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Abstract
Replicative senescence (RS) as a model has become the central focus of research into cellular aging in vitro.
Despite decades of study, this process through which cells cease dividing is not fully understood in culture, and
even much less so in vivo during development and with aging. Here, we revisit Hayflick’s original observation
of RS in WI-38 human fetal lung fibroblasts equipped with a battery of high dimensional modern techniques
and analytical methods to deeply profile the process of RS across each aspect of the central dogma and beyond.
We applied and integrated RNA-seq, proteomics, metabolomics, and ATAC-seq to a high resolution RS time
course. We found that the transcriptional changes that underlie RS manifest early, gradually increase, and
correspond to a concomitant global increase in accessibility in nucleolar and lamin associated domains. During
RS WI-38 fibroblast gene expression patterns acquire a striking resemblance to those of myofibroblasts in
a process similar to the epithelial to mesenchymal transition (EMT). This observation is supported at the
transcriptional, proteomic, and metabolomic levels of cellular biology. In addition, we provide evidence
suggesting that this conversion is regulated by the transcription factors YAP1/TEAD1 and the signaling
molecule TGF-β2.

1 Introduction

Replicative senescence (RS) of animal cells growing in vitro
was first discovered by Leonard Hayflick. He found that pri-
mary human diploid fibroblast cell lines ceased to proliferate
after an extended number of serial passages [1]. Since then,
considerable work has been done to describe this phenomenon.
A major causal feature of RS is telomere erosion, a process
in which the telomeres of the chromosomes gradually shorten
with increasing cellular divisions eventually triggering the DNA
damage response and cell cycle exit [2]. This is understood
to be due the absence of the telomerase reverse transcriptase
(hTERT), the catalytic component of human telomerase which
adds telomeric sequences to the ends of chromosomes to main-
tain telomere length in germ cells and stem cells. As hTERT
activity is undetectable in normal human somatic cells, telomere
attrition is a common aging phenotype hypothesized to underlie
cellular senescence at the organismal level [3, 4]. Replicative
senescence of human somatic cell lines in vitro can be avoided
by overexpression of hTERT which prevents telomere short-
ening and confers apparently unlimited replicative capacity
[5].

Beyond growth arrest and telomere shortening, phenotypic
changes exhibited in replicatively senescent cells include the
senescence associated secretory phenotype (SASP). The SASP
proteins include proinflammatory cytokines, growth factors,
angiogenic factors, and proteases, all of which are thought to
play a role in paracrine signaling whereby senescent cells can
promote local wound healing and/or drive healthy neighboring
cells into senescence [6, 7, 8] [9]. Replicatively senescent cells
also accumulate DNA and protein damage, accumulate lipids,
and lose regulatory control of mitochondria and lysosomes
[10].

The phenotypic similarity (telomere attrition, epigenetic al-
terations, mitochondrial dysfunction and loss of proteostasis)
between the cell autonomous aging hallmarks and in vitro senes-
cence has led to the hypothesis that senescent cells in vivo play
a causal role in organismal aging and aging-related diseases
[11, 12, 13, 14, 15, 16, 3].

For example, up to 15% of familial idiopathic pulmonary
fibrosis cases arise from mutations in telomerase. In ad-
dition, up to 25% of sporadic cases have telomere lengths
less than the 10th percentile. These findings point to a
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potential role for replicative senescence in IPF pathology.
[17, 18, 19, 20, 21, 22, 23, 24, 25]. Furthermore, the elimi-
nation of senescent cells in a number of age-related diseases,
such as cardiac fibrosis, pulmonary fibrosis, neurodegenera-
tive diseases, osteoporosis, and metabolic disorders have been
argued to alleviate the disease state [26]. Clinical trials for
senolytics targeting fibrotic diseases, osteoporosis, frailty, and
metabolic syndromes are currently underway [27].

The mechanism by which senescent cells might contribute to
aging phenotypes is currently still unclear [11, 28]. In an ef-
fort to bring clarity to RS in vitro that in turn could eluci-
date in vivo function, we revisited and redesigned the original
Hayflick experiment. Making use of recent advances in high-
dimensional technologies, (bulk RNA-seq, single cell RNA-seq
(scRNA-seq), ATAC-seq, metabolomics and proteomics) we
tracked changes throughout the replicative lifespan of the origi-
nal Hayflick WI-38 cell line.

Overall, our data recapitulate many known features of the in
vitro senescence process while simultaneously providing novel
insight. First, the time resolution of our experiment coupled
with single cell trajectory analysis reveals that senescence is
a gradual process that shares transcriptional, proteomic, and
metabolomic features with epithelial-mesenchymal transition
(EMT). Second, our metabolomic data identifies Nicotinamide
N-methyltransferase (NNMT) activity as a potential initiating
event in RS dependent heterochromatin loss. Third, we show
that the increased accessibility in heterochromatic regions is
concentrated in nucleolar/lamin associated domains and corre-
sponds with observed changes in the RS transcriptome. Lastly,
integration across data modalities reveals that RS replicatively
senescent WI-38 cells bear a strong resemblance to myofibrob-
lasts. We provide evidence that the YAP1/TEAD1 transcription
factor complex and TGF-β2 signaling are putative regulators
of the transition to this state. Together our data suggests that a
process similar to fibroblast to myofibroblast transition (FMT;
analogous to EMT) underlies is an intrinsic aspect of the RS
phenotype in WI-38 fibroblasts.

