
	

Title: An interpretable connectivity-based decoding model for classification of chronic marijuana use 

	

Authors: *Kaustubh R. Kulkarni1, *Matthew Schafer1, Laura Berner1, Vincenzo G. Fiore1, Matt Heflin1, Gaurav 
Pandey2, Kent Hutchison3, Vince Calhoun4, Francesca Filbey5, Daniela Schiller1, Xiaosi Gu1 

1Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
2Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
3Institute for Cognitive Science, University of Colorado, Boulder, CA, USA 
4Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia 
State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA 
5Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas, USA 

*Authors contributed equally 

Corresponding author: 
Kaustubh R. Kulkarni 
kaustubh.kulkarni@icahn.mssm.edu 
Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai 
55 W 125th St, New York, NY 10027 

 

ABSTRACT	

Background: Psychiatric neuroimaging typically proceeds with one of two approaches: encoding models, 
which aim to model neural mechanisms, and decoding models, which aim to predict behavioral or clinical 
features from brain data. In this study, we seek to combine these aims by developing interpretable decoding 
models that offer both accurate prediction and novel neural insight, using substance use disorder as a test 
case. 

Methods: Chronic marijuana (MJ) users (n=195) and non-using healthy controls (n=128) completed a cue-
elicited craving task during functional magnetic resonance imaging. Linear machine learning algorithms were 
used to classify MJ use based on task-evoked, whole-brain functional connectivity. We then used graph 
theoretical measures to explore ‘predictive functional connectivity’ and to elucidate whole-brain regional and 
network involvement implicated in chronic marijuana use. 	

Results: We obtained high accuracy (~80% out-of-sample) across four different linear models, demonstrating 
that task-evoked, whole-brain functional connectivity can successfully differentiate chronic marijuana users 
from non-users. Subsequent network analysis revealed key predictive regions (e.g., anterior cingulate cortex, 
dorsolateral prefrontal cortex, precuneus) that are often found in neuroimaging studies of substance use 
disorders, as well as some key exceptions – such as sensorimotor and visual areas. We also identified a core 
set of networks of brain regions that contributed to successful classification, comprised of many of the same 
predictive regions.	

Conclusions: Our dual aims of accurate prediction and interpretability were successful, producing a predictive 
model that also provides interpretability at the neural level. This novel approach may complement other 
predictive-exploratory approaches for a more complete understanding of neural mechanisms in drug use 
disorders and other neuropsychiatric disorders. 	  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

INTRODUCTION	

Psychiatric neuroimaging has two main goals: describing the neural mechanisms of mental dysfunction and 
predicting clinical characteristics from neural data, both of which have been explored and reviewed in great 
detail1. These goals are typically approached with different statistical and inferential paradigms, with different 
strengths and weaknesses2.	Common functional magnetic resonance imaging (fMRI) modeling approaches 
test hypotheses about how mental processes are represented in brain signals, allowing investigations into the 
neural mechanisms of psychiatric disorders. Such “encoding” approaches model brain activity as a function of 
different features [i.e., giving p(Brain|Features), or probability of brain activity conditioned upon features], and 
do not easily give inferences about processes or clinical categories from brain activity [i.e., p(Features|Brain)]. 
Given the functional diversity of the brain regions implicated in psychiatric disorders, establishing the functional 
specificity of a brain signal is difficult and limits the ability of encoding models to predict clinical characteristics 
from brain data3. 	

In contrast, “decoding” models provide the opposite type of inference, as in these models, neural data are used 
to predict features, such as clinical diagnosis [i.e., p(Diagnosis|Brain)]. Machine learning (ML) models are often 
used for this purpose; in psychiatry, and substance use disorders specifically, numerous machine learning 
approaches have been used, including support vector machines4–7, logistic regression8–10, and others11–13. 
However, decoding models do not necessarily give insight into structure-function relationships, or even 
neurobiological plausibility2 and are usually considered less interpretable than encoding models.	

There have been numerous attempts to unify the descriptive (“encoding”) and predictive (“decoding”) 
approaches, especially in recent years, as mounting evidence demonstrates the advantages of both. 
Linearizing encoding methods such as representational similarity analysis14–16 explicitly link feature space and 
brain space, revealing patterns of brain activity that are significantly different during varied both perceptual and 
non-perceptual task stimuli. Similarly, hyperalignment17–19 and related approaches20–22 transform high-
dimensional brain spaces such that feature/clinical spaces are as aligned as possible; these representational 
spaces can subsequently be used for high fidelity decoding. Although each of these is an attempt to link 
encoding and decoding approaches, none of them explicitly generate predictive models which can 
subsequently be highly interpretable. In this regard, machine learning approaches, involving separate training 
and held-out testing sets, provide the strongest decoding constraint for a maximally powerful inference during 
the interpretation of the model23. Wager and others2,24–26 demonstrate the value of this class of models in 
elucidating neural signatures, though they largely focus on constructs of physical and emotional pain.	

One way to improve decoding models’ interpretability is through theory-based modeling decisions: about the 
types of neural features to train the model on (feature selection), or constraints of the model27–29. For example, 
there may be more information about psychiatric dysfunction in the interactions between regions than in the 
activities of isolated regions30. This generates competing hypotheses in the same data: the predictive 
performance of models trained on features that capture information about neural interactions (e.g., functional 
connectivity) can be compared with models trained on the regional activities alone: the features that contain 
more relevant information should produce better predictions.	

Another way to gain insight from decoding models is by performing a systematic evaluation of the fitted model. 
For example, decoding models trained on functional connectivity can be seen as indicating the features of 
network activity that are predictive of the outcome. One novel interpretation approach is to combine the trained 
model weights with the functional correlation values and apply network analysis to the resulting predictive (i.e., 
weighted) connectivity. In recent years, network neuroscience has emerged as a powerful tool to provide 
essential metrics and methods to uncover complex brain interactions31–34. We employ these network analytic 
methods to infer brain structures critical for accurate differentiation of chronic marijuana (MJ) users from non-
users. Importantly, the inferences we draw about group differences in network features are constrained by the 
predictive performance of the decoding model [i.e., p(Network Features|(Diagnosis|Connectivity))]. 	
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In this study, we use a large fMRI dataset35,36 collected from individuals with and without chronic MJ use (i.e., 
cannabis use disorder).	In recent years, decreased perception of adverse effects of cannabis has coincided 
with increased usage37–40 and legalization efforts. Although the adverse clinical effects of cannabis have been 
well-established38,41–44, research on them has been hampered by the absence of reliable mechanistic 
biomarkers of cannabis use disorder. With our predictive and interpretable model, we aim to address this 
critical gap in knowledge.	

We present here a novel modeling approach to balance the dual goals of clinical prediction and mechanistic 
understanding. To our knowledge, this is, to date, the largest fMRI sample used in the classification of 
substance use disorders (n=323), the first attempt to classify chronic MJ use with fMRI, and the first utilization 
of network analysis to interpret a fMRI decoding model. We trained linear decoding models on whole brain 
functional connectivity from individuals with chronic use and healthy controls during a marijuana cue-induced 
craving paradigm. The models predicted chronic use of MJ with high accuracy in out-of-sample participants 
(~80%) and outperformed models that used only regional activities - suggesting that the interactions between 
brain regions contained more information about the differences between these groups. Network analyses on 
the predictive connectivity matrices (i.e., functional connectivity weighted by the model coefficients from 
predictive models) identified brain regions and networks important to successful use classification, 
demonstrating the utility of interpretable decoding models for neurobiological description.	  
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RESULTS 

Model training: classification of chronic marijuana use  

We first trained decoding models using two different linear machine learning algorithms (logistic regression and 
linear support vector classification [SVC]) to classify a clinical label of chronic marijuana use from whole-brain 
functional connectivity. Two regularization penalty types (L1 and L2 penalty) were chosen to be applied to each 
learning algorithm, for a total of four candidate learning algorithms. The model inputs consisted of a 4,005-
element vector representing pairwise correlation values between every region in the brain as defined by the 
Stanford 90 region of interest (ROI) atlas (see Methods for more details). The full dataset (two runs each from 
n=195 chronic marijuana users, n=128 non-users) consisted of 646 total runs, and was divided into training 
and testing splits: 80% for training (516 samples), and 20% (130 samples) for out-of-sample testing to validate 
the performance of the best-performing models from training. The 80% training set was further divided into 10 
folds that were used to optimize our chosen hyperparameter (regularization penalty strength [alpha]) using 
cross-validation. The complete pipeline is depicted in Fig. 1. Cross-validated accuracies for each combination 
of hyperparameters are summarized in Table 1.  

Model training: connectivity- vs. activity-based models’ performance 

To test our hypothesis that models trained on functional connectivity would have higher prediction accuracy 
than models trained on regional activities, we performed the same hyperparameter search as described above 
with models trained on mean regional activation distances: the pairwise absolute value differences between 
regions’ mean estimated activity. Mean distances between the estimates were used rather than the estimates 
themselves to keep the number of features constant across the models. Three different types of regional 
activity estimates were tested: mean time courses, mean marijuana cue betas (mjcue) and the contrast of mean 
marijuana cue betas minus mean control cue betas (mjcue>ctlcue). In the cross-validation training set, the 
highest performing models from each type of estimate had substantially lower accuracy than the best 
functional connectivity models (time course=60.4%, mjcue=65.1%, mjcue>ctlcu=60.5%), supporting our 
hypothesis that functional correlations are more informative than isolated activities for differentiating chronic MJ 
users from healthy controls.  

Model training: hyperparameter performance  

Generally, the L2 penalty was associated with better performance for both logistic regression and linear SVC, 
and lower alpha (corresponding to lower regularization strength) increased model performance, indicating that 
widespread information from many region-region correlations contributed to classification success. From the 
hyperparameter optimization results, we selected 0.0001 as the alpha parameter for following analyses, given 
its reliably strong cross-validated performance across all penalty types and classification algorithms. Since 
both L1 and L2 penalties for both algorithms performed well for a range of alpha values, we used both for final 
evaluation of the logistic regression and linear SVC models on the training and testing sets (2 models x 2 
penalties x 1 alpha level = 4 tested models). The receiver operating characteristic (ROC) curves shown in Fig. 
2 demonstrate the classification ability across various decision thresholds within the training set.  

Model testing: held-out data performance 

After confirming high cross-validated performance in the training dataset, we tested out-of-sample performance 
on the previously held-out data. As described in Fig. 1c, the four models were trained on the full training 
dataset and tested on the held-out data (20% of total sample). The performance metrics are summarized in 
Table 2 for accuracy, AUC, and precision and recall per clinical group for each model. Note that the accuracies 
for these models are much higher than chance testing set accuracies defined in three different ways: models 
that simply select the dominant class (60%) or randomly guess (53.85%), or the averages of permutation 
generated (1000 shuffles of subjects’ training labels) distributions (L1 logistic: 53%, L2 logistic: 53.2%, L1 SVC: 
52.8%, L2 SVC: 53.6%). 
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Model predictions and ensemble probabilities as well as true subject labels are compared in Fig. 3. Models 
produced very similar predictions, with high similarity for the pairwise comparisons (Jaccard similarity 
coefficients: 0.81-0.91). The learned model weights also had high rank similarity (Kendall’s tau coefficients: 
0.70-0.75), suggesting similar relationships were learned by the different algorithms. All models had good 
classification accuracy, demonstrating that linear modeling of whole brain functional correlations is effective in 
classifying chronic marijuana use.  

Model interpretation: predictive connectivity 

Following confirmation of out-of-label clinical relationships with model metrics, we interpreted the model 
weights to infer the brain connectivity structure implicated in chronic marijuana use (Fig. 1d). One advantage 
of using linear models is that the input features and learned model weights share the same shape. Further, in 
our case the model weights are the signed scaling of region-to-region connectivity values that, when added, 
produce the classification decisions. This enables meaningful interpretability of the brain connectivity patterns 
most significantly implicated in differentiating clinical cases from controls. First, we constructed model weight 
matrices for each of our four linear models. Reversing the procedure applied to the initial correlation matrices 
(see Methods) reverted the 4,005 model weights for each model to a 90x90 region-to-region feature weight 
matrix. Then we combined the model weights with the region-to-region correlation magnitudes, subject by 
subject, to produce weighted connectivity matrices - which we refer to as “predictive connectivity.” Then we 
used two approaches: (1) evaluated the regions with the highest predictive importance, per model, and (2) 
used a graph theoretical analysis was performed on the model weight matrices to examine their network 
properties.  

Posterior checks/Predictive importance 

Model weights are interpretable only within the context of input magnitudes. That is, the strength and sign of 
the correlation input values determines their importance to prediction. Simply knowing the model weight is not 
sufficient to determine that the correlation value is important for prediction; it is necessary to examine the 
magnitude of the weighted correlation value. To this end, we performed a series of posterior checks on weights 
and correlation values to determine the brain regions most important for prediction in each algorithm.  

First, we generated a mean whole-brain correlation matrix across all subjects. This matrix was then multiplied 
elementwise by the corresponding model weights for each algorithm to generate a whole-brain weighted 
connectivity matrix for each subject. We then calculated the mean weighted correlation for each region with all 
other regions. As the magnitude of weighted correlation was important for prediction, the absolute value of this 
mean weighted correlation was used to rank each region. Across models, we observed high consistency in the 
predictive importance ranks (Kendall’s tau coefficients=0.76-0.83, p-values=8.45e-27-4.71e-31). Given the 
similarities in weights, predictions and regions of predictive importance across models, we assumed relative 
stability across the models and selected one model for subsequent interpretations: the L2 linear SVC 
(alpha=0.0001), given its high and stable performance across the ranges of alpha tested. For our chosen L2 
SVC model, the top twenty regions in terms of mean predictive importance are visualized in Fig. 4a and 
include brain regions such as bilateral anterior cingulate cortex (ACC), left pre/postcentral gyri, right middle 
frontal gyrus, and right inferior parietal cortex. 

As an exemplar region, bilateral ACC showed high mean predictive importance across all models, so its 
unweighted regional connectivity strengths to every other region were further visualized in Fig. 4b. Among the 
regional connections to ACC, most regions identified as having high weighted connectivity also have high 
magnitudes of original connectivity strength (rmean=0.478, rstd=0.0628). Importantly, however, a number of 
regions show relatively small magnitudes of correlation strength but high predictive importance (reflected by 
high model weights). Our interpretable model weights approach allows for the identification of these small 
fluctuations in connectivity differences that are nevertheless highly implicated in differentiating chronic users 
from healthy controls. 
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To examine whether top 20 regions identified by our top weighted connectivities are consistent with those 
reliably implicated in craving, we compared our region-specific predictive importance scores i.e., ranked 
weighted connectivities, to uniformity and association maps retrieved from Neurosynth.org using a term-based 
meta-analysis. The ’craving’ keyword yielded aggregated activation maps from 80 published studies 
thresholded at FDR-corrected p<0.01. The most significantly active regions identified by this meta-analytic 
approach include medial prefrontal cortex, middle cingulate cortex, medial prefrontal cortex, and medial 
parietal lobule. Each Neurosynth map was projected on an anatomical map and the Stanford functional ROIs 
with high weighted connectivity (predictive importance) were overlaid on top (Fig. 5). Map comparisons were 
restricted to a qualitative overview due to the highly dissimilar sparsity of the maps, as well as significant 
differences in the sizes of Stanford ROIs and the activation loci in the Neurosynth maps. Mainly, we aimed to 
demonstrate that our findings fall in line with current literature, but in summary, regions in the meta-analytic 
craving map qualitatively show a moderate level of correspondence to regions identified as having high 
predictive importance, supporting and validating our interpretation pipeline. 

Graph theoretical analysis 

Our next goal was to more formally investigate the relevant networks that distinguish users and non-users. To 
this end, a graph theoretical approach was applied to investigate the network properties of regions involved in 
predicting a label of chronic marijuana use. Graph properties were calculated at local, global, and meso-levels 
of topological organization (Fig. 6). Local properties are the properties of individual nodes in the graph (i.e., 
individual brain regions), global properties describe properties of the graph as a whole (i.e., the full brain 
network), and meso-scale properties describe clusters or sub-networks within the full graph that are highly 
modular (i.e., brain communities).  

Just as we had previously generated a mean weighted connectivity matrix, for each subject, we generated a 
weighted connectivity matrix by performing an element-wise multiplication of the L2 SVC model weight matrix 
with the subject’s connectivity matrix (Fig. 7a). Then, each subject’s sparse representation of the weighted 
connectivity matrix was obtained by thresholding at 2% connection density. Matrix thresholding is a commonly 
used strategy in network neuroscience to remove spurious network connections, and improve stability and 
modularity of network features45–48. The absolute values of the weighted connectivity values were taken, as the 
magnitudes of weighted connectivity set as the strength of node-to-node connections in the graph. The 
transformed matrix was used to generate a sparse graph, where nodes represented regions, and the edges 
represented the strength (i.e., importance) of connectivity values between two regions to prediction.	

At the brain (local) level, we calculated a region’s importance to prediction by calculating a subject-specific 
binarized degree centrality score. Degree centrality (DC) of a node is defined as the summation of the number 
of above threshold connections to a node. Thus, we interpreted the DC as the number of predictively valuable 
connections a region has with other regions. Note that region-by-region DC is calculated for every subject, 
providing a measure of each region’s importance to every subject’s classification. To interpret DC scores, we 
first assessed overall predictive importance of regions. To do this, we performed non-parametric region-by-
region significance testing of all subject DC values. Regions were ordered by greatest mean DC score, 
indicating level of predictive importance. The top twenty regions of highest average DC (along with bottom two 
lowest for comparison) are shown in Fig. 7b. Regions of high overall importance include bilateral ACC, right 
inferior parietal/angular gyrus, and right middle frontal gyrus. At the network level, regions from numerous 
resting state networks are represented in the top ten regions, with no particular functional network dominating. 
Results from this network significance analysis corroborate a widely distributed pattern of connectivity being 
important for distinguishing individuals who have long-term MJ use from controls. 

Next, we discovered properties of network organization at the whole brain (global) level by calculating small-
world network efficiency networks. Briefly, network efficiency is defined as the average ability of a network to 
transmit information in an effective manner, and also quantifies its fault-tolerance to node removal. In our 
weighted matrices of brain connectivity, efficiency provides a measure of the robustness of the network for 
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predictive strength. Fig. 7c displays global and local efficiencies of whole brain weighted connectivity networks 
for each diagnostic group. An independent samples t-test between the two groups reveals no difference 
between groups for global efficiency and local efficiency. These findings indicate that there are no significant 
differences in information propagation for prediction of users vs. non-users, i.e., both groups have global 
connectivity structures that are equally robust in prediction of the clinical label. 

Finally, at the community (meso) scale, we used community detection algorithms to discover modular sub-
networks within the weighted connectivity matrices. First subject-specific unthresholded weighted connectivity 
matrices were calculated as defined above. Then, matrices were averaged across all subjects and thresholded 
at 2% sparsity as above, creating a group-averaged thresholded weighted connectivity matrix. The Girvan-
Newman community detection algorithm was then applied to discover community structure within this matrix. 
Fig. 8a shows the thresholded weighted connectivity matrix reorganized by the discovered community 
structure. Each community was then ranked by its average degree centrality (DC) score.  

To confirm that this ranking actually reflects the predictive importance of each community, we performed a 
stepwise prediction analysis to determine the minimal number of communities necessary to produce good 
predictions. (Fig. 9) Starting with the regions in the highest DC ranked community, each region’s (non-
redundant) pairwise correlations to all other brain regions were used to generate each participant’s distance to 
the hyperplane. With the inclusion of each additional community, the best performing decision threshold was 
determined in the training data and used to generate testing set predictions. The best testing set prediction 
came from the first 4 communities with 80% accuracy, outperforming even the overall model - and also 
performing significantly better than random regions (permutation tested p=0.001). 

The highest ranked community included regions from bilateral ACC, bilateral supplementary motor area, right 
dorsolateral prefrontal cortex, and right inferior parietal/angular gyrus. The second top scoring community 
included right middle frontal gyrus, left angular gyrus, and bilateral medial precuneus regions. The top 4 
modular communities that produced the best prediction are visualized in Fig. 8b. 
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DISCUSSION 

Model testing: clinical prediction  

In this study, we developed a novel modeling approach to balance accurate clinical prediction and model 
interpretability. Specifically, this approach classifies chronic marijuana users and healthy controls from task-
based fMRI functional connectivity and subsequently identifies the individual regions and networks most 
important for this distinction. In the largest sample of individuals with long-term MJ use and healthy controls to 
date, we classified chronic use from functional connectivity during a cue-elicited craving task with nearly 80% 
out-of-sample accuracy. We used several different linear modeling approaches, all of which produced highly 
similar model weights, predictions, and regions with high mean predictive connectivity - suggesting they 
learned similar information. Our accuracies also compare favorably to previous fMRI decoding studies using 
functional connectivity to classify drug use, in both nicotine smoking4,7,49 and cocaine use disorder50 - even 
though most studies did not test out-of-sample or featured much smaller sample sizes (both of which can 
inflate prediction performance). Furthermore, this is one of the first fMRI study51, and the largest to date, to 
classify chronic MJ use (i.e., cannabis use disorder) - a relatively understudied drug use disorder. 	

Model interpretation: predictive connectivity 

Functional connectivity-based models outperformed models trained on regional activation estimates - 
suggesting there is more information about chronic MJ use in the interactions between regions than in their 
isolated activities. Given this, our next goal was to discover brain network patterns that differentiated the 
groups, starting with the individual regions that are most critical to successful prediction in the best performing 
model - the L2 linear SVC. Regions with high mean predictive connectivity were distributed across diverse 
resting state networks, such as the default mode, sensorimotor, salience and executive control networks - 
suggesting widespread functional differences between the healthy and MJ-using groups. Regions with 
widespread predictive connections were especially of interest and were judged by the number of functional 
connections between a region and the rest of the network that helped classify chronic use, so-called ‘predictive 
degree centrality’ (i.e., predictive DC). 

There was high predictive DC in several sensory and motor related regions - including left inferior temporal 
gyrus, right inferior temporal cortex (both areas along the ventral visual pathway), bilateral primary 
somatosensory cortex and supplementary motor area. Given that the visual and tactile demands of the task 
were the same across groups, these regions likely reflect more than the passive reception of sensory 
information and output of motor commands. For example, these regions may facilitate the recognition of drug 
cues and retrieval of behavioral associations, such as the initiation of drug seeking/use behaviors52. Regions 
related to attention and its control also ranked highly on this measure - likely reflecting differential recruitment 
of attention during cue processing between the groups. For example, the right middle frontal gyrus, an 
important attentional control region and site of convergence for the dorsal and ventral attention networks53, had 
the highest predictive DC of any measured region. Bilateral ACC and dorsolateral prefrontal cortex (PFC), 
areas that feature dense cannabinoid receptors54 also ranked highly on this measure, corroborating previous 
reports of dysfunctional attentional and control-like processes during drug cue exposure and craving 
generally55,56 and in MJ users specifically57,58. High predictive DC was detected in regions associated with cue-
reactivity and craving, including the precuneus and posterior cingulate cortex, regions that may work together 
to process drug cue salience and relevance to the self59 and in the bilateral medial PFC, which has extensive 
and recurrent dopaminergic connections with the ventral tegmental area and may direct drug-seeking 
behavior60. These findings suggest our method can recapitulate diverse findings from the literature.	

We also discovered sets of brain regions (subnetworks) that were critical to successful prediction. The group-
average predictive connectivity matrix was used to discover the community structure - patterns of connectivity 
that co-occur and likely share some functional basis. Thus, this analysis enables a shift from individual region’s 
predictive importance to predictive importances of distinct communities of brain regions.  
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The first four communities produced the best testing set prediction accuracy, even outperforming the inclusion 
of additional communities.  The highest-scoring communities contained regions from different canonical 
networks, with two network connectivity motifs representing the majority of predictively important regions. The 
first of these network motifs included regions from bilateral ACC, posterior inferior temporal cortex and superior 
angular gyrus. The second motif included regions from inferior angular gyrus, middle frontal gyrus, and 
superior temporal cortex. It is not obvious how these motifs map onto more standard resting-state networks 
(e.g., salience network), suggesting these results may reflect task-specific network organization. Together, 
these region-level and community-level properties provide a unique neural signature that differentiates chronic 
marijuana users and non-users.  

The functional diversity of the regions and communities implicated in these analyses suggests widespread 
functional differences between MJ users and controls - and the need for tasks that measure a wide range of 
structure-function hypotheses concurrently. It is possible that the relatively high accuracy we achieve in this 
dataset is due to the task: multiple sensory modalities and motor processes are engaged, allowing for more 
functional differentiation between individuals with MJ use and controls.  

Added value and applications 

In general, decoding approaches use whole brain information during model fitting, culminating in a single 
statistical test, versus more standard encoding approaches (e.g., general linear modelling) that generally 
perform up to many thousands of tests across the brain and require extensive multiple comparisons correction. 
To our knowledge, our specific approach represents the first application of network analysis to interpret model 
weights from predictive models. Further, our model interpretations are constrained on high decoding 
performance, conditioning our inferences upon the prediction of a real-world label (self-reported behavior).  

Many extensions to this joint predictive/explanatory approach are possible. The network analysis may be 
refined at the spatial scale, by generating voxel-level connectivity matrices and recalculating network 
properties. Another possibility would be to build predictive models from regions of interest, in a more 
hypothesis-driven manner (e.g., derived from areas of significant activation in an encoding model). Additionally, 
a regression-based predictive model would be an improvement over the classifiers outlined here: such 
approaches can make stronger inferences about the neural patterns of clinical features directly (e.g., symptom 
severity), rather than indirect conclusions about patterns that differentiate clinical groups (i.e., chronic use or 
not)2,24,28. 	

Limitations and next steps  

There are several limitations to this study. First, these accuracies are not high enough for direct clinical 
deployment: any clinical useful tool would likely require accuracy greater than 90%, depending on the relative 
clinical burden of false positives and false negatives. Further, as mentioned above, the sample was divided 
into chronic cannabis users versus non-users, not allowing us to disentangle continuous effects related to use. 
We also predicted a categorical label based upon self-report and thus are bound by the accuracy of that label - 
not by real world behavior or underlying functional dimensions. This study also precludes most inferences 
about the specificity of the effect of marijuana use. Future work should compare marijuana users to chronic 
users of other drugs, as well as non-drug using individuals with other psychiatric dysfunction, in order to 
establish marijuana-specific neural signatures. Additionally, more data-driven parcellation approaches, using 
ICA, gradient-based methods, or multimodal data, may elucidate more robust, replicable, or task-evoked 
neural signatures associated with chronic MJ use61–63. Another important direction for this approach clinically 
would be a longitudinal study predicting future risk of chronic use, especially in adolescents or young adults. A 
model that can reliably predict maladaptive use at or beyond the ability of a physician would be highly valuable 
and might enable preemptive or preventative care for high-risk individuals prior to onset of severe symptoms. 

This study is a first step towards building accurate and interpretable predictive models that have both 
theoretical and clinical significance. The models performed well in out-of-sample data, with high predictive 
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accuracies. Further, we interpreted the best performing model to both corroborate prior findings and discover 
novel network level properties in the context of drug use disorders. Future work can build on this approach of 
using joint predictive/explanatory models to constrain neurobiological inferences.	
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MATERIALS AND METHODS	

Preprocessing of fMRI data 

Subjects 

This study combines data from two pre-existing fMRI datasets (n=125, n=198 respectively) measuring cue-
elicited drug craving in participants recruited from the community (i.e. not treatment-seeking or inpatient) in 
Albuquerque, NM, with and without chronic marijuana use (CD n=195, HC n=128 respectively)35,36. The 
combined data set has a mean age of 30, with 65% male participants.	

Scanner specifications 

The two samples had different scan specifications, and as such are described separately below. 2009 sample: 
MRI images in this sample were collected in a 3T Siemens Trio scanner over two runs, for approximately 9 
minutes and 22 seconds of scan time. T2* images were collected with a gradient echo, echo planar imaging 
protocol, with the following specifications: time to repetition (TR) of 2,000ms, time to echo (TE) of 27 ms, α: 
70°, matrix size: 64 x 64, 32 slices, voxel size 3x3x4 mm3). High resolution T1-weighted images were collected 
with a multiecho magnetization prepared gradient echo (MPRAGE) sequence, TR=2,300ms, TE=2.74ms, flip 
angle = 8 deg, matrix = 256x256x176 mm, voxel size = 1x1x1mm. 2016 sample: MRI images in this sample 
were collected using a 3T Philips scanner, over two runs for total scan time of 7 minutes 54 seconds. T2*-
weighted images were collected using a gradient echo, echo-planar sequence (TR: 2,000 ms, TE: 29 ms, flip 
angle: 75deg, matrix size: 64 x 64 x 39, voxel size: 3.44 x 3.44 x 3.5mm3). High resolution T1-weighted images 
were collected with a MPRAGE sequence with the following parameters: TR/TE = 29/2,000 ms, flip angle=12 
deg, matrix=256x256x160 mm, voxel size =1x1x1mm. 

Task design 

For the Filbey 2009 dataset35, the task consists of two runs of a pseudo randomized order of 12 tactile/visual 
stimulus presentations. Two types of stimuli are presented: (1) a marijuana cue (pipe, bong, blunt, joint), and 
(2) a neutral cue (pencil). Cues are presented for 20 s, followed by a 5 s rating period, during which craving 
ratings are measured on an 11-point scale. This is followed by a 20 s fixation period. The full task consists of a 
total of 12 pseudorandomized cue presentations. The task structure for the Filbey 2016 dataset36 is largely 
similar, but also includes a naturalistic cue (participant’s chosen fruit) for a total of 3 cue types and 18 
presentations per run. Craving ratings are measured just as described above. 	

Preprocessing 

Results included in this manuscript come from preprocessing performed using FMRIPREP version stable64, a 
Nipype65 based tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using 
N4BiasFieldCorrection v2.1.066 and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS 
template). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.167, and the brain mask 
estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and 
FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle68. Spatial normalization to the 
ICBM 152 Nonlinear Asymmetrical template version 2009c69 was performed through nonlinear registration with 
the antsRegistration tool of ANTs v2.1.070, using brain-extracted versions of both T1w volume and template. 
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 
performed on the brain-extracted T1w using fast71 (FSL v5.0.9). Functional data was slice time corrected using 
3dTshift from AFNI v16.2.0772 and motion corrected using mcflirt73 (FSL v5.0.9). This was followed by co-
registration to the corresponding T1w using boundary-based registration74 with six degrees of freedom, using 
bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-T1w transformation and T1w-to-
template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms (ANTs v2.1.0) 
using Lanczos interpolation. Physiological noise regressors were extracted applying CompCor75. Principal 
components were estimated for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
A mask to exclude signals with cortical origin was obtained by eroding the brain mask, ensuring it only 
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contained subcortical structures. Six tCompCor components were then calculated including only the top 5% 
variable voxels within that subcortical mask. For aCompCor, six components were calculated within the 
intersection of the subcortical mask and the union of CSF and WM masks calculated in T1w space, after their 
projection to the native space of each functional run. Framewise displacement76 was calculated for each 
functional run using the implementation of Nipype. Combined task/nuisance regression was then performed on 
the minimally preprocessed data using SPM12 (Wellcome Trust Centre for Neuroimaging). The nuisance 
regressor set consisted of the six realignment parameters, aCompCor regressors, discrete cosine-basis 
regressors, and a framewise displacement regressor. The task regressor set included onsets for marijuana cue 
presentation, marijuana cue rating period, control cue presentation, control cue rating period, and washouts for 
each cue. In addition, the Filbey 2016 dataset included regressors for fruit cue presentation and fruit cue rating 
period.	

Parcellation 

The noise-regressed voxelwise data was then parcellated using the Stanford functional ROIs for volumetric 
regions and networks, a highly validated scheme that is widely used for ROI-based and connectivity-based 
analyses77. The mean time series of each parcellated region was then computed. This procedure served a dual 
purpose: first, it increased signal-to-noise ratio for relevant brain areas compared to voxel-based analyses. 
Second, it reduced the dimensionality of the data for subsequent analysis, which allowed for faster and more 
accurate machine learning. The Stanford ROI atlas contains 90 regions, so the parcellation results in a 90 x (# 
of time points) matrix of whole brain activity for each subject. 	

Data preparation for classifiers 
All 323 subjects (195 subjects with clinical label of chronic use) had two runs of data. Run length varied by the 
dataset from which the subject was taken. The subjects from the 2009 dataset had 281 TRs, and the subjects 
from the 2016 dataset had 405 TRs. For every subject, these TRs represented the totality of the run, including 
cue stimulus presentation periods, rating periods, and inter-trial intervals. 

Each region’s preprocessed time series was then correlated (Pearson) to all other regions’ time series. 
Pearson correlation automatically standardizes each region’s mean time series, so it is insensitive to 
differences in activation magnitude (i.e., scale) between the regions. Instead, it gives estimates of the pairwise 
timeseries activation similarities. 	

The decision to use parcellated functional connectivities was to 1) reduce the data dimensionality and the 
number of features relative to the number of observations, which is important in model fitting; 2) test the ability 
of network information to predict clinical label; and 3) improve our ability to subsequently interpret the fitted 
models, by using network analysis approaches. Further, functional connectivity has shown promise in other 
predictive modeling studies30. 	

This approach each yielded a 646x90x90 matrix. To eliminate redundancy, only the upper triangles of the 
symmetric correlation matrices were retained (diagonal is each region’s correlation with itself), leading to a final 
vector input size of (902 - 90)/2 = 4,005 features.	

To allow for out-of-sample validation, the full sample was then divided into training and testing sets, using an 
80/20 split: the training set included 516 samples (0.80 * 646) and the testing set included 130 (0.20 * 646). 
The training set was used for the 10-fold cross validated model fitting for algorithm selection and 
hyperparameter optimization. The testing set was set aside until the very end to test the out-of-sample fit of the 
four best performing models. All splits were constructed to balance the overall clinical label (CD or HC) 
proportions and include both runs of any subject completely in either the training or testing set.  

Linear Classifiers 

Four types of linear classifiers (L1 Logistic Regression, L2 Logistic Regression, L1 SVC, and L2 SVC) were 
used to predict clinical label and compared on their performance, including prediction accuracy, precision-
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recall, and AUC scores. These linear classifiers were implemented using the scikit-learn package in 
Python78,79. Generally, to separate classes, linear classifiers learn a decision boundary that is a linear function 
(in greater than two dimensions, a hyperplane) in the feature space that then can be used to make class label 
predictions in new, out-of-sample data. In other words, the classification prediction (i.e., clinical label) is made 
based on the linear combination of the weighted input features - in our case, the whole-brain pairwise 
correlation values. How logistic regression and SVC learn linear boundaries varies; a brief description of each 
approach is given below. 	

Logistic regression learns the logistic function that best fits the observations: the resulting sigmoidal curve 
gives the probabilities that each observation is in either class, which are thresholded at 50% to produce the 
predictions. In contrast, SVC produces predictions by learning a hyperplane that separates the two classes by 
the largest distance (i.e., margin). The distances of the observations (each subject’s brain-wide pairwise 
functional correlations) to the hyperplane were then converted to probabilities using Platt’s method in the 
CalibratedClassifierCV class in Python’s scikit-learn, to allow comparison to the logistic regression algorithm.	

L1 and L2 regularization were used with both logistic regression and SVC to penalize different kinds of 
information. L1 (“Lasso”) penalizes the magnitude of feature weights and in doing so produces a “sparse” 
feature space: only those features (e.g., region-region correlations) most informative to successful prediction 
will have a non-zero weight. Thus, L1 penalization reduces the number of features. This reduction may be 
important for two reasons: 1) when the number of features greatly outnumbers the number of observations, 
reducing the feature number can improve the fit and prediction and 2) feature interpretation should be 
improved: only the most important regions ‘survive’. In contrast, L2 (“Ridge”) penalizes the squares of feature 
weights and minimizes the feature weights, reducing their variance while retaining all of the features. This can 
improve prediction accuracy. Elastic net, a combination of L1 and L2 regularization, was also tested in the 
hyperparameter optimization (see Supplementary), but did not outperform lasso or ridge regression, and was 
subsequently removed from further analysis. 

Various regularization strengths were tested in the training data, with larger strengths reflecting stronger 
penalization. In our Python-implemented machine learning pipeline, this regularization strength is represented 
by the alpha parameter, where higher alpha values reflected higher regularization. A range of alpha values 
were tested, from low to high regularization (alpha=1e-10, 1e-7, 1e-4, 0.1, 1, 10, 100, 1000). In general, low 
regularization was found to have the highest cross-validated training performance. The modeling parameters 
(i.e., hyperparameters) resulting in the highest overall accuracy in the training set were selected for the 
following analysis (alpha=1e-4, L1 and L2 penalties).	

All models were cross-validated in the same way, with each fold stratified by class label to ensure the 
proportion of class labels was the same as in the larger dataset. In training, each fold’s class labels were 
predicted by the model being trained on the other 9 folds. Further, each model had the same exact subject 
partitions to ensure maximal comparability on their training set performance. 

For each model’s cross-validated performance, a receiver operating characteristic curve (ROC) was 
generated, displaying fold-by-fold area under the curve (AUC) scores, as compared to chance. A separate 
ROC was generated to display AUC scores for the testing dataset. 

Each linear model returned a set of trained model weights sharing the same architecture as the input features 
(i.e., the connectivity matrices), and which, when considered along with the values of the input features, are 
interpretable as the importances assigned to each pairwise connectivity in determining class label. These 
model weights were further explored using a correlation difference analysis and a network analysis, and results 
obtained were directly compared to a meta-analytic activation map examining brain activations implicated in 
drug craving. 
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Mean distance classification control 	

To test our assumption that functional correlations are more informative than more standard measures of 
activation magnitude, we also ran classification models with pairwise mean distances as model inputs. Three 
different mean distance controls were performed. In the first, the absolute value of the mean time series 
differences (i.e., mean distance) for all of the regional pairwise comparisons were used. In the second, the 
pairwise absolute value differences of the mean marijuana cue beta values (from the task regression) were 
used. In the third, the pairwise absolute value differences of the mean marijuana cue betas minus the mean 
control cue betas were used. These different mean distance controls were subjected to the same 
hyperparameter search as the functional connectivity inputs.  

Predictive importance 

Predictive importance analysis started by first generating an average connectivity matrix across the full data 
sample. To do this, the 90x90 connectivity matrix generated for each subject to be used as the input for the 
machine learning algorithm was averaged over all subjects. Next, the model weights were obtained for each 
linear model after training the full data sample. Note that this step differs from the model performance 
evaluation step above, which only used 4/5 of the data sample to train, and the other 1/5 to test. Finally, the 
element-wise multiplication (i.e. Hadamard product) was computed between each model weight matrix and the 
group-averaged connectivity matrix to generate the weighted connectivity matrix.  

For each row in this matrix, corresponding to the weighted connectivity pattern associated with a particular 
region, the mean of the absolute value the pattern was taken to represent the average importance of the 
region’s weighted connectivity on the prediction of the clinical label. Four such scores were generated for each 
of the 90 regions, and ranked by their average importance across all four algorithms. Algorithm rankings were 
statistically compared using Kendall’s tau to assess correspondence between each pair of algorithms. 

The top twenty regions of highest importance were selected to visually examine their individual connectivity 
patterns and corresponding weights. For these regions, group averaged connectivity patterns were generated 
for users and non-users separately. These per-group connectivities, along with the corresponding model 
weights were plotted together. This allowed for determination of the strength of regional connectivity and its 
impact on driving model performance. Most regions identified by this approach had relatively high connectivity 
values and significant differences between users and non-users; however, a few of the identified regions 
showed low connectivity values, but were nevertheless highly weighted, indicating that even small differences 
in connectivity across the groups in these regions were important for differentiating groups. 

Region-specific predictive importance scores were validated by comparison to uniformity and association maps 
retrieved from Neurosynth80. The keyword ‘craving’ was used to yield aggregated activation maps from 80 
published studies. The uniformity and association maps each provide unique information; the uniformity map 
displays regions of consistent activation across all studies, while the association map displays regions that are 
preferentially active in relation to keywords chosen over and above other keywords. Neurosynth provides 
activation maps for each thresholded at p<0.01 with FDR correction. Each activation map was then projected 
on the Stanford functional ROIs. For each Stanford ROI, proportion of non-zero voxels, and average non-zero 
signal was calculated. Finally, the scores were thresholded to limit reporting of voxel activity in regions that 
contained too few active voxels. Given the relative sparsity of the association map compared to the uniformity 
map, association was thresholded at 5% voxel participation and uniformity at 25% participation. Subsequent 
interpretation was performed by reporting the regions which survive thresholding with the top average 
activation scores.	

Network Analysis 

In the network analysis, the classifier-specific weighted connectivity matrices are treated as adjacency matrices 
to an undirected weighted graph. We first perform a pairwise multiplication of the 4,005-element model weight 
vector from each model with every subject’s upper vector representation of connectivity (used as the input 
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value for predictive model) to generate a weighted connectivity vector for each subject. Then, we generate 
weighted connectivity matrices for each subject by reverting the 4005-element upper triangle representations 
into the native space 90x90 symmetric representation. For each subject, we take the magnitude of each 
element in the matrix as a measure of importance to model prediction. We threshold the dense weighted 
connectivity matrix at 2% density to improve signal-to-noise ratio and remove spurious connectivity strengths. 
The node-level and graph-level properties will be calculated on a binarized representation of the weighted 
connectivity matrix, so it is important to remove low-magnitude connections between nodes. Finally, we 
generate the graph structure by using the transformed weighted connectivity matrix as an adjacency matrix 
using the ‘networkx’ module in Python81.	

With a unique graph structure for each subject, we calculate subject-specific degree centrality (DC), a node-
level graph property, which refers to a normalized summation of binarized connections to a node. In this graph, 
each node represents a brain region and connection edges between two nodes represent the importance of 
the connectivity between those two nodes for the classifier. Thus, nodes with high degree centrality can be 
considered to be brain regions whose connectivities to other regions help the classifier distinguish chronic 
users from non-users. Conversely, graph isolates are defined as nodes with lowest degree centrality across 
participants. In other words, they are brain regions whose connectivities to other regions do not help the 
classifier distinguish between chronic users and healthy controls. DC calculation is performed using built-in 
networkx ‘degree_centrality’ function, which accepts a graph structure and automatically calculates and 
normalizes the degree centrality of each node. 	

For each brain level (i.e., node in the network), the distribution of degree centrality for that region was 
aggregated, first across all participants, then across participants within each clinical group. First, a Mann-
Whitney U test was performed to test for significance of each region’s DC across all participants. Regional DC 
scores were ordered and reported by highest median score, and corresponding p-values also reported. 
Additionally, DC score ranking was compared across algorithms using Kendall’s tau to assess correspondence 
of rankings across every pair of algorithms. 

Graph-level metrics of graph structure were calculated next by deriving global and local efficiency scores at a 
subject-specific level. The efficiency between two nodes is defined as the multiplicative inverse of the shortest 
path between them. Global efficiency is an averaged measure of efficiency over all nodes of the graph, 
whereas local efficiency is the averaged measure of efficiency limited to the subgraph of the local neighbors of 
each node. Global efficiency provides an overall measure of the ability of a network to propagate information 
effectively, and local efficiency measures this in local subgraphs. Efficiency metrics were calculated using the 
built-in networkx functions ‘global_efficiency’ and ‘local_efficiency’. Two-sample Mann-Whitney U tests were 
performed to test for differences in median efficiency scores between users and non-users. 

Finally, meso-level properties were calculated to characterize connectivity motifs with high predictive 
importance in classifying chronic marijuana use. First, a group-average weighted correlation matrix was 
calculated by taking the mean of all un-thresholded subject-specific weighted connectivity matrices calculated 
above. This mean correlation matrix was then thresholded at 2% density and used to generate a group-
average graph structure. Then, the Girvan-Newman hierarchical community-detection algorithm was used to 
detect clusters of high modularity within the graph. Briefly, the Girvan-Newman algorithm iterates as follows: 
(1) edge betweenness, defined as number of paths between all nodes that use a particular edge, is calculated 
for each edge; (2) edges with the highest betweenness are removed; (3) betweenness of all edges is 
recalculated. The final communities are defined as the node clusters that continue to share edges after high-
betweenness edges are removed. The original weighted correlation matrix was then reorganized by discovered 
community structure. Each community (connectivity motif) was also ranked by its average degree centrality 
score, and most important motifs were defined as those with the highest average degree centrality score. 

The predictive importance of the communities was corroborated using the following stepwise prediction 
approach. Starting with the highest ranked community, the correlations of all regions in the community to all 
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other regions (only non-redundant values) were used to generate distances to the hyperplane for each subject 
(i.e., by taking dot product of subset of weights and correlations and adding the intercept from the whole brain 
trained model). At each step, the decision threshold that maximized prediction accuracy in the training data 
was applied to the testing data to produce test set predictions. The best performing subset of communities was 
determined by the testing accuracy. To determine whether these accuracies were a function of the unique, 
included communities or just the number of pairwise functional correlations, a permutation approach was used. 
1000 permutations were computed using the same approach as described above, except randomly shuffling 
the regions included in each community while preserving the number of pairwise correlations included at each 
step. The permutation p-value was calculated as the percentile of the best performing non-permuted accuracy 
in the distribution of the 1000 permuted accuracies at that same step.  

DATA AND CODE AVAILABILITY 

All code related to analyses in this study will be publicly released on GitHub at 
https://github.com/kulkarnik/craving-classifier. To request access to data, please contact the corresponding 
author. 

AUTHOR CONTRIBUTIONS 

K.K. and M.S. conceptualized and designed the predictive-explanatory modeling framework, carried out the 
implementation, and analyzed the data. G.P. provided feedback on modeling framework. V.C., F.F. and K.H. 
contributed to the interpretation of the results. K.K. and M.S. wrote the manuscript with critical feedback from 
all authors. F.F. and K.H. collected and organized the data. X.G. and D.S. supervised the project. 

ACKNOWLEDGEMENTS 
The authors acknowledge support by the US National Institutes on Drug Abuse under awards R01 DA043695 
and R21 DA0492243. The authors also acknowledge the computational resources and staff expertise provided 
by Scientific Computing at the Icahn School of Medicine at Mount Sinai. The content is solely the responsibility 
of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse.	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

REFERENCES 

1. Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to 

clinical applications. Nat. Neurosci. 19, 404–413 (2016). 

2. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in 

translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017). 

3. Poldrack, R. A. Inferring Mental States from Neuroimaging Data: From Reverse Inference to Large-Scale 

Decoding. Neuron 72, 692–697 (2011). 

4. Ding, X., Yang, Y., Stein, E. A. & Ross, T. J. Combining Multiple Resting-State fMRI Features during 

Classification: Optimized Frameworks and Their Application to Nicotine Addiction. Front. Hum. Neurosci. 

11, (2017). 

5. Mete, M. et al. Successful classification of cocaine dependence using brain imaging: a generalizable 

machine learning approach. BMC Bioinformatics 17, 357 (2016). 

6. Rish, I., Bashivan, P., Cecchi, G. A. & Goldstein, R. Z. Evaluating effects of methylphenidate on brain 

activity in cocaine addiction: a machine-learning approach. in Medical Imaging 2016: Biomedical 

Applications in Molecular, Structural, and Functional Imaging vol. 9788 97880O (International Society for 

Optics and Photonics, 2016). 

7. Vergara, V. M., Mayer, A. R., Damaraju, E., Hutchison, K. & Calhoun, V. D. The effect of preprocessing 

pipelines in subject classification and detection of abnormal resting state functional network connectivity 

using group ICA. NeuroImage 145, 365–376 (2017). 

8. Acion, L. et al. Use of a machine learning framework to predict substance use disorder treatment success. 

PLOS ONE 12, e0175383 (2017). 

9. Afzali, M. H. et al. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural 

validation. Addiction 114, 662–671 (2019). 

10. Liu, J., Weitzman, E. R. & Chunara, R. Assessing Behavior Stage Progression From Social Media Data. in 

Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social 

Computing 1320–1333 (Association for Computing Machinery, 2017). doi:10.1145/2998181.2998336. 

11. Dumortier, A., Beckjord, E., Shiffman, S. & Sejdić, E. Classifying smoking urges via machine learning. 

Comput. Methods Programs Biomed. 137, 203–213 (2016). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

12. Rho, M. J. et al. Predictors and patterns of problematic Internet game use using a decision tree model. J. 

Behav. Addict. 5, 500–509 (2016). 

13. Mak, K. K., Lee, K. & Park, C. Applications of machine learning in addiction studies: A systematic review. 

Psychiatry Res. 275, 53–60 (2019). 

14. Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the 

brain. Trends Cogn. Sci. 17, 401–412 (2013). 

15. Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis - connecting the branches 

of systems neuroscience. Front. Syst. Neurosci. 2, (2008). 

16. Diedrichsen, J. & Kriegeskorte, N. Representational models: A common framework for understanding 

encoding, pattern-component, and representational-similarity analysis. PLOS Comput. Biol. 13, e1005508 

(2017). 

17. Haxby, J. V., Guntupalli, J. S., Nastase, S. A. & Feilong, M. Hyperalignment: Modeling shared information 

encoded in idiosyncratic cortical topographies. eLife 9, e56601 (2020). 

18. Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding Neural Representational Spaces Using 

Multivariate Pattern Analysis. Annu. Rev. Neurosci. 37, 435–456 (2014). 

19. Haxby, J. V. et al. A Common, High-Dimensional Model of the Representational Space in Human Ventral 

Temporal Cortex. Neuron 72, 404–416 (2011). 

20. Baldassano, C. et al. Discovering Event Structure in Continuous Narrative Perception and Memory. Neuron 

95, 709-721.e5 (2017). 

21. Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 

20, 115–125 (2017). 

22. Chen, P.-H. (Cameron) et al. A Reduced-Dimension fMRI Shared Response Model. in Advances in Neural 

Information Processing Systems 28 (eds. Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, 

R.) 460–468 (Curran Associates, Inc., 2015). 

23. Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in 

neuroimaging: Promises and pitfalls. NeuroImage 145, 137–165 (2017). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

24. Wager, T. D. et al. An fMRI-Based Neurologic Signature of Physical Pain. N. Engl. J. Med. 368, 1388–1397 

(2013). 

25. Rashid, B. & Calhoun, V. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. n/a,. 

26. Sui, J., Jiang, R., Bustillo, J. & Calhoun, V. Neuroimaging-based Individualized Prediction of Cognition and 

Behavior for Mental Disorders and Health: Methods and Promises. Biol. Psychiatry 88, 818–828 (2020). 

27. Bzdok, D. & Ioannidis, J. P. A. Exploration, Inference, and Prediction in Neuroscience and Biomedicine. 

Trends Neurosci. 42, 251–262 (2019). 

28. Kohoutová, L. et al. Toward a unified framework for interpreting machine-learning models in neuroimaging. 

Nat. Protoc. 15, 1399–1435 (2020). 

29. Paulus, M. P. Pragmatism Instead of Mechanism: A Call for Impactful Biological Psychiatry. JAMA 

Psychiatry 72, 631–632 (2015). 

30. Du, Y., Fu, Z. & Calhoun, V. D. Classification and Prediction of Brain Disorders Using Functional 

Connectivity: Promising but Challenging. Front. Neurosci. 12, (2018). 

31. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017). 

32. Bertolero, M. A. & Bassett, D. S. On the Nature of Explanations Offered by Network Science: A 

Perspective From and for Practicing Neuroscientists. Top. Cogn. Sci. n/a,. 

33. Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. NeuroImage 160, 73–83 (2017). 

34. Gosak, M. et al. Network science of biological systems at different scales: A review. Phys. Life Rev. 24, 

118–135 (2018). 

35. Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. Marijuana craving in the brain. 

Proc. Natl. Acad. Sci. 106, 13016–13021 (2009). 

36. Filbey, F. M. et al. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users. 

Hum. Brain Mapp. 37, 3431–3443 (2016). 

37. Hasin, D. S. et al. Prevalence and Correlates of DSM-5 Cannabis Use Disorder, 2012-2013: Findings from 

the National Epidemiologic Survey on Alcohol and Related Conditions–III. Am. J. Psychiatry 173, 588–599 

(2016). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

38. Hasin, D. S. et al. Cannabis withdrawal in the United States: a general population study. J. Clin. Psychiatry 

69, 1354–1363 (2008). 

39. Carliner, H., Brown, Q. L., Sarvet, A. L. & Hasin, D. S. Cannabis use, attitudes, and legal status in the U.S.: 

A review. Prev. Med. 104, 13–23 (2017). 

40. Zehra, A. et al. Cannabis Addiction and the Brain: a Review. J. Neuroimmune Pharmacol. 13, 438–452 

(2018). 

41. Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–

773 (2016). 

42. Lynskey, M. & Hall, W. The effects of adolescent cannabis use on educational attainment: a review. 

Addiction 95, 1621–1630 (2000). 

43. Compton, W. M., Gfroerer, J., Conway, K. P. & Finger, M. S. Unemployment and Substance Outcomes in 

the United States 2002-2010. Drug Alcohol Depend. 0, 350–353 (2014). 

44. Meier, M. H. et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. 

Proc. Natl. Acad. Sci. U. S. A. 109, E2657–E2664 (2012). 

45. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional 

systems. Nat. Rev. Neurosci. 10, 186–198 (2009). 

46. Bullmore, E. T. & Bassett, D. S. Brain Graphs: Graphical Models of the Human Brain Connectome. Annu. 

Rev. Clin. Psychol. 7, 113–140 (2011). 

47. Langer, N., Pedroni, A. & Jäncke, L. The Problem of Thresholding in Small-World Network Analysis. PLOS 

ONE 8, e53199 (2013). 

48. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. 

NeuroImage 52, 1059–1069 (2010). 

49. Pariyadath, V., Stein, E. A. & Ross, T. J. Machine learning classification of resting state functional 

connectivity predicts smoking status. Front. Hum. Neurosci. 8, (2014). 

50. Sakoglu, U. et al. Classification of cocaine-dependent participants with dynamic functional connectivity 

from functional magnetic resonance imaging data. J. Neurosci. Res. 97, 790–803 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

51. Cheng, H. et al. Resting state functional magnetic resonance imaging reveals distinct brain activity in 

heavy cannabis users – a multi-voxel pattern analysis. J. Psychopharmacol. (Oxf.) 28, 1030–1040 (2014). 

52. Yalachkov, Y., Kaiser, J. & Naumer, M. J. Sensory and motor aspects of addiction. Behav. Brain Res. 207, 

215–222 (2010). 

53. Japee, S., Holiday, K., Satyshur, M. D., Mukai, I. & Ungerleider, L. G. A role of right middle frontal gyrus in 

reorienting of attention: a case study. Front. Syst. Neurosci. 9, (2015). 

54. Tao, R. et al. Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, 

hippocampus and caudate in brain development and schizophrenia. Transl. Psychiatry 10, 1–13 (2020). 

55. Goldstein, R. Z. et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine 

addiction. Proc. Natl. Acad. Sci. 106, 9453–9458 (2009). 

56. Kober, H. et al. Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc. Natl. Acad. Sci. 

107, 14811–14816 (2010). 

57. Gruber, S. A., Rogowska, J. & Yurgelun-Todd, D. A. Altered affective response in marijuana smokers: An 

FMRI study. Drug Alcohol Depend. 105, 139–153 (2009). 

58. Schweinsburg, A. D. et al. Abstinent adolescent marijuana users show altered fMRI response during 

spatial working memory. Psychiatry Res. Neuroimaging 163, 40–51 (2008). 

59. DeWitt, S. J., Ketcherside, A., McQueeny, T. M., Dunlop, J. P. & Filbey, F. M. The hyper-sentient addict: an 

exteroception model of addiction. Am. J. Drug Alcohol Abuse 41, 374–381 (2015). 

60. Moorman, D. E., James, M. H., McGlinchey, E. M. & Aston-Jones, G. Differential roles of medial prefrontal 

subregions in the regulation of drug seeking. Brain Res. 1628, 130–146 (2015). 

61. Du, Y. et al. NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI 

markers of brain disorders. NeuroImage Clin. 28, 102375 (2020). 

62. Laumann, T. O. et al. Functional System and Areal Organization of a Highly Sampled Individual Human 

Brain. Neuron 87, 657–70 (2015). 

63. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016). 

64. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 

(2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

65. Gorgolewski, K. et al. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing 

Framework in Python. Front. Neuroinformatics 5, (2011). 

66. Tustison, N. J. et al. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 29, 1310–1320 

(2010). 

67. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical Surface-Based Analysis: I. Segmentation and Surface 

Reconstruction. NeuroImage 9, 179–194 (1999). 

68. Klein, A. et al. Mindboggling morphometry of human brains. PLOS Comput. Biol. 13, e1005350 (2017). 

69. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate 

brain templates from birth to adulthood. NeuroImage 47, S102 (2009). 

70. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with 

cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 

12, 26–41 (2008). 

71. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field 

model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001). 

72. Cox, R. W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. 

Comput. Biomed. Res. 29, 162–173 (1996). 

73. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the Robust and Accurate 

Linear Registration and Motion Correction of Brain Images. NeuroImage 17, 825–841 (2002). 

74. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. 

NeuroImage 48, 63–72 (2009). 

75. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for 

BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007). 

76. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. 

NeuroImage 84, 320–341 (2014). 

77. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding Subject-Driven Cognitive 

States with Whole-Brain Connectivity Patterns. Cereb. Cortex 22, 158–165 (2012). 

78. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics 8, (2014). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

79. Pedregosa, F. & Varoquaux, G. Scikit-learn: Machine Learning in Python. J. Mach. … 12, 2825–2830 

(2011). 

80. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated 

synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011). 

81. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring Network Structure, Dynamics, and Function using 

NetworkX. 5 (2008). 

	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Machine learning pipeline. (a) Raw voxelwise time series are preprocessed using the fmriprep preprocessing pipeline. Minimally 

preprocessed files are brain-masked and smoothed with a 4mm FWHM Gaussian kernel. Nuisance/task regression is performed (see Methods for 

list of regressors used). Clean voxelwise time series is parcellated into 90 functional ROIs using Stanford functional atlas. (b) Parcellated data are 

divided into 2 sets; the training set is used for training and cross-validation, the testing set is used to evaluate the optimized classification models 

(shown in the cylinders). The optimization set is further divided into 10 subsets for cross-validation. Four linear classification algorithms are selected 

for hyperparameter tuning (L1, L2 penalized logistic regression and linear support vector classification). An alpha hyperparameter, corresponding to 

regularization strength is selected cross-validated accuracy as a metric. (c) The optimized hyperparameter tuned model is re-trained with the full 

training dataset and evaluated using the testing dataset. Evaluation parameters include accuracy, and precision/recall scores. (d) The best 

performing model (shown in the cylinder) is then trained on the full dataset (training + testing) to prepare for interpretation analysis. The weights 

derived from the linear models are converted to a connectivity signature and used to characterize brain connectivity structures important for 

prediction of chronic cannabis use. This analysis includes a regional mean predictive importance metric, as well as network characterization of 

subject-specific connectivity matrices weighted by the model weights. 
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Table 1. Hyperparameter optimization. Algorithm performance is compared across two 
hyperparameter domains: penalty type, and regularization strength. Higher alpha values correspond to 
higher regularization. Results show that low regularization strength works most effectively across all 
penalty types. Generally, L1 and L2 penalties work equally well at low regularization and L2 outperforms 
L1 at high regularization. A regularization value of alpha=0.0001 was chosen for subsequent analyses. 
Both classification methods and penalty types were retained as well. 
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Fig 2. Performance metrics for linear classification algorithms. Performance was measured with 10-
fold cross-validation of the training set (516 subjects). Performance metrics are summarized in Table 2. 
All four models performed well in cross-validation metrics with the mean receiver operating characteristic 
curve well above chance (red dotted line). (a) The logistic regression algorithm returns class probabilities 
which can be directly mapped to the ROC. (b) The linear support vector classification algorithm returns 
only a decision function, corresponding to the signed distances to the hyperplane. These distances are 
converted to probabilities using Platt’s method. 
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Table 2. Cross-validation and out-of-sample performance metrics.  
(a) The logistic regression models had relatively high 5-fold cross-validated performance, high 
AUC, and high precision-recall scores. Similarly, linear support vector classification (SVC) 
demonstrated high performance metrics for both penalty types. (b) Out-of-sample (OOS) 
performance metrics are summarized after re-training each model on the full training set (379 
subjects). Note that 10-fold CV performance metrics are significantly lower than OOS accuracy, 
mainly due to sample size for training/testing. 10-fold CV divides the training set (516 samples) 
further into 10 folds, where only 9 of the 10 folds (464 samples) are used for training. For the 
OOS testing, the full training set is used to train. This explanation was tested post-hoc using 
leave-one-out cross validation in the training set, which yielded performance very similar to OOS 
testing.  
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Fig. 3. Algorithm-specific out-of-sample predictions by class. The top row defines the true labels for each subject in 
the testing sample, sorted by label. Individual subjects are on the x-axis. The next 4 rows define the predicted labels for 
each subject from each model. The final row displays the ensemble prediction across all models, where the prediction is 
made by averaging across all other algorithm predictions and thresholding at 0.5. Performance metrics on the testing 
sample are summarized in Table 2.  
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Fig. 4. Top weighted averaged parcel connectivities for L2 LinearSVC classifier. (a) Functional connectivity matrices were averaged across all 
subjects, and element-wise multiplication was performed with weights generated after model fitting with the L2 LinearSVC algorithm. The resulting 
matrix was a weighted region-to-region connectivity matrix. The mean of absolute weighted connectivity was calculated for each region for each 
algorithm. The distributions (mean, quartiles and outliers) of the absolute weighted connectivities across all subjects is shown above. The top twenty 
regions with highest means of weighted absolute connectivity are shown on the right side of the graph, while the two lowest are shown on the left for 
comparison. Regions with the highest weighted connectivity include bilateral ACC, left sensorimotor cortex, middle frontal gyrus and bilateral 
angular gyrus. (b) For the regions identified as having high weighted connectivities, region-specific connectivity patterns were assessed at a group 
level. Here, the connectivity strength and direction are shown from bilateral ACC, the region with the highest weighted connectivity across 
participants, to every other region. ACC appears to have have high connectivity specifically to inferior, middle, and superior frontal cortical areas 
across multiple functional networks (executive control, ventral default mode, visuospatial) as well as precuneus/angular gyrus regions. This suggest 
the presence of a ACC + frontal cortex + lateral parietal cortex task network, later supported by our community detection analysis (see Fig. 10). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Fig 5. Meta-analytic comparison with Neurosynth craving maps. To compare our top regions of predictive importance to existing literature, 
we performed a direct comparison to association and uniformity maps retrieved from Neurosynth, a meta-analytic database. We used the 
‘craving’ keyword to identify activations corresponding to all activations (uniformity) and unique activations (association) related to craving in 
the meta-analytic database. The average signal and proportion of voxels activated within-region was calculated and thresholded. Given the 
relative sparsity of the association map compared to the uniformity map, association was thresholded at 5% voxel participation and uniformity 
at 25% participation. These activations are shown in red, with (a) showing the association map and (b) showing the uniformity map. All the 
Stanford ROIs are overlaid on this map, with green regions corresponding to ROIs identified as having high predictive importance in our 
analysis. There is a moderate level of overlap between the craving maps and our predictively important regions, demonstrating the utility of our 
approach in identifying regions grounded in previous literature, but also being able to generate new hypotheses for regions involved in 
distinguishing cannabis users from non-users.  
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Fig 6. Network properties workflow. For each subject, a weighted connectivity matrix is generated 
by performing an element-wise multiplication of the original subject connectivity matrix and the 
model weights. The resulting matrices are thresholded to 2% sparsity to restrict to only highly 
informative connections. Network properties are then calculated at three different levels to 
characterize the subject-specific networks. (a) The degree centrality of each node of the network, 
i.e. a brain ROI, is obtained by calculating a normalized sum of surviving links to other nodes. In 
principle, this provides a measure of the importance of a region’s connections to other regions for 
prediction. (b) At the meso-level, community detection algorithms are used to divide the full network 
into modular sub-networks that are highly connected to each other. These communities correspond 
to brain patterns that together are highly important for prediction of chronic cannabis use. (c) At the 
network-level, global efficiency of the network is calculated by determining the inverse average 
shortest path. For each node, the distance to every other node is calculated and averaged. The 
process is repeated for every node and averaged across nodes. The inverse of this averaged 
shortest path length is the efficiency of the network. High efficiency networks exchange information 
well because they are densely connected, and thus have fairly low average path lengths. 
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Fig. 7. Subject-level degree centrality and global-level efficiency. (a) Model weights followed the 4,005-element shape of the input vectors. 
These vectors are reverted to a symmetric 90x90 matrix and shown here. This matrix is thresholded at 2% of top weights to remove spurious 
connections. (b) Degree centrality represents the normalized number of weighted connections for each brain region that survive thresholding. 
In other words, it provides a measure of the level of distributed connectivity displayed by a brain region.  In the plot above, degree centrality is 
calculated for each region independently, for each subject. The top twenty regions of highest mean degree centrality are shown, in addition to 
the lowest two for comparison. Regions identified as having high degree centrality across participants include middle frontal gyrus, bilateral 
ACC, and bilateral medial PFC. Note that there is a significant overlap here with regions identified as having highest absolute weighted 
connectivity (Fig. 5) but there are significant differences as well. (c) Global efficiency is defined as the average inverse path length between 
pairs of nodes across the full network. Local efficiency is the same but restricts paths to the local neighborhood of each node. For each 
participant, the global efficiency and local efficiency scores are calculated on the participant-specific weighted connectivity network. There is no 
significant difference in either global (p=0.0944) or local (p=0.0803) efficiency between chronic cannabis users and non-users, indicating that 
these network-level properties do not distinguish cannabis usage.  
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Fig. 8. Predictive motifs in group-average weighted connectivity matrix. The Girvan-Newman community detection algorithm was applied 
to the group-average weighted connectivity matrix. Girvan-Newman segregates communities within a group by iteratively removing edges with 
the highest betweenness centrality until a target modularity score is reached. Each disconnected set of nodes is then characterized as a 
community. (a) The group-averaged thresholded weighted connectivity is sorted by community assignment. Each colored square represents 
one of the top 4 communities by average degree centrality within community. (b) The color-corresponding communities are projected onto the 
brain and colored by resting-state network assignment as determined by the Stanford functional parcellation. The top 4 networks are largely 
bilateral. Community 1 is distributed mainly over posterior aspects of the brain and includes right pre/post-central gyrus, mid/superior temporal 
gyrus, precuneus, middle frontal gyrus and inferior parietal cortex. Community 2 is contains cerebellar regions, superior temporal cortex, and 
left pre/post-central gyrus. Community 3 includes inferior and superior frontal gyri, angular gyri, and bilateral posterior cingulate. Finally, 
Community 4 includes bilateral medial PFC, bilateral dorsolateral PFC, bilateral anterior cingulate and right orbitofrontal cortex. 
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Fig. 9. Predictive accuracies of top communities. A stepwise prediction analysis was performed to confirm the predictive importance of the 
top-ranked communities discovered in the community detection analysis. Starting with the highest ranked community, the correlations of all 
regions in the community to all other regions were used to generate distances to the hyperplane for each subject. Then, a search was 
performed for the optimal decision threshold that maximized prediction accuracy in the training data. Finally, this threshold was applied to the 
testing data to produce test set predictions. The best performing subset of communities was determined by the testing accuracy. Permutation 
testing (1000 permutations) was performed to judge the relative increase in performance using the top communities vs. using a random set of 
correlations while preserving the number of pairwise correlations included at each step. The permutation p-value was calculated as the 
percentile of the best performing non-permuted accuracy in the distribution of the 1000 permuted accuracies at that same step. Chance was 
defined as a naive classifier that always picks the dominant class (chance=0.60). The best testing set prediction came from the first 4 
communities with 80% accuracy, performing significantly better than random regions (permutation tested p=0.001) and above chance. 
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