regardless of scoring method. We 79	

conclude that this automated approach offers significant potential to broaden the practical utility of 80	

the CBMN method across industry, research and clinical domains. We share our strategy using 81	

openly-accessible frameworks. 82	

 83	

Keywords 84	

Micronucleus test, genetic toxicology, compound screening, machine learning, high throughput, 85	

image analysis. 86	

 87	
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INTRODUCTION 88	

Across industry, government and academic research institutions the in vitro micronucleus test is one 89	

of the most widely used bioassays for the identification and quantification of chromosomal damage 90	

(Decordier and Kirsch-Volders 2006; Fenech 2000; Fenech 2020; Kirsch-Volders et al. 2011). 91	

Because DNA damage at the chromosome level is recognised as a key event in the initiation of 92	

carcinogenesis, the assay has become an essential component of genetic toxicity screening 93	

programmes worldwide (Fenech 2000). Harmonised assay protocols and scoring approaches have 94	

been detailed by Organisation for Economic Cooperation and Development (OECD)-Test Guideline 95	

487 (OECD 2016). In addition to regulatory compound screening, the assay is also widely used for 96	

more specific research and clinical purposes including compound mode-of-action determinations, 97	

tumour radiosensitivity prediction and inter-individual monitoring of lifestyle, occupational and 98	

environmental factors including radiation biodosimetry assessments (Decordier and Kirsch-Volders 99	

2006; Fenech 2000; Fenech 2020; Kirsch-Volders et al. 2011; Wang et al. 2019). 100	

The micronucleus assay operates through the detection of whole chromosomes or chromosome 101	

fragments expressed by cells after nuclear division as satellite ‘micronucleus’ (MN) events. Because 102	

complete nuclear division is required to enable expression of these events, the ‘cytokinesis-block’ 103	

version of the assay was developed. This method inhibits cell division into daughter entities 104	

(cytokinesis) using the microfilament assembly inhibitor cytochalasin-B. This yields cells that have 105	

successfully undergone division easily identifiable by their binucleated appearance. In this way, the 106	

cytokinesis-block micronucleus (CBMN) assay allows scoring of micronucleus events in cells 107	

known to have undergone division during the treatment period. This avoids misleading results 108	

otherwise present due to pre-existing damage, sub-optimal cell culture conditions or from the 109	

selection of overly cytotoxic compound doses that retard or inhibit cell division and concomitant 110	

micronucleus expression (Decordier and Kirsch-Volders 2006; Fenech 2000; Kirsch-Volders et al. 111	

2011).  112	
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 113	

Despite almost global utilisation, CBMN assay scoring still often relies upon manual observation and 114	

recording using light microscopy. Whilst manual scoring is the ‘gold standard’, it suffers from user 115	

subjectivity and scorer variability in addition to being extremely time and labour-intensive 116	

(Rodrigues et al. 2014a; Rodrigues et al. 2014b; Rodrigues et al. 2018). For these reasons, over the 117	

last two decades significant efforts have been directed towards automated approaches for both image 118	

collection and subsequent scoring. As recently reviewed (Rodrigues et al. 2018), these largely 119	

involve slide and laser scanning microscopy systems that automate image collection in conjunction 120	

with traditional, threshold-based image classification techniques (Darzynkiewicz et al. 2011; 121	

Decordier et al. 2009; Decordier et al. 2011; François et al. 2014; Maertens and White 2015; 122	

Rossnerova et al. 2011; Schunck et al. 2004; Seager et al. 2014; Smolewski et al. 2001; Varga et al. 123	

2004; Verhaegen et al. 1994; Willems et al. 2010). Conventional flow cytometry methods have also 124	

been developed that aim to identify isolated micronuclei using fluorescence intensity measurements 125	

in the absence of image-based validation (Avlasevich et al. 2006; Bryce et al. 2008; Bryce et al. 126	

2010; Bryce et al. 2013; Bryce et al. 2007). 127	

 128	

More recently, imaging flow cytometry unites the acquisition approach of flow cytometry with 129	

microscopical observation (Allemang et al. 2021; Rodrigues 2018; Rodrigues 2019; Rodrigues et al. 130	

2014a; Rodrigues et al. 2014b; Rodrigues et al. 2016a; Rodrigues et al. 2018; Rodrigues et al. 2016b; 131	

Wang et al. 2019; Wilkins et al. 2017). This fluidics-based approach is well suited for processing cell 132	

suspension cultures (e.g., TK6 B-lymphocytes commonly used for the CBMN assay) enabling rapid 133	

collection of transmitted light brightfield, darkfield laser scatter and fluorescence images for 134	

populations of tens of thousands of single cells. Simple inclusion of a single nuclear fluorescent stain 135	

(e.g., Hoechst 33342, propidium iodide or DRAQ5 etc.) allows detection of parent nuclei and 136	

micronucleus events (Rodrigues 2018; Rodrigues 2019; Rodrigues et al. 2018; Rodrigues et al. 137	

2016b). Without need of further labels, the brightfield images provide essential context for detecting 138	
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micronuclei associated with parent cells (Rodrigues et al. 2014a; Verma et al. 2018). The ‘Amnis 139	

ImageStreamX’ series cytometers (Luminex Corporation) further support unassisted data acquisition 140	

for multiple samples via a 96-well plate sampling attachment. Images are stored to sample-specific 141	

data files enabling archiving should human validation or reevaluation be required (Rodrigues et al. 142	

2018). Traditional image classification approaches deployed within the manufacturer-supplied 143	

analysis software have shown utility for CBMN scoring automation (Rodrigues 2018; Rodrigues 144	

2019; Rodrigues et al. 2014a; Rodrigues et al. 2014b; Rodrigues et al. 2016a; Rodrigues et al. 2018; 145	

Rodrigues et al. 2016b; Wang et al. 2019; Wilkins et al. 2017). However, in our experience these 146	

strategies require significant expertise to set up, in addition to frequent tuning to maintain acceptable 147	

performance, even within a single laboratory (Verma et al. 2018). Deviations of around 30% from 148	

the results obtained by manual microscopy scoring have also been reported in experiments utilising 149	

this approach to study irradiated peripheral blood lymphocytes (Rodrigues et al. 2016b). This 150	

outcome was in part attributed to the lack of flexibility of the implemented image analysis algorithms 151	

relative to the expertise of human judgement (Rodrigues et al. 2018; Rodrigues et al. 2016b).  152	

 153	

Building image classification strategies that generalise well enough to permit robust, entirely 154	

automated image classifications without need of human intervention or configuration is a difficult 155	

task. This is because, even when protocols are harmonised, there will always be variability (e.g., 156	

illumination, focus and fluorescence staining heterogeneity etc.) in the input image data. This 157	

variation is even more extreme across laboratories due to the inevitable use of different imaging 158	

equipment, calibration settings, personnel, cell culture and bioassay regimens. Recently, artificial 159	

intelligence approaches have been achieving increasing success in providing generalised automation 160	

of image classification tasks (Caicedo et al. 2019; Moen et al. 2019). These approaches can use 161	

handcrafted features extracted from images in conjunction with machine learning algorithms, but 162	

increasingly, the availability of computational power is enabling the application of deep learning on 163	

image pixel data (Blasi et al. 2016; Eulenberg et al. 2017). This approach uses so-called deep 164	
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convolutional neural networks in a manner inspired by neural connectivity in the brain. A typical 165	

image classification workflow involves assigning ‘ground truth’ class annotations to a large set of 166	

images before subdividing them into ‘train’ and ‘test’ datasets. The weights connecting the nodes of 167	

the neural network are then optimised during a training phase that attempts to match the input images 168	

to the annotated classifications. A potential issue due to the flexibility of neural networks as non-169	

linear function approximators is that ‘memorisation’ due to over-fitting of training data can emerge 170	

(Zhang et al. 2017). For this reason, final network accuracy is assessed by cross validation against a 171	

test set that importantly was entirely ‘unseen’ during the training phase. Subsequently, the trained 172	

neural net can be deployed for the classification of new images. 173	

 174	

In the context of the CBMN assay, deep learning approaches were recently used on imaging flow 175	

cytometry data using the cytometer manufacturer’s ‘Amnis Artificial Intelligence’ software to 176	

identify binucleated cells in the 3-D reconstructed skin micronucleus assay. This binucleated cell 177	

population was then used as a refined start point from which to expedite manual identification of 178	

micronucleus events (Allemang et al. 2021). However, there would be considerable value in openly 179	

accessible frameworks for accessibility and for adaptability: the modular nature of modern, open 180	

source deep learning interfaces allows new network architectures to be easily switched or 181	

specifically tailored as they emerge. This flexibility provides complete ability to build bespoke 182	

solutions using the latest tools to pursue maximal accuracy and the accommodation of diverse 183	

research objectives.  184	

 185	

Here, we used imaging flow cytometry to automate image capture for the CBMN assay across three 186	

laboratories using differing local protocols for cell culture, bioassay procedure, DNA staining, 187	

cytometer calibration and image collection. Given the inherent variability in the captured images, we 188	

investigate the ability of deep learning to enable robust, inter-laboratory scoring automation. To do 189	

this, we provide an open framework that utilises the powerful, yet lightweight DeepFlow neural 190	
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network architecture that has been previously optimised to achieve rapid training and classification 191	

of imaging flow cytometry data (Eulenberg et al. 2017).  192	

 193	

 194	

MATERIALS & METHODS 195	

Multi-centre image collection 196	

Image data was collected using three different Amnis ImageStreamX imaging flow cytometers 197	

(Luminex Corporation, USA) across three locations: Central Biotechnology Services, Cardiff 198	

University School of Medicine (hereafter, Cardiff), the Department of Veterinary Medicine’s 199	

Imaging Facility, University of Cambridge, UK (Cambridge) and at GlaxoSmithKline Research and 200	

Development, Stevenage, UK (GSK).  201	

 202	

Chemicals 203	

Methyl methanesulphonate (MMS) (#129925) (CAS registry number 66-27-3) and carbendazim 204	

(#378674) (CAS no. 10605-21-7) were purchased from Sigma-Aldrich (Merck), UK.  205	

 206	

Cardiff and Cambridge: Cell culture and cytokinesis-block micronucleus assay 207	

P53 competent, virally transformed human B lymphoblastoid (TK6) cells were purchased from the 208	

Health Protection Agency Culture Collections (Wiltshire, UK). The cells were cultured in RPMI 209	

1640 media (#A1049101, ThermoFisher) supplemented with 100 U/mL penicillin and 100 µg/mL 210	

streptomycin and containing 10% (v/v) heat-inactivated horse serum (#26050088, ThermoFisher). 211	

Cells were seeded at 2 x 105 cells/mL in 25 cm2 flasks (ThermoFisher) and incubated at 37 oC for ~ 212	

1.5 cell cycles (24-30 h) in the presence of MMS (0 / 1.25 / 2.5 / 5.0 µg/mL doses) or carbendazim (0 213	

/ 0.8 / 1.0 / 1.6 µg/mL doses) with co-exposed cytochalasin-B (#C6762, Sigma) added to a final 214	

concentration of 3 µg/mL as a cytokinesis-block. Following exposure, cells were pelleted by 215	

centrifugation (200xg, 10 min) and washed once with 10 mL phosphate buffered saline (PBS). Cells 216	
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were then pelleted and resuspended in 2 mL 1X BD FACS lysing solution (#349202, BD) for 12 min 217	

to achieve fixation and permeabilisation. 218	

 219	

GSK: Cell culture and cytokinesis-block micronucleus assay 220	

TK6 (IVGT) cells (#13051501) purchased from ECACC, operated by Public Health England 221	

(Wiltshire, UK). The cells were cultured in RPMI 1640 media with 2 mM glutamine (#52400-025, 222	

ThermoFisher) supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin (#15140-122, 223	

ThermoFisher), 1.8 mM sodium pyruvate (#11360-039, ThermoFisher) and containing 10% (v/v) 224	

heat-inactivated horse serum (#26050-088, BioSera, Labtech, UK). Cells were seeded at 2 x 105 225	

cells/mL in 25 cm2 flasks (ThermoFisher) and incubated at 37 oC for 24 h in the presence of 226	

carbendazim (0 / 0.8 / 1.2 / 1.6 µg/mL doses) with co-exposed cytochalasin-B (#C6762, Sigma) 227	

added to a final concentration of 6 µg/mL as a cytokinesis-block. Following exposure, cells were 228	

pelleted by centrifugation (200xg, 10 min) and washed once with 10 mL PBS (#10010-015, 229	

ThermoFisher). Cells were then pelleted and resuspended in 2 mL 1X BD FACS lysing solution 230	

(#349202, BD) for 12 min to achieve fixation and permeabilisation. 231	

 232	

Nuclear labelling 233	

Fixed, permeabilised cells were incubated with nuclear stains in PBS at room temperature. Nuclei 234	

and micronuclei were stained at the Cardiff and GSK laboratories by 30 min incubation with 0.05 235	

mM DRAQ5 (peak excitation: 647 nm, peak emission: 681 nm) (#564902, BD). Samples at the 236	

Cambridge laboratory were stained with a 1:2500 dilution (8 µM) of Hoechst 33342 (peak excitation: 237	

351 nm, peak emission: 461 nm) (#62249, ThermoFisher) for 30 mins. After labelling, cells were 238	

pelleted, resuspended and final cell concentrations adjusted through addition of PBS towards an 239	

optimal cell concentration for imaging flow cytometry (typically ~100 µL sample volumes at ~107 240	

cells/mL). 241	

 242	
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Imaging flow cytometry 243	

Brightfield and nuclear fluorescence images (20,000 images / sample) were collected using Amnis 244	

ImageStreamX (Luminex) flow cytometers using the 40X objective lens via the manufacturer’s 245	

INSPIRE software at the Cardiff, Cambridge and GSK laboratories (described above). At Cardiff 246	

and GSK, DRAQ5-labelled cells were excited using 488 nm or 642 nm lasers (respectively) with the 247	

brightfield collected in channel 1 and DRAQ5 in channel 11. At Cambridge, Hoechst 33342-labelled 248	

cells were excited using a 405 nm laser with brightfield collection in channel 4 and nuclear 249	

fluorescence collection in channel 1. At all locations, a brightfield area range of 100-900 µm2 was 250	

used to avoid debris, speed bead and large aggregate image collection. Full details of image 251	

acquisition settings including the laser excitation powers the exact cytometer models utilised at each 252	

location are provided in Supp. Table S1. 253	

 254	

Compensated image file generation using IDEAS 255	

Prior to image extraction, raw image files (.rif) acquired by the INSPIRE software were converted to 256	

compensated image files (.cif) using identical settings via batch processing with a template using the 257	

IDEAS (version 6.2) software (Luminex). During the process, populations of cell images suitable for 258	

scoring were refined by gating out (brightfield area, 200 – 500 µm2 versus aspect ratio, 0.75 – 1.0) 259	

debris and identifying a single cell population that was also suitably in focus. This was achieved by 260	

linescan gradient via the root mean square of the brightfield images ranging from 55 – 80. 261	

 262	

Image data pre-processing: CIF to TIF extraction 263	

Single, in-focus cell populations were exported from the IDEAS software in compensated image file 264	

format (.cif). The individual cell images within these files were then extracted to 16-bit grayscale, 265	

two-channel (nuclear fluorescence / brightfield) multipage TIF files using a custom script (code and 266	

example available for download from the BioStudies database (http://www.ebi.ac.uk/biostudies) in 267	

MATLAB and Python programming languages under accession number S-BSST641). During this 268	
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TIF extraction process, each channel image was also max/min rescaled to normalise illumination. 269	

Images were also cropped and zero-padded to a standard 64x64 pixel-square size for input into the 270	

DeepFlow network.  271	

 272	

Deep learning image classification 273	

Automated scoring was achieved using a nine-class, feed-forward, image classification deep neural 274	

network built using our previously described “DeepFlow” architecture (Eulenberg et al. 2017). This 275	

network is optimised for the relatively small input dimensions of imaging flow cytometry data, and 276	

in itself utilises dual-path convolution / batch normalisation / nonlinearity subunits interspersed by 277	

max pooling from the popular “Inception” architecture (Szegedy et al. 2015). These subunit layers 278	

process and aggregate visual information at increasing scale before average pooling, the fully 279	

connected layer and softmax classification (full network architecture shown, Supp. Figure 1). 280	

Images were passed to the network with an input size of 64x64x2 (x, y, channels), with augmentation 281	

by random x/y reflection, rotation, translation, 90%-110% image scaling and zero-center batch 282	

normalisation. Training lasted for 30 epochs using a batch size of 88 with optimisation under ADAM 283	

using cross-entropy loss. The initial learn rate was 5x10-3, dropping every five epochs by 0.9, with 284	

L2 regularisation 1x10-4 and epsilon 1x10-8. Images were shuffled every epoch. The final pre-trained 285	

network alongside test images and all code detailing training hyper-parameters and final layer 286	

weightings are available for download in MATLAB (using the Deep Learning Toolbox) or Python 287	

(using TensorFlow / keras) languages at the BioStudies database (http://www.ebi.ac.uk/biostudies) 288	

under accession number S-BSST641. 289	

 290	

Ground truth curation by human scoring 291	

For the Cardiff / Cambridge analyses, cell image data across compounds (carbendazim and MMS) 292	

and doses (0 – 5 µg/mL) were merged to create diverse ground truth training sets that contained the 293	

wide representation of different cell phenotypes essential for effective network training. Ground truth 294	
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classifications for each image were assigned by biologists with extensive experience manually 295	

scoring the in vitro micronucleus assay, with phenotypes assigned through consideration of both the 296	

nuclear fluorescence and the brightfield image (i.e., ensuring nuclear events belonged to one cell 297	

etc.). As per micronucleus assay test guidance, the aim was to only score cells positive for 298	

micronucleus events where the micronuclei were fluorescently-labelled, were circular/oval in shape, 299	

were within the size range of 1/3 – 1/16th that of the parent nuclei, and that were clearly inside the 300	

cell boundary of the parent cell (Fenech 2000; OECD 2016). At the GSK laboratory, TK6 cells were 301	

exposed to just the carbendazim compound (0 / 0.8 / 1.2 / 1.6 µg/mL doses) with the experiment 302	

conducted in triplicate. For the initial network cross validation with the GSK data, five thousand 303	

human-scored cell images were used with these events equally accumulated from across all 304	

carbendazim exposures. For the dose-response analysis, cell populations of two thousand events 305	

were scored per dose in triplicate by either human-scoring or by the neural network.  306	

 307	

Statistical significance of micronucleus responses relative to control 308	

Assessment of micronucleus response significance was conducted according to the framework 309	

described in Johnson et al., (Johnson et al. 2014). Response data was log10 transformed and assessed 310	

for normality and variance homogeneity by Shapiro-Wilk and Bartlett tests respectively. Where the 311	

transformed data passed these tests (p > 0.05), comparisons of micronucleus responses relative to 312	

untreated negative controls employed one sided post hoc Dunnett’s test with alpha 0.05. Datasets 313	

that failed these tests (p < 0.05) were analysed using the non-parametric post hoc Dunn’s test.   314	

 315	

Benchmark dose analysis 316	

To compare the dose-response relationships obtained from human expert scoring relative to those 317	

obtained from automatic scoring using the trained neural network, nonlinear regression analysis 318	

using the Benchmark Dose (BMD) framework was used. Using the freely available PROAST 319	

software, dose-response data were analysed using both the exponential and the Hill model family 320	
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recommended for the assessment of continuous toxicity data by the European Food Safety Authority 321	

(EFSA) (Hardy et al. 2017). In each analysis, combined datasets (i.e., across scoring methods) were 322	

analysed together with ‘scoring method’ specified as a potential covariate (Wills et al. 2016). More 323	

complex models with additional parameters were accepted if the fit significantly (p < 0.05; log-324	

likelihood) improved. Here, as in previous work, we found that the log-steepness (parameter d) and 325	

maximum response (parameter c) could reasonably be held equal across dose-response curves, 326	

whereas the parameters for background response (parameter a), potency (parameter b), and within-327	

group variance (var) were found to be covariate-dependent (Slob and Setzer 2014). The BMD output 328	

describes the ‘equipotent dose’ of the modelled dose-response relationships in addition to the 329	

bounding, two-sided 90% confidence interval for each level of the covariate. The benchmark 330	

response (BMR) size (also termed the critical effect size) used was 50%, which represents a 50% 331	

increase in response relative to the background established in the vehicle (zero-dose) control.  332	

 333	

 334	

RESULTS 335	

Here, we investigate the ability of deep learning to provide generalised automation of CBMN assay 336	

scoring using imaging flow cytometry data acquired according to local protocols across three 337	

different laboratories (Cardiff, Cambridge and GSK). Fig. 1a demonstrates our workflow. At the end 338	

of the assay, cells were fixed and permeabilised before fluorescent nuclear staining. The choice of 339	

nuclear stain varied across the different laboratories according to compatibility with the laser 340	

configuration of the local imaging cytometer. At Cambridge, cells were labelled with the blue-341	

fluorescent dye Hoechst 33342 which was stimulated by a 405 nm laser with image capture using a 342	

ImageStreamX cytometer. At Cardiff and GSK, ImageStreamX MKII cytometers were used in 343	

conjunction with the red-emitting DRAQ5 nuclear stain and excitation by either a 488 nm or 642 nm 344	

laser (respectively). Full details of image acquisition settings at each laboratory are shown in Supp. 345	

Table 1. Image acquisition speeds depended on cell concentrations, in addition to the time taken to 346	
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purge the flow stream and load each new sample; approximately ~ 2000 – 5000 cell-images / minute 347	

was typical.  348	

 349	

After image collection, a template file created in the cytometer manufacturer’s IDEAS software was 350	

used to automatically batch-save populations of single cells that additionally met acceptable focus 351	

criteria (see Methods). These cell populations served as the input into the deep learning scoring 352	

pipeline. This workflow is provided for download in both MATLAB and Python programming 353	

languages at the Biostudies database (accession no. S-BSST641). In brief – the download 354	

demonstrates initial image pre-processing to normalise image illumination across cytometers in 355	

addition to how to build and train the DeepFlow neural network using a human-scored training 356	

image set. After successful training, the saved network can subsequently be used to automate the 357	

scoring of new images. For example, Fig. 1b-j shows typical events classified by a pretrained, nine-358	

class network with cell classes for mononucleates, binucleates, trinucleates and quadranucleates with 359	

or without micronucleus events in addition to a final class for ‘other or unscorable’ phenotypes.  360	

 361	

As introduced above, an essential component of network testing involves cross validation with 362	

human-scored test images unseen during the training phase. We display this evaluation as a 363	

confusion matrix, which compares network outputs to the human scores for every image in the test 364	

set (explained, Fig. 1k). In the subsequently presented results, we use this strategy to rigorously test 365	

the ability of a range of trained networks to enable automated CBMN assay scoring in both intra- and 366	

inter-laboratory contexts. In each instance, human-scored image sets were built from cell events 367	

pooled across the available compounds and exposures. This strategy was chosen to maximise the 368	

diversity of cellular phenotypes present, as well as to ensure that the rarer, micronucleated 369	

phenotypes that predominately manifested at higher exposures were well represented.  370	

 371	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442619doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442619
http://creativecommons.org/licenses/by/4.0/


Fig. 1 Automating the in vitro micronucleus assay using imaging flow cytometry and deep learning image classification. a Workflow: harvested cells were fixed and permeabilised 
before counterstaining the nuclei with a fluorescent DNA stain. Transmitted light brightfield (grey) and nuclear fluorescence (red) images were then automatically captured by high-
throughput imaging flow cytometry. After initial training using a human-annotated image set, single cell images from the cytometer can be automatically classified using the neural network 
image classification algorithm. b-j Example image classifications according to a nine-class network developed to score the cytokinesis-block in vitro micronucleus assay in human 
lymphoblastoid TK6 cells. k An example cross-validation ‘confusion matrix’ obtained during preliminary network optimisations and presented here to demonstrate confusion matrix 
interpretation. The matrix represents an image set scored by humans that is ‘unseen’ during network training. The horizontal direction represents the human scorer classifications, whilst the 
vertical direction shows the automated output classifications from the network. The green diagonal represents correct, matching classifications: for example (indicated, red box) 4,000 
‘binucleate’ images, representing 39.6% of the total test image set, were classified correctly. Away from this diagonal, misclassifications are shown e.g., (yellow box) 21 images (0.2%) 
labelled as ‘trinucleates’ by human scoring were incorrectly classified as ‘binucleates’ by the network. In the bottom-right corner (green box) the overall network accuracy and overall 
misclassification rate are shown for all nine classes (94.4% and 5.6%, respectively). In the white squares down the right-hand side of the matrix, the network precision i.e., true positive / 
(true positive plus false positive) (green percentages) and the false discovery rate i.e., 100-precision (red percentages) are shown for each classification. The horizontal bottom white row 
shows the network sensitivity i.e., true positive / (true positive plus false negatives) (green percentages) and false negative rates (red percentages), respectively. Therefore – by example – 
95.4% of the images classified as binucleates by the network were binucleates by human-scoring (blue box) whereas the trained model can be expected to correctly assign the binucleate 
class 98.6% of the time (magenta box). Scale bars equal 5 microns 
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First, we tested the ability of a network trained on one laboratory’s data to work well for unseen data 372	

from that same laboratory (i.e., ‘single-laboratory testing’) using imaging flow cytometry data 373	

collected at either Cardiff or Cambridge (Fig. 2). In this single laboratory context, images were 374	

randomly assigned to training (60%) and unseen testing (40%) groups. In both instances, the overall 375	

accuracies within this single-laboratory context were very high (91.3% and 90.5% for Cardiff and 376	

Cambridge, respectively). However, the compiled test sets were quite imbalanced in terms of the 377	

numbers of images per class, with network performance with some of the sparser classifications less 378	

well represented by the metric of overall accuracy.  379	

 380	

For Cardiff (Fig. 2a), whereas accuracy in classification of the common parent nuclei classes (i.e., 381	

mononucleates, binucleates, trinucleates) was generally very good (> 97 %), 20 out of a total of 78 382	

events (~ 25%) human-scored as ‘binucleate + MN’ were misclassified as ‘binucleates’ by the 383	

network. Similarly, around 35% of the human-scored ‘mononucleate + MN’ events were outputted 384	

into the ‘mononucleate’ or ‘other/unscorable’ classes, with a further ~ 20% of ‘tetranucleated’ test 385	

images misclassified as ‘trinucleates’. Despite scoring ~10,000 total events from the Cardiff 386	

cytometer, the very rarest cell phenotypes represented by the ‘tetranucleate with MN’ and 387	

‘trinucleate with MN’ classes presented at very low frequency (~ 0.27 % and 0.47 %, respectively). 388	

This led to sparsity in the training set which appeared associated with the network missing 389	

micronucleus events, as the ‘trinucleate + MN’ images were often misclassified into the ‘trinucleate’ 390	

or ‘tetranucleate’ classes. In a similar manner, ‘tetranucleate + MN’ images were often misclassified 391	

into the ‘trinucleate’ or ‘binucleate + MN’ categories.  392	

 393	

Similar results were observed within the Cambridge laboratory (Fig. 2b). Whereas accuracies with 394	

the ‘mononucleate plus MN’ and ‘binucleate plus MN’ classes showed slight improvement when 395	

compared against Cardiff, accuracies with the sparser, micronucleated tri- and tetranucleated cells 396	

again suffered (~ 44 and ~ 33% error rates, respectively).  397	
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Fig. 2 Assessing automated scoring accuracies using intra-laboratory train and test data. a/b Confusion matrices comparing human scoring versus deep 
learning image classifications for test image sets of approximately four thousand unseen images. In each instance, the results reflect the outputs from nine-class 
networks trained and tested exclusively on image-data from one imaging cytometer at either the a Cardiff or b Cambridge laboratories  
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 398	

We next considered the ability of the networks trained on single-laboratory data to generalise to the 399	

task of scoring the image data collected from the opposite Centre (Fig. 3). This was expected to be a 400	

difficult task given that the networks had been trained initially with fairly small numbers of images 401	

and because the two laboratories had utilised different cytometer models (ISX vs. ISX Mk II) and 402	

nuclear stains (Hoechst at Cambridge or DRAQ5 at Cardiff). This presented the likelihood of 403	

overfitting during training – yielding networks highly adapted to the task of scoring data from that 404	

particular laboratory.   405	

 406	

Despite these factors, at first-glance the overall accuracies appeared quite encouraging at 77.6% for 407	

the Cardiff-trained network classifying the Cambridge images (Fig. 3a) and 87.5% for the 408	

Cambridge network classifying Cardiff images (Fig. 3b). Comparing across the individual classes, it 409	

was apparent that the Cambridge-trained model generalised slightly better to the task of scoring the 410	

Cardiff data than was observed vice-versa. Closer examination however showed that the metric of 411	

overall accuracy was weighted by the prevalence of the easily identified ‘mononucleate’ and 412	

‘binucleate’ phenotypes, which masked assessment of the ability of the networks to identify the 413	

micronucleated classes representing DNA-damage events (Fig. 3a/b). In this regard, in almost all 414	

instances, the accuracy of micronucleated event detection suffered considerably compared to the 415	

results achieved with laboratory-matched test data (Fig. 2).  416	

 417	

With these single-laboratory results established, the images from Cambridge and Cardiff were 418	

combined together. This increased the diversity of training exemplifications considerably given the 419	

use of two different nuclear stains, two compounds, different imaging cytometers and no ‘hold out’ 420	

requirement for cross validation testing. Training a new DeepFlow neural network on this combined 421	

training set (~ 19,000 images) took approximately one hour using modest hardware (single RTX 422	

2080 GPU). The resulting network was then cross validated using a test set where both the bioassay 423	
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Fig. 3 Assessment of automated network scoring accuracies using inter-laboratory test data. a/b Confusion matrices comparing human scoring versus deep 
learning image classifications for test image sets of approximately ten thousand unseen images. In each instance, the results reflect the outputs from nine-class 
networks trained exclusively on image data from one laboratory’s imaging cytometer before cross-validation testing against image data collected at a different 
laboratory. a Network accuracies after training using Cardiff data before testing on unseen Cambridge data. b Network accuracies after training on Cambridge data 
then testing on unseen Cardiff data 
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and imaging cytometry were conducted at an entirely new, third laboratory (GSK). Scoring ~ 5,000 424	

test-images took around six seconds on the RTX 2080 hardware or ~ 82 seconds on a single CPU. 425	

This time, the network showed much better ability to generalise to the task of successfully scoring 426	

the images from the new laboratory (Fig. 4a). Across the four core classes central to utilisation of 427	

CBMN assay (i.e., ‘mononucleate’, ‘mononucleate plus MN’, ‘binucleate’ and ‘binucleate plus 428	

MN’), and with no user input or configuration required, the network achieved 98%, 82%, 94%, and 429	

85% accuracies, respectively.  430	

 431	

We then examined failure cases, starting with 22 instances where the network detected micronucleus 432	

events in cells scored by humans as just mono- or binucleated (Fig. 4a). Surprisingly, many did, in 433	

fact, appear to have faint or partially occluded potential micronucleus or nuclear bud events that 434	

would have been extremely difficult for the human scorer to detect (Fig. 4b/c). Similarly, 435	

visualisation of cell events scored by humans as either ‘mononucleate with MN’ or ‘binucleate with 436	

MN’, but outputted by the network as ‘binucleate’ or ‘trinucleate’ showed that these images often 437	

contained very large micronucleus events (Fig. 4d/e). Indeed, some of these likely exceeded the 438	

upper size limitation typically imposed on micronucleus classifications (i.e., ≤ 1/3 diameter of the 439	

parent-nuclei) suggesting additional validity to the network’s outputs.  440	

 441	

Progressing towards the less frequent cell phenotypes, the accuracies achieved with the ‘trinucleate’ 442	

and ‘tetranucleate’ cell classes were also good at 90% and 88% respectively. However, detection of 443	

these cell types with micronucleus events was either quite poor or failed entirely. Again, this 444	

outcome was likely related to extreme sparsity in occurrence (< 0.25 % frequency in the training 445	

data). In an attempt to improve accuracies with these classes, we tried both class weighting the 446	

classification layer and combining tri- and tetranucleated events with and without micronucleus 447	

events into a single, ‘polynucleated’ class (Supp. Figure 2). Whereas both strategies somewhat 448	

improved the classification accuracies with these rare events, they were also found to compromise 449	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442619doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442619
http://creativecommons.org/licenses/by/4.0/


Fig. 4 Network accuracy and dose-response assessment using unseen test 
data from a new laboratory. a Confusion matrix showing human versus deep 
learning image classifications for a test image set of approximately five thousand 
unseen images. Here, the neural network was trained using image data from both 
the Cambridge and Cardiff laboratories before testing on new, unseen imaging 
cytometry data acquired at a third laboratory (GSK). b Cell events human scored 
as ‘binucleates’ but classified as ‘binucleate plus MN’ by the neural network (i.e., 
red square in A). c Cell events human scored as ‘mononucleates’ but classified as 
‘mononucleate with MN’ by the neural network (i.e., blue square in a). b/c, Close 
examination of the purportedly misclassified cells shows that many display 
indistinct events that might be micronucleus or nuclear buds missed by the human 
scorer (indicated, white arrows). d Cell events human scored as ‘mononucleate 
with MN’ but classified as ‘binucleate’ by the neural network (i.e., magenta square 
in a). e Events human scored as ‘binucleate with MN’ classified as ‘trinucleate’ by 
the neural network (i.e., yellow square in a). d/e In both instances, some of the 
human-scored micronucleus events encroach upon the 1/3 parent nuclei upper-
size limitation typically imposed on micronucleus classifications. b-e For each 
event, the white percentages represent neural network confidence in the outputted 
classification. f Binucleated-cell micronucleus frequencies for a three dose plus 
control dose-response experiment performed in triplicate for carbendazim 
exposure to TK6 cells. Scores were established from image sets of 2,000 events 
per replicate by human scoring or by the cross-validated network established in 
(a). (*) (**) (***) indicate statistical significance relative to control at p < 0.05, p < 
0.01 and p < 0.001 respectively. g Covariate benchmark (BMD) dose modelling 
using dose-response data from either the human (black) or automated neural 
network (red) scores established in (f). The horizontal and vertical dashed lines 
represent interpolation to determine the equipotent, benchmark dose for a 
benchmark response size of 50%. Regardless of human or automated scoring, 
the model predicts the same benchmark dose. Scale bars equal 5 microns 
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the accuracies achieved with one or more of the four core phenotypes more central to successful 450	

CBMN assay scoring. 451	

 452	

Given that the frequency of binucleated cells with or without micronucleus events represents the core 453	

readout for successful DNA damage assessment by the CBMN assay, after validating the network we 454	

proceeded to assess the binucleated-cell micronucleus frequency for a three dose plus control 455	

experiment conducted in triplicate with carbendazim at the GSK laboratory. For each dose and 456	

replicate, 2000 cell images were scored both manually and automatically. Visually, the resultant 457	

dose-response relationships appeared similar across the human and neural network scoring 458	

approaches, with the human scores consistently fractionally higher for each dose-group (Fig. 4f). To 459	

better understand the consequences of this using a recognised, quantitative framework for genotoxic 460	

potency estimation, the dose-response relationships were fitted using both the exponential and the 461	

Hill model families recommended for the assessment of continuous toxicity data using Benchmark 462	

Dose (BMD) analysis (Hardy et al. 2017). With scoring method specified as a potential covariate, 463	

model fitting with the PROAST package resulted in covariate-dependent parameterisation for the 464	

background response (parameter a) and for within-group variation (var). For both model families, 465	

this parameterisation subsequently allowed rejection of scoring method as covariate, yielding the 466	

same estimation for the equipotent, benchmark dose from both manual and automated methods (Fig. 467	

4g). Model fits to the data are presented in Supp. Figure 3. 468	

 469	

 470	

DISCUSSION 471	

The CBMN assay represents a globally significant method for the identification and quantification of 472	

chromosomal damage (Fenech 2000; Fenech 2020; OECD 2016). Its utility reaches beyond 473	

regulatory compound screening to encompass inter-individual monitoring of wide-ranging lifestyle, 474	

occupational and environmental factors (Fenech 2020; Kirsch-Volders et al. 2011; Wang et al. 475	
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2019). Despite this, continued reliance upon time-consuming and user-subjective manual scoring 476	

represents a bottleneck to broadening practical utilisation (Seager et al. 2014; Verma et al. 2018; 477	

Verma et al. 2017). In this pilot study, we show that rapid image acquisition by imaging flow 478	

cytometry in conjunction with deep learning image classification represents a capable platform for 479	

automated, inter-laboratory operation. We share our strategy via openly accessible frameworks. 480	

 481	

As an image acquisition method, imaging flow cytometry is now well established as a means for 482	

high-throughput CBMN data capture with concomitant image archiving potential (Rodrigues et al. 483	

2014a; Rodrigues et al. 2016a; Rodrigues et al. 2018). Moreover, this is achieved with simple sample 484	

preparation involving a single nuclear stain and brightfield to provide the context that events lie 485	

inside parent cells (Rodrigues et al. 2018). Comparison studies have shown that the captured images 486	

contain dose-response information that aligns to results obtained from ‘gold standard’ manual 487	

microscopy scoring (Verma et al. 2018). Whereas conventional flow cytometry offers faster 488	

throughput, it lacks this image-based validation whilst additionally requiring cell lysis. This prevents 489	

utilisation of the cytokinesis-block version of the assay with its associated advantages such as robust 490	

utilisation of primary human cell lines, knowledge that cells have divided during the test period and 491	

quantitation of mononucleated, binucleated and different classes of multinucleated cells. This 492	

information is useful in the avoidance of misleading negative results and additionally enables 493	

calculation of division and replication indexes that contribute to assessments of mitogen response 494	

and cytostatic impact (Rodrigues et al. 2018).  495	

 496	

Beyond image collection, automated scoring of imaging flow cytometry data – as with other 497	

automated microscopy strategies – has thus far largely relied upon traditional, threshold-based image 498	

classification techniques. These require image analysis expertise to implement, alongside user-499	

configuration and tuning to maintain performance (Rodrigues et al. 2018; Seager et al. 2014; Verma 500	
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et al. 2017). Unfortunately, much as with traditional manual scoring, this is time-consuming and 501	

subjective.   502	

 503	

In contrast, once successfully trained, the results achieved here suggest that deep learning image 504	

classification has the potential to eliminate these expertise and user-input requirements, dramatically 505	

reducing the time to results. This comes from encompassing image diversity during network training 506	

and harnessing it to improve the consistency and robustness of subsequent classifications. To this 507	

end, here we show that utilisation of diverse training data curated across two laboratories utilising 508	

different nuclear stains, multiple compounds and two different cytometer models yielded a capable 509	

neural network for scoring automation. Without user configuration, the network was able to classify 510	

data collected from an entirely new laboratory with > 82% accuracy for each of the four cell 511	

phenotypes central to CBMN performance (i.e., mononucleate and binucleate cells with or without 512	

micronucleus events) in addition to successfully classifying tri- and tetranucleated cells (> 88% 513	

accuracy) and unscorable events (96% accuracy). Importantly, these seven classes encompassed 514	

virtually all of the cell images encountered (>99%). Success at micronucleus detection in both 515	

mononucleate and binucleate cell classes further suggests that this single network could be used to 516	

automate scoring of both mononuclear and cytokinesis-block versions of the assay. 517	

 518	

Despite this success with the assay classes central to CBMN scoring, the scarce, tri- and 519	

tetranucleated phenotypes with micronucleus events proved more challenging. Commonly employed 520	

methods such as class weighting or class combination offered little in the way of accuracy 521	

improvements, and often compromised accuracy with the other classes. These findings suggest that 522	

significant increases in the representation of these sparse events during training will likely be 523	

required to improve success. In this context, imaging flow cytometry is well suited to examine 524	

whether an improved image bank leads to enhanced accuracy in scoring given the high rates of 525	

image capture achievable. Our results also suggests that class reduction does not necessarily simplify 526	
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the classification problem and may instead cause ambiguities. In this way, future expansions to the 527	

number of classes to encompass all distinctive cellular phenotypes may represent a route to 528	

improving overall network performance.  529	

 530	

In this regard, we identified additional, potentially-scorable cell phenotypes (Fig. 5). In particular, 531	

cell death events (i.e., due to apoptosis and necrosis) were visually apparent, but we were unable to 532	

determine apoptotic from necrotic events using just the brightfield and nuclear fluorescence images 533	

alone. Cells caught during mitosis also represented distinctive events. At the same time, we were less 534	

convinced that more subtle phenotypes relevant to the expanded, CBMN cytome assay such as 535	

nuclear buds and bridges could reliably and consistently be detected – given the relatively low 536	

resolution of the image data (Fenech 2007). However, it is important to note that previous studies 537	

demonstrating capture of these phenotypes by imaging flow cytometry have utilised both the 60X 538	

ImageStream objective lens in addition to hypotonic treatments to swell cell volumes prior to 539	

imaging (Rodrigues 2019; Rodrigues et al. 2018). Hypotonic treatments were not used here but may 540	

improve image capture of these more subtle phenotypes. With regards to network class expansion to 541	

encompass these events – or, indeed for simultaneous measurement of other endpoints – the 542	

ImageStream platform is capable of multiplexed imaging. Additional channels might therefore be 543	

used to simultaneously measure other DNA-damage pathways (e.g., ϒH2AX for DNA double-strand 544	

breaks (Smart et al. 2011)), or to improve the reliability of ground truth image curations through use 545	

of additional fluorescent markers to differentiate events such as apoptotic from necrotic cells. 546	

 547	

Manual scoring of the images for this experiment was more challenging than the exemplar images 548	

shown might suggest. Fundamentally, the acquired images are relatively low resolution (i.e., cells 549	

occupy ~ 64x64 pixels) and further image degradation is always present as a result of the capture of 550	

moving objects by time delay integration. The acquired images also represent a central, 2-D 551	

projection of a 3-D cell-object. This means that nuclei and micronucleus events may overlap each 552	
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Fig. 5 Other scorable cell phenotypes captured by imaging flow cytometry. a Cells 
undergoing mitosis were visually apparent according to metaphase spread-type nuclear 
fluorescence imagery (red) alongside large, brightfield-delineated cell sizes (grey). b/c 
Cell death events displayed shrunken cell sizes in conjunction with granular brightfield 
and fluorescence imagery. In the case of cell death, two distinctive cell phenotypes 
appeared visually separable according to cell size and the number, size and extent of 
nuclear foci formation (b versus c). Whether these observations represented distinct 
apoptotic versus necrotic events was unclear from the nuclear fluorescence and 
brightfield information alone. Scale bars equal 5 microns 
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other, or they may lie outside of the plane of optimal focus (Rodrigues et al. 2018). These factors all 553	

served to make ground truth assignments more complicated, even for experienced CBMN scorers. 554	

Whereas network accuracy assessments by confusion matrix provided a more representative 555	

breakdown of outputs when compared to simplistic overall accuracy measures, it is a relatively 556	

stringent success measure because any ambiguity in human score assignment is not captured. A 557	

potential advantage of automated network classification approach is therefore likely greater 558	

consistency – even in error – than arises from manual scoring.  559	

 560	

Regarding image focussing, the ImageStream platform offers ‘extended depth of field’ (EDF) 561	

technology, whereby image deconvolution is used to improve the utility of out of focus events 562	

through projection onto a single plane (Ortyn et al.). Whereas previous studies have shown this 563	

technique can improve accuracy in ‘spot counting’ applications, the strategy has been reported less 564	

helpful for the provision of improved CBMN data (Parris et al. ; Rodrigues 2018; Rodrigues et al. 565	

2014a). This was attributed to a slight degradation in overall image resolution, compromising 566	

differentiation of micronucleus events from parent nuclei (Rodrigues 2018). On a similar theme, the 567	

ImageStream platform is also configurable with 20X, 40X or 60X objective lenses. Here, image 568	

collection was via the ‘standard’, 40X objective across all laboratories. This approach was chosen as 569	

previous work has shown that whilst greater resolution is achievable with the 60X objective, focus 570	

depth also decreases, reinforcing the out of plane difficulties described above (Rodrigues et al. 571	

2018).  572	

 573	

Whilst considering the nature and utility of imaging flow cytometry data, a relevant comparison is to 574	

that provided by other automated imaging methods such as slide scanning platforms. In addition to 575	

the potential for higher resolution imaging, here an overlooked advantage comes from the ability to 576	

use slide-based preparations created by cytocentrifugation. This technique causes the flattening and 577	

spreading of cellular content, presenting nuclear objects on a more two dimensional plane (Fitzgerald 578	
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and Hosking 1982; Shanholtzer et al. 1982). From a practical perspective however, this also 579	

necessitates the consistent preparation of high-quality slides with optimal cell densities (Rodrigues et 580	

al. 2018). Meanwhile, a major advantage of the imaging flow cytometry approach is that single cell 581	

image data is inherently acquired by the fluidics-based processing of individualised cells. 582	

 583	

CONCLUSIONS 584	

As a platform for the CBMN assay, imaging flow cytometry combines the high throughput and 585	

multiplexing potential of flow cytometry with the image-based validation and archiving attributes of 586	

automated microscopy. Here we demonstrate accurate, automated assay scoring using a neural 587	

network for data collected in a laboratory wholly separate to that in which the algorithm was trained. 588	

This proves that without any human configuration, the machine is able to correctly anticipate the 589	

decisions of the expert human on unseen images in a new setting. For the first time, this suggests the 590	

possibility for generalised scoring automation through dissemination of a pretrained network for the 591	

ImageStream platform established from ground truth agreed by a single, expert group. Such an 592	

approach would provide the ultimate in terms of standardisation and result reliability, but more 593	

importantly could enable adoption of the assay beyond current practitioners as local expertise in 594	

scoring and/or image analysis would no longer be required. For these reasons, we believe that full 595	

development of this automated, accessible, inter-laboratory approach would represent a truly twenty-596	

first century method with significant potential to transform CBMN utility across industry, research 597	

and clinical domains. 598	

599	
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Supp. Table 1 – Imaging flow cytometry data acquisition information   

Image data were collected using three different imaging flow cytometers located across three laboratories (Cambridge, Cardiff and GSK). At 
each laboratory, the choice of florescent nuclear stain depended upon local protocols and compatibility with the cytometer’s laser configuration.  

	

Centre Excitation 
laser (nm) 

Intensity 
(mW) 

Brightfield 
channel 

Nuclear 
fluorescence 

channel 

Nuclear 
stain 

Objective 
lens 

Cytometer 
Model 

Cambridge 405 50 Ch04 Ch01 
Hoechst 
33342 

40X Amnis ImageStreamX 

Cardiff 488 100 Ch01 Ch11 DRAQ5 40X Amnis ImageStreamX MkII 
GSK 642 55 Ch01 Ch11 DRAQ5 40X Amnis ImageStreamX MkII 
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Supp. Figure 1 DeepFlow neural network architecture schematic. The DeepFlow network utilises a 64x64x2 input layer (x, y, channels) followed by 
repeating dual-path subunits from the “Inception” architecture to aggregate visual information over increasing scales. The number of kernels used 
increases at each layer, yielding 336 features maps with size 8 x 8 before average pooling, the fully connected (fc) layer and softmax classification 
using cross-entropy loss. 
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Supp. Figure 2 Cross validation testing using class weighting or class simplification strategies. a/b Confusion matrices comparing human scoring versus deep 
learning image classifications for a test set of ~ 5000 unseen images. In each instance, the results reflect the outputs after training using image data from both the 
Cambridge and Cardiff laboratories before cross validation on new imaging cytometry data acquired at a third laboratory (GSK). In a class weighted cross entropy 
loss was used at the classification layer in an attempt to improve performance with the sparsely-represented phenotypes (i.e., tri and tetranucleates with or without 
micronucleus (MN) events). In b these sparse, multinucleated categories were combined together into a single ‘polynucleated’ class. Whilst some improvements 
were realised using these strategies, they both reduced achieved accuracies (indicated, red squares) with one or more of the four, core phenotypes central to 
successful CBMN scoring (i.e., mono or binucleated cells with or without MN events).  
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Supp. Figure 3 Benchmark dose (BMD) analysis using exponential and Hill model families. The curves represent fits to micronucleus dose-response 
data obtained either by human (red) or neural network (black) scoring using either the exponential (top) or the Hill (bottom) model families. Both 
models were fitted with covariate (scoring method) dependent parameters for the background (parameter a) and within-group variance (var), whilst 
constant parameters could be used for potency, shape and steepness (parameters b, c and d). Horizontal and vertical dashed lines represent 
interpolation at a benchmark response (BMR) size of 50% to determine the BMD50 (respectively).  
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