2 Results

2.1 Transcriptomic profiles of replicative senescence
(RS), radiation induced senescence (RIS) and
increasing cellular density (CD)

To capture the replicative senescence process with high reso-
lution we designed an experiment to continuously grow and
intermittently sample cells from a starter batch of WI-38 cells
that had undergone only 20 population doublings (PDL 20). To
distinguish between RS-dependent changes and those arising
from altered cell density and growth rate we performed a cell
density control study (CD). Briefly, early PDL cells were sam-
pled at increasing levels of cell density to measure gene expres-
sion changes associated with cellular density and decreasing
cell proliferation independent of replicative senescence (Figure
1A). In addition to the CD control, we also included TERT im-
mortalized WI-38 cells (hTERT) grown in parallel as a control
for long term culturing and day-to-day sampling batch effects
[5]. We also included a control for replication-independent

senescence using radiation induced senescence (RIS) to test for
differences between RS and RIS. Finally, we sampled prolifer-
ating WI-38 cells at multiple PDLs for RNA-seq, scRNA-seq,
proteomics, metabolomics and ATAC-seq until the WI-38 cells
had reached senescence as measured by the cessation of growth
(Figure 1B). As expected, hTERT immortalized cells grew at a
constant rate and did not slow or cease growth (Figure 1B).

We first examined the bulk RNA-seq data to compare and con-
trast RS with RIS, CD, and hTERT cells. Differential gene ex-
pression analysis using RNA-seq revealed 8,968 genes change
with increasing PDL, 8,690 genes change in response to ion-
izing radiation, and 11,652 genes vary with increasing cell
density (SData 1). Notably, the RS phenotypes and transcrip-
tional changes we observed were consistent with previous stud-
ies. Figure 1C shows the strong correlation of the pattern of
induced transcription established in PDL 50 cultures and the
fibroblast derived senescence-associated signature reported by
Hernandez-Segura et al(2017) [28]. We also observed induc-
tion of senescence-associated-β galactosidase (Figure 1D) as
well as p16 and p21 (Figure S1).

Hierarchical clustering of all significantly changing genes
across the four conditions highlighted several important fea-
tures of our experiment. First, as expected, gene expression
in the hTERT-immortalized WI-38 cells remained largely sta-
ble. Second, RS, RIS, and CD exhibited many shared, but
also unique, gene expression changes with respect to both the
identity of differentially expressed genes and the magnitude of
their changes (Figure 1E).

To facilitate a biological interpretation of these shifting tran-
scriptomic landscapes, we applied Gene Set Enrichment Analy-
sis (GSEA) analysis using the MSigDB Hallmark annotation
sets to learn which general processes are shared and distinct
between RS, RIS, and CD (Figure 1F, SData 2) [29, 30, 31].
All three perturbations (and not the immortalized cells), exhib-
ited dramatic reductions in expression of genes belonging to
S and M cell cycle phases, consistent with cessation of cell
division (Figure 1F - top cluster). Perhaps driven by this shift,
we also found significant overlap in additional enriched anno-
tations among genes induced in RS, RIS and CD, albeit with
some variation in significance. Many of the shared enrichments
can be categorized as stress responses, e.g. apoptosis, p53
pathway, inflammatory and interferon responses, and STAT3/5
signaling. In addition, we also observed enrichment of several
development/differentiation gene sets, including myogenesis,
angiogenesis, and adipogenesis.

We observed relatively few gene sets with discordant patterns
across RS, RIS, and CD (Figure 1E). However, the gene set for
Epithelial to Mesenchymal Transition (EMT) was significantly
enriched in genes that increased with RS as opposed to RIS
(p = 5.5e-6 vs p=0.12) or CD wherein the term was actually
underrepresented, but not significantly so. Although RS, RIS
and CD are highly similar at the abstracted level of enriched
gene sets, it is clear in (Figure 1E) that there are many induced
genes specific to RS. In addition, we applied GSEA to each in-
dividual time point for each condition (Figure S2,SData 2) and
found the EMT gene set is enriched early and robustly during
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Figure 1: Expression dynamics of replicative senescence (RS), radiation induced senescence (RIS), increasing cell density (CD) and
hTERT WI-38 cells. (A) Experimental design for the RS, RIS, CD and hTERT experiments. (B) Scatterplot of days in culture (x-axis) vs.
population doublings (PDL)(y-axis) for WT WI-38 cells (red) and hTERT immortalized cells (green). (C) Scatterplot of gene expression
changes (log 2(fold change)) for PDL 50 vs PDL 20 (x-axis) vs. senescence log2 fold change derived from a generalized linear model (GLM)
compiling several fibroblast cell lines (Hernandez-Segura et.al. 2017). (D) (right) Percent cells staining positive for SA-βgal staining (y-axis)
at increasing PDLs (x-axis) for WI-38 cells (red) and hTERT (green);(left) (E) Hierarchical clustering of significant genes expression changes
across all conditions. Values are log2 fold change vs. the average of the first time point of each condition. (F) Gene Set Enrichment Analysis
(GSEA) results for RS, RIS and CD using the MsigDB Hallmarks annotation set. The -log10 p-value is colored by direction of enrichment
(red=up, blue=down).
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RS. Thus the EMT gene set appears to represent a particularly
important aspect of RS biology.

2.2 Single-cell RNA-seq reveals that replicative
senescence is a gradual process

Interestingly, the vast majority of gene expression changes
evident by PDL 50 begin to manifest at much earlier PDLs.
This observation is consistent with two distinct possibilities: (A)
The senescence expression changes accrue early and gradually
in the majority of cells without respect to proliferation status,
or (B) the bulk RNA-seq profiles are a changing admixture
of transcriptionally distinct mitotic, G1, and senescent cells.
Both models have substantial support in the literature. [32,
33, 34, 35, 36] To discriminate between these possibilities,
we employed single-cell RNA-seq (scRNA-seq) to directly
measure percentages senescent and cycling cells.

Briefly, we collected between 1,000-2,000 cells at increasing
PDLs of WI-38s and matched hTERT time points (SData 3).
We applied a modified (see methods) 10X Genomics protocol
to capture and preserve the more fragile senescent cells (Figure
S3). We profiled a total of 15,000 cells (9,000 WT and 6,000
hTERT). When aggregated into pseudo-bulk profiles (i.e the
sum the single-cell reads) expression profiles, the single cell
results are highly correlated with expression changes observed
in bulk RNA-seq (r=0.77-0.83,Figure S4).

We first classified cells as either S, G2M, or G1 phase using
canonical markers for the S and G2M phases as previously
described [37]. As expected, based on bulk transcriptomics, the
number of cells in either S or G2M decreases with increasing
PDL whereas the cycling cell proportions are stable in the
hTERT timepoints (Figure 2A,B, SData 3).

Next, we projected all wild type (WT) cells and two hTERT
time points together in one UMAP to identify broad patterns in
replicative aging PDL cells versus cycling hTERT cells. Cells
from the two cell lines organize separately, however share a
similar geometry composed of a S/G2M phase roundabout and
a large G1 lobe (Figure 2C). Although the overall pattern of
WI-38 cells for both cultures was highly similar, we observed
progression of cell grouping with PDL that had no concordance
with increasing hTERT time points (Figure 2D)- red to blue).
Specifically, PDL50 cells (but not the hTERT time point con-
trol) cluster apart from all other cells. We identified this cluster
as "senescent" by scoring each cell with our senescent gene ex-
pression signature derived from our bulk RNA-seq (Figure S5,
SData 3).

To test model A vs B, we compared the pseudo-bulk gene ex-
pression profiles across the cell cycle at each PDL. We reasoned
that if RS were gradual, we would observe the RS gene expres-
sion pattern even in young cycling cells without respect to
G1/S/G2M. Indeed, the RS signature is present in all cell cycle
phases even in early PDLs (Figure 2E- left panels vs. far right
panel). In addition, isolation and UMAP projection of cells
from each cell cycle phase revealed that the dominant source
of variance in cycling cells is the PDL (Figure S6). Lastly, we
did not observe any cells < PDL50 in close association with the
senescent cells in the UMAP projection PDLs (Figure 2C,D).

Together, these results argue in favor of a gradual model (A) of
replicative senescence wherein cells ramp up expression of the
RS program with increasing PDL even when still proliferative.
These data are consistent with the previously reported changes
in cellular phenotype (larger cell size and increased cycling
time) with increasing PDL. [38, 39, 40, 41]. Importantly, this
observation suggests that aspects of cellular senescence are
present in non-senescent cells. This result raises the intriguing
possibility that the reported pathological features of senescent
or senescent-like cells in vivo might also manifest in cells that
are not classically senescent.

2.3 Proteomic landscape of RS WI-38 cells suggests
large metabolic alterations

We next turned to our proteomics data generated from the same
cultures and timepoints as above. We obtained high confidence
measurements for 8500 proteins (SData 4). Similar to our
transcriptional results, the TERT samples did not exhibit large
changes in proteome with experimental progression (Figure S7).
Overall, we observed high concordance between transcript and
protein levels with very few outliers (r=0.71 for PDL50 vs
PDL20, Figure S8). We employed GSEA using hallmark an-
notations and observed a sharp depletion of proliferation and
mitosis associated gene sets supporting our previous findings
(Figure 3A, SData 4). Likewise, the proteomics data recapit-
ulated enrichment of the EMT annotation set along with the
adipogenesis and myogenesis.

Multiple enriched sets pointed to RS-dependent shifts in cel-
lular energy utilization. (Figure 3A). Of note, we found that
although under-enriched in our RS transcriptome (Figure 1F),
The oxidative phosphorylation hallmark was highly enriched in
the proteomics data. We plotted the oxidative phosphorylation
genes driving the set enrichment in Figure S8. This projection
revealed that many genes in this set fall into a quadrant (posi-
tive proteomic, negative transcriptomic) suggesting discordant
regulation of these genes.

The oxidative phosphorylation hallmark set is composed of
multiple closely linked mitochondrial complexes and functions
that regulate cellular energy flux e.g. TCA cycle, fatty acid
oxidation, pyruvate metabolism, ATP synthase etc. We di-
vided the oxidative phosphorylation gene set into into these
constituent parts and visualized the changes in proteins with
increasing PDL. We observed increases in all categories except
for mitochondrial assembly and structures (Figure S9. SData
5).

Next, we examined the annotations for the highest enriched
hallmark sets from Figure 3A and found strong enrichment of
multiple KEGG metabolic pathways. (Figure 3B). In addition,
both the glucose transporter SLC2A1/GLUT1 and the fatty
acid scavenger CD36 transcripts exhibited strong, early, and
RS specific up-regulation (Figure 3C). Together these results
point to a drastically altered RS metabolic landscape.
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Figure 2: Cell cycle exit and distribution on approach to replicative senescence does not explain gradual increase in the RS transcrip-
tome. (A) Individual UMAP projections of WT WI-38 cells by PDL colored by phases of the cell cycle (G1 = green, G2/M = orange, S-phase
= purple). (B) Bar graph of cell cycle state percentages (y-axis) by PDL (x-axis) for WT WI-38 cells (left) and hTERT WI-38 cells (right).
(C) UMAP projections of WT and hTERT WI-38 cells by PDL colored by different phases of the cell cycle. (D) UMAP projection of all
WI-38 cells from increasing PDLs (RS) or time point (hTERT)-colored from early (red) to late (blue). (E) The RS transcriptome manifests
early in all phases of cell cycle. Heatmap of hierarchical clustering of gene expression values of differentially expressed genes as aggregated
transcriptomic profiles for each cell cycle phase and PDL (left) versus all cells (right). Values are log2 fold change of each PDL against the first
(not shown).
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Figure 3: Proteomic and metabolomic changes during replicative senescence reveal increased utilization of oxidative phosphorylation,
glycolytic shunts, and fatty acid oxidation (A) Significant (p < 0.01) Gene Set Enrichment Analysis (GSEA) results for protein expression
changes using the MsigDB Hallmarks annotation set. The -log10 p-value is plotted and colored by the directionality of enrichment (orange=up,
green=down). (B) Kegg pathway GO term enrichment of leading edge genes from A for Oxidative Phosphorylation, Myogenesis and
Adipogenesis. (C) Gene expression fold changes (replicate average) for the insulin-independent glucose transporter SLC2A1 (left) and fatty
acid transporter CD36 (right) in the hTERT, RS, RIS and CD time courses. (D) Metabolic diagram of glycolysis, glycolytic shunts, fatty acid
import and oxidation, TCA cycle/Oxidative Phosphorylation. Metabolites are blue, proteins are italicized in green. * denotes metabolite classes
expanded in supplementary figures. Shading indicates inferred direction of pathway during RS based on metabolite/protein changes in E. (E)
Heatmaps of metabolite and protein changes with RS from D (replicate averages).
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2.4 RS WI-38 cells exhibit profoundly increased
utilization of fatty acid metabolism and glycolytic
shunts

To generate a metabolic profile for RS in WI-38 cells, we har-
vested samples at increasing PDLs alongside input material for
all other data types (methods, SData 6). Out of 288 detected
and identified compounds, we focused on compounds exhibit-
ing PDL-dependent changes in abundance > log2 0.5. To guide
further our metabolic analysis, we focused our queries based on
the enriched metabolic pathways found in the proteomic analy-
sis. Specifically we studied the changes to glycolysis, oxidative
phosphorylation and fatty acid metabolism (Figure 3D).

Following the glucose, we looked at the central stem of gly-
colysis as a potential source of energy supplying the observed
increases in the TCA cycle and oxidative phosphorylation (Fig-
ure 3D,E). We found that metabolites and enzymes dedicated
to pyruvate generation and/or lactate production did not change
concordantly. We instead found that most of the glycolytic
shunts exhibited up-regulation at both the metabolite and pro-
tein level (Figure 3E). These results suggest an increase in
allocation of glucose for manufacture of various biomolecules
and their precursors (glycogen, hexosamines, phospholipids)
(Figure 3E and Figure S10).

In contrast, metabolites and enzymes involved in fatty acid
import and oxidation for the purpose of energy generation
appear strongly up-regulated (Figure 3E). We also saw that
metabolites involved in the de novo production of phospholipids
via the Kennedy pathway are highly up-regulated, specifically
phosphotidylethanolamines precursors (Figure S11).

From these data, it is clear that RS WI-38 cells undergo drastic
shifts in metabolism. Specifically, we see increased glucose
utilization in glycolytic shunts coupled with an increase in
fatty acid import and oxidation. It is possible that RS cells are
switching to fatty acid oxidation to fuel increased TCA cycling
and oxidative phosphorylation as glucose is diverted to macro-
molecule production. Indeed, metabolomic data collected from
various types of senescence models has shown increased lipid
oxidation, lipid accumulation, TCA up-regulation, and gly-
colytic alterations [42, 43, 44, 45, 46]. Likewise, consensus
metabolomic findings in EMT models report increased TCA
cycle products, altered lipid metabolism, and activated hex-
osamine pathway [47, 48, 49]. These data provide functional
metabolic evidence supporting a connection between RS and
the EMT hallmark enrichment observed in RNA and protein
expression.

2.5 Nicotinamide N-methyltransferase (NNMT) links
nicotinamide adenine dinucleotide (NAD) and
methionine metabolism as a putative
heterochromatin regulator

Metabolic regulation of epigenetic state is an increasingly rec-
ognized mechanism through which nutrient availability influ-
ences cellular function by regulating the abundance of co-
factors required for histone modifications [50]. Specifically,
Nicotinamide adenine dinucleotide (NAD+) and methionine
metabolism power the deacetylation and methylation required

for maintaining repressive DNA conformations [51]. In a com-
pelling intersection, perturbation of NAD, methionine, and hete-
rochromatin levels have all previously been reported in multiple
aging contexts including RS [52, 53, 54, 55, 56]. In compiling
our RS data for the metabolic and proteomic components of
the NAD and methionine pathways, we found that one of the
largest and earliest changes for any protein (or transcript) was
the increased expression of Nicotinamide N-methyltransferase
(NNMT) (Figure 4A,B)).

DNA and histone methylation require abundant levels of the
universal methyl donor S-adenosyl methionine (SAM). NNMT
not only depletes SAM by catalyzing the removal of the SAM
methyl group, it does so by fusing it to the NAD+ precursor
nicotinamide (NAM) resulting in the production of the inert
molecule methyl nicotinamide (MNA) [57]. Thus, NNMT ef-
fectively acts as a sink for the two primary metabolites a cell
requires for silencing gene expression and forming heterochro-
matin [58]. We found that MNA levels mirror those of NNMT;
increasing early and robustly during RS progression consistent
with high NNMT activity. SAM and its sans-methyl version (S-
adenosyl homocysteine (SAH)) were depleted with RS albeit
to a lesser extent than the observed increase in MNA. NAMPT
and NMNAT1, enzymes in the NAD pathway, were weakly
down-regulated at the protein level (Figure 4A,B)).

High NNMT expression has been implicated in methyl deple-
tion in embryonic stem cells and Cancer-Associated fibroblasts
(CAFs) [59, 60]. In both cases the functional consequences
were similar; DNA hypomethylation and decreased capacity
to form or maintain heterochromatin. In both examples, the
important point is that the loss of silencing is actively pro-
moted through NNMT activity. One intriguing hypothesis is
that increased NNMT activity with RS directly induces hete-
rochromatin loss via SAM depletion (Figure 4C).

2.6 Increased DNA accessibility and transcription from
nucleolar and lamin associated domains is a
dominant feature of the RS epigenome

Previous reports have described large scale senescence-induced
alterations to the epigenome including but not limited to hete-
rochromatin loss, formation of heterochromatin foci (SAHF)
and perturbation of Nucleolar-Associated Domains (NADs)
and Lamin-Associated Domains (LADs) [61, 62, 63]. With
the advent of ATAC-seq, a transposition based method for the
measurement of DNA accessibility, it is now possible to study
these phenomena with relative ease across multiple timepoints
[64]. Furthermore, recent analytical advances have facilitated
the interrogation of epigenetic state via the distillation of multi-
dimensional epigenetic data into discrete chromatin states (e.g.
heterochromatin, promoter, enhancer etc.) across hundreds of
cell lines [65].

To study genome-wide changes in the epigenetic landscape of
senescent cells, we collected ATAC-seq data during the RS time
course and quantified the read distribution across chromatin
states previously annotated for the IMR-90 human fetal lung
fibroblast cell line [65]. We categorized 25 distinct states into 4
broad categories: promoters, enhancers, transcription, and mis-
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Figure 4: Nicotinamide N-methyltransferase (NNMT) Links Nicotinamide adenine dinucleotide (NAD) and Methionine Metabolism
in RS (A) Gene expression fold changes for the NNMT (top) in the hTERT, RS, RIS and CD time courses (replicate average). Heatmaps
of metabolite and protein changes during RS from B (bottom-replicate average). (B) Metabolic diagram of the methionine and NAD
salvage pathways. Metabolites are blue, proteins are italicized in green. Shading indicates inferred pathway direction during RS based on
metabolite/protein changes in A. (C) Potential model for NNMT and metabolic regulation of heterochromatin during RS.
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Figure 5: Increased Accessibility within heterochromatin and Nucleolar Associated Domains (NADs) is a dominant feature of the RS
epigenome (A) Bar graph of percent of ATAC-seq reads falling into 4 broad chromatin states compiled from the ENCODE IMR-90 25
chromatin state prediction for all samples in WT or hTERT WI-38 cells. Bar graphs displaying percent of all ATAC-seq reads within two
specific states (y-axis) vs PDL (x-axis) for WT (red) and hTERT (green) WI-38 cells. Error bars represent standard deviation. (B) (left) Log2
fold change in counts vs. first time point for significantly changing ATAC-seq peaks binned into ENCODE IMR-90 25 chromatin states. (C)
Log2 fold change distribution (PDL 50 vs PDL 20) for all ATAC-seq peaks that overlap (pink) or are separate from (blue) from NADS (left) or
LADs (right). (D) Randomized permutation test distributions for highly induced genes (from Figure 1) in RS (red), RIS (orange) and CD
(blue). Median expected number of overlaps and observed number of overlaps shown by black bars. (top) for NADs, (bottom) for LADs.
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cellaneous, the last of which is composed largely of heterochro-
matic and undefined states, e.g. H3K9me3 and H3K27me3
rich regions, zinc-finger repeats, and quiescent–defined by the
absence of histone marks, accessibility, or gene features [65].

In comparing the read distribution into chromatin states be-
tween hTERT immortalized cells and WT WI-38 cells of in-
creasing PDL, we observed an increase in ATAC-seq reads
falling into the miscellaneous chromatin regions at the relative
cost to all other states (Figure 5A-left panel). We plotted the
read distribution across chromatin states as a function of in-
creasing time for both cell lines and found these shifts to be
associated with increasing PDL in the WT WI-38 cells; hTERT
ATAC-seq read proportions across chromatin states remained
stable over time (Figure 5A-right panel).

To determine if this shift in accessibility to undefined and
heterochromatic states was indicative of increasing noise ver-
sus coherent changes in accessibility, we used the ATAC-seq
reads to call peaks of localized accessibility. From the WT
and hTERT ATAC-seq data from all time points we identified
300,000 ATAC-seq peaks (SData 7) [66]. We did not find a
time-dependent decrease in the fraction of reads in peaks dur-
ing RS. (Figure S12A). We tested experimentally whether the
increased heterochromatic accessibility was an artifact of in-
creasing numbers of dead cells by repeating the experiment
using late PDL cells with a cross-linking agent (propidium
monoazide-PMA) that renders DNA from dead cells inert as
previously described [67]. No significant change in read distri-
bution across chromatin states was observed with addition of
PMA (Figure S12B).

We then divided the ATAC-seq peaks into each of the 25 discrete
chromatin states and calculated the fold change in accessibility
for each state and time point compared to the first sample. We
observed that changes in peak accessibility mirrors that for
all reads. Again we observed a clear increase in accessibility
with PDL across the miscellaneous category with a concomi-
tant decrease in all other states in WT WI-38 cells and not in
immortalized hTERTs (Figure 5B).

The quiescent or “undefined” state from the miscellaneous cate-
gory piqued our interest for two reasons, one being that it alone
accounted for 20-40% of all ATAC-seq reads and a large 10%
increase with senescence. The second point of interest was the
observed early onset of change (Figure 5A,B). Dillinger et. al.
previously reported that the quiescent state is largely overlap-
ping with both LADs and NADs [62]. Likewise, we found that
the quiescent chromatin domains and most of the heterochro-
matic domains to be markedly gene poor and overwhelmingly
overlapping with both LADs and NADs experimentally defined
in IMR-90 fibroblasts (Z-score 90 and 150) (Figure S12C). For
reference, Figure S12E provides a chromosome level view of
the significant overlap between RS accessible ATAC-seq peaks
in the quiescent state with NADs and LADs compared to all
peaks annotated in WI-38 cells.

We tested and found that ATAC-seq peaks falling within NADs
and LADs exhibit increased accessibility with RS (p < 10 e-16
for both). Notably, this trend was much greater for peaks in

NADs versus peaks in LADs, with a median log2FC of 0.98
for NADs vs. 0.24 for LADs (Figure 5C).

Next, to assess whether overall shifts in NAD/LAD accessibility
might be correlated with the changes in RS gene expression,
we tested the top up-regulated RS genes and found significant
overlap with NADs and LADs. Interestingly, the top RIS or
CD induced genes did not exhibit this overlap suggesting this
phenomenon is specific to RS (Figure 5D).

Together these results highlight a striking increase in accessi-
bility within nucleolar associated DNA that connects changes
in the transcription with a global shift in the epigenome.

2.7 Transcriptional regulators of the RS transcriptome
and epigenome

To parse out the regulatory logic of RS gene expression, we
leveraged our ATAC-seq data to gain insight into which tran-
scription factors regulate RS accessibility via transcription fac-
tor motif analysis. Having cataloged a universe of ATAC-seq
peaks with significant changes in accessibility, we next assigned
peaks to neighboring genes. Taking the top RS differentially
expressed genes, we searched the proximal ATAC-seq peaks
enriched transcription factor motifs (Figure 6A). We found
enriched motifs for TEAD1, CEBP family transcription factors,
SMAD EMT transcription factors, AP1 transcription factors,
and multiple FOX family transcription factor motifs.

We also applied an orthogonal gene-independent methodology
for determining which motifs are predictive of RS induced
increases in ATAC-seq peak accessibility. Consistently, we
again found TEAD1 to be the most predictive feature (mean
coefficient = 0.25 across 10 models-methods). In addition, we
also found evidence for FOXE1 and SMAD1 regulation as well
as other senescence related transcription factors, e.g. CEBPB
and TP53 (Figure 6B).

Out of the FOX family transcription factors, FOXE1 is unique
in that it exhibits one of the most specific and largest increases
in RS gene expression (40x). FOXE1 is annotated as a thyroid
specific transcription factor with putative roles in thyroid de-
velopment and cancer [68, 69, 70]. It has also been reported to
regulate two signaling molecules up-regulated in the RS time
course; TGF-β3 and WNT5A [71, 72]. Furthermore, it has
been reported that many of the FOX family transcription fac-
tors are relatively promiscuous binders of each others canonical
motifs. Thus it is possible that the increased accessibility in
peaks with FOX motifs during RS may be driven by FOXE1
activity [73]. Despite the specificity and magnitude of RS
induction, FOXE1’s function in RS is unclear and warrants
further investigation.

We returned to our bulk RNA-seq to test for enrichment of
protein-DNA binding events (mapped by ENCODE) in regula-
tory elements proximal to our RS differentially expressed genes
by using Landscape In Silico deletion Analysis (LISA) [74].
Plotting transcription factor enrichment for genes depleted with
RS against genes induced during RS revealed 3 broad cohorts
of transcription factors; proliferating cell transcription factors,
RS transcription factors, and transcription factors whose bind-
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Figure 6: Master Transcriptional Regulators of Replicative Senescence (A) Scatter plot of transcription factor motif enrichment in ATAC-
seq peaks surrounding the top 1,000 genes from differential expression analysis of RS. y-axis is the -log10 p-value; x-axis is the percent of
genes with transcription factor motif. transcription factors of interest are highlighted in red. (B) Bar graph of ridge regression coefficient
of motif predictive power in model of increasing peak accessibility with RS. transcription factors of interest are highlighted in red. (C)
Scatterplot of transcription factors enriched for binding in regulatory regions around RS depleted genes (y-axis) vs. RS induced genes(x-axis).
Curated cell cycle transcription factors are colored in green; transcription factors of interest e.g. EMT/AP1/YAP1/TEAD1 etc. are colored
in red. (D) Scatterplot of enriched transcription factors rank for binding enrichment in regulatory regions around senescence induced genes
in astrocytes (y-axis) vs. RS induced genes in WI-38 cells (x-axis). transcription factors with discordant ranks/enrichment are colored in
turquoise,transcription factors with concordant ranks/enrichment are colored in red; transcription factors of interest are labeled in red.
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ing was enriched around both sets of genes (Figure 6C, SData
8). As expected, proliferation specific transcription factors are
replete with cell cycle specific transcription factors e.g. E2F
and RBP family transcription factors. A large portion of the
transcription factors exhibiting RS specificity belong to 4 cat-
egories; inflammation transcription factors (NFKB, CEBPB),
AP1 sub-units (JUN,JUND,FOSL2), YAP1-TEAD1 compo-
nents (TEAD1/4, YAP1, WWTR1), and EMT transcription
factors (SNAI2, TCF21).

TEAD1 is a member of the TEA domain transcription factors
whose functions range across a wide swath of biology depend-
ing on context and binding partner. TEAD transcription factors
cannot induce gene expression without a cofactor, which is
most often YAP1 (yes-associated protein 1) a key downstream
effector of Hippo signaling. [75, 76, 77, 78, 79, 80, 81, 82, 83].
Consistent with our identification of TEAD1 and YAP1 as
RS regulators, YAP1 activation has been tied to EMT, anti-
apoptosis, telomere dysfunction, inflammation, and positive
regulation of fatty acid oxidation [84, 85, 86, 87, 88].

Lastly, given that YAP1/TEAD1 activity appears to increase
during RS against the backdrop of an altered epigenomic con-
text, we tested for an interaction between TEAD1 motifs and
the increasingly accessible NADs and LADs. We found that not
only are TEAD1 sites significantly enriched within NADs and
LADs ((p < 7.17e-07, and p < 6.12e-03 respectively hypergeo-
metric), but we also discovered a greater-than-additive increase
in accessibility with RS for TEAD1 motifs that occur within a
NAD (p < 3.12 e-07). These results suggest that there is a func-
tional connection between TEAD1 activity and NAD domains
during RS. The changing epigenetic context of RS may alter
TEAD1 binding and thus target activity with increasing PDL.

Collectively, these analyses uncover a common theme amongst
putative regulatory transcription factors; Hippo signaling
(YAP1/TEAD1), EMT transcription factors, and TGF-B signal-
ing (SNAI2, SMAD activity). SNAI2 has been shown to work
in tandem with the YAP1/TEAD1 complex and these pathways
often work towards similar biological ends [89, 84]. Together,
these transcription factors are reported as highly involved with
proliferation, EMT, ECM production, fibrosis, and apoptosis
avoidance [90].

Lastly, given that the LISA results are based on binding events
collected from a vast multitude of cell lines, we wondered if
the same transcription factors might be found to regulate senes-
cence in a completely different cellular context. To test this
we took significantly induced genes from a senescence model
using astrocytes as the cellelar context and oxidative stress
as the senescence trigger. [91]. Plotting transcription factor
enrichment for genes induced in astrocyte senescence against
transcription factor enrichment for WI-38 RS genes revealed
that although there were a substantial number of discordant
transcription factors, there was a clear population of transcrip-
tion factors highly enriched in both senescence models (Figure
6D). Notably, the top concordant transcription factors ranked at
the top in both contexts and recapitulate all the previous results
e.g. YAP1/TEAD1, SNAI2, CEBP family transcription factors
and AP1 subunits.

2.8 scRNA-seq trajectory analysis resolves WI-38 cells’
approach to replicative senescence

A wealth of recent work in single cell transcriptomics has
demonstrated that ordering single cells in a process-specific
trajectory often reveals nuanced timing and dynamics of gene
expression that bulk assays cannot capture [92, 93]. Mapping
this trajectory is frequently referred to as “pseudotime analysis”.
We employed pseudotime analysis to arrange single WI-38 cells
along a pathway to senescence (SData 3). As expected, early
and late PDL cells concentrated at the beginning and end of
the pseudotime trajectory respectively (Figure 7A). We next
performed differential expression analysis to identify genes that
change significantly over pseudotime. We plotted examples of
genes changing early (CENPK–an S-phase cell-cycle-regulated
gene), midway (SNAI2–a master regulator of EMT), or late
(PAPPA–a prominent SASP factor) in pseudotime in Figure
7B.

We next generated gene expression trajectories for the top 5,000
differentially expressed genes across pseudotime (Figure S13,
SData 9).To identify the temporal relationship between the bio-
logical processes and transcription factors that compose RS in
WI-38 cells, we clustered and ordered pseudotime trajectories
(SData 9). Broadly, we classified the pseudotime expression
pattern as early, transition, or late based on the maximum me-
dian value of all constituent genes for each cluster (Figure 7C).
We performed LISA transcription factor and GO enrichment
analysis on each cluster and used our findings to assign putative
functional labels across pseudotime (Figure 7D, Figure S14D,
Sdata 10).

Early pseudotime is dominated by the transcription factors
(E2F) and GO terms associated with cell cycle progression
through the G2M and S phases. Moving down the y-axis
deeper into pseudotime, we observe that the next primary clus-
ter of transcription factors and functional annotations exhibited
widespread enrichment across all of pseudotime. Furthermore,
transcription factors enriched in this cluster are involved with
basic cellular functions (e.g. euchromatin maintenance, tran-
scription, growth) and are likely representative of normal WI-38
function in G1 phase.

Moving forward into the transition phase of pseudotime, we
observed an enrichment of transcription factors regulating
higher order chromatin structure (CTCF) and epigenetic si-
lencing (polycomb group complex). Also in the transition
region of pseudotime, the earliest enrichments appear for tran-
scription factors related to EMT (SNAI2), TGF-β signaling
(SMAD3), YAP1/TEAD1 activity, and the AP1 complex (JUN,
FOS, FOSL2). We observed continued enrichment for these
transcription factors and processes throughout the rest of the
transition phase and into late pseudotime.

Lastly, and late in pseudotime, we observed enrichment of tran-
scription factors and functional annotations related to regulation
of inflammatory processes (NFKB1, RELA, ERG1, CEBPB)
and changes in cellular morphology (Figure 7D, Figure S14).
These observations are consistent with observations made with
bulk RNA-seq that RS WI-38 cells exhibit transcriptomic fea-
tures similar to that observed in TGF-β signaling, EMT, and

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442497


PREPRINT

Figure 7: Pseudotime (PS) analysis of WI-38 approach to replicative senescence using single cell RNA-seq. (A) UMAP projection of
single WI-38 cells collected at increasing PDLs (PDL25-red) to (PDL50-blue) and colored by pseudotime (top). (B) Scatterplot of single cell
gene expression across pseudotime with 3 genes representative of changes that occur early in pseudotime (top), during the transition phase
(middle) and in late pseudotime (bottom). Each point is a cell colored by PDL–PDL25 (red) to PDL50 (blue). x-axis is pseudotime, and
y-axis is counts for the gene of interest. Black line is a cubic spline. (C) Hierarchical clustering and heatmap of smoothened gene expression
trajectories over 60 pseudotime bins (x-axis) of 25 K-median gene expression clusters (y-axis). Value plotted is the scaled (min expression to
max expression ; 0-1) median expression of all genes in the cluster. Clusters are divided into three (early, transition, late) pseudotime categories.
(D) LISA transcription factor enrichment analysis using the 25 clusters from A divided into the same three (early, transition, late) pseudotime
categories. transcription factors and clusters are further divided on vertical axis into putative groupings based on transcription factor functions
and GO term enrichment (sFig9-10).
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with YAP1/TEAD1 activity. Collectively, these results present
a possible order of operations for RS progression that high-
lights an initial cessation of active mitotic cycling, followed by
an epigenetic shift that precedes a strong EMT/TGFβ signal
before segueing into a pro-inflammatory secretory state.

2.9 Replicatively senescent WI-38 fibroblasts express
canonical myofibroblasts markers and metabolic
features

Given the repeated observations linking RS with EMT, (Figure
1,Figure 3), TGF-β and YAP1/TEAD1 activity (Figure 6,Fig-
ure 7), we considered the possibility that these processes are
connected through the Fibroblast to Myofibroblast Transition
(FMT), a subtype of EMT in which stressed or injured fibrob-
lasts differentiate into myofibroblasts [94, 95, 96]. Upon receiv-
ing cues mediated by injury or stress (e.g. activated TGF-β),
fibroblasts can trans-differentiate into myofibroblasts, whose
functions as “professional repair cells” include increased pro-
liferation, migration, apoptosis avoidance, and ECM/collagen
deposition to promote tissue repair and wound closure [97, 98].

Previous work has demonstrated that there exists mechanistic
and functional association between telomerase inhibition, senes-
cence, and myofibroblasts. Senescence is an integral part of
the wound healing processes; upon injury resolution, activation
of a senescence-like phenotype prevents unchecked collagen
secretion and fibrosis by preventing myofibroblast prolifera-
tion and earmarking them for subsequent immune clearance
[8, 99, 100, 101, 102, 103, 104].

To further explore this proposition, we retrieved canonical my-
ofibroblast marker genes and direct transcriptional targets of
the YAP1/TEAD1 complex to determine to what extent these
genes are expressed in WI-38 RS cells at both the RNA and pro-
tein level. First, we examined canonical myofibroblast markers
[97], collagens produced by myofibroblasts [105], genes up-
regulated in myofibroblasts derived from idiopathic pulmonary
fibrosis patients [106], and effectors and targets of TGF-β sig-
naling across three data modalities: bulk RNA-seq, single cell
RNA-seq, and bulk proteomics (Figure 8A).

For the majority of genes in the curated myofibroblast panel,
expression increased with PDL and pseudotime. Importantly,
expression of smooth-muscle actin (ACTA2), a classic myofi-
broblast marker, increases strongly in RS but not RIS, and
decreases markedly in CD. The expression of follistatin-like
protein (FSTL1), also known to be strongly expressed in smooth
muscle, shows a similar pattern, as does fibrillin (FBN1). All
three of these are associated with smooth muscle and TGF-β
family regulation. In addition we observed an increase in both
fibrillar and basal lamina collagens in our data at both the RNA
and protein levels.

Collagen processing is a multi-step process requiring the coor-
dination of multiple enzymes and metabolites [107]. Review
of the collagen synthesis pathway alongside our metabolomic
and proteomic data provide further confirmation that WI-38
RS exhibit altered collagen metabolism (Figure 8B). We ob-
served up-regulation of multiple pathway enzymes as well as
increased abundance of hydroxyproline, a primary constituent

amino acid of collagen protein. In addition, we observe a strik-
ing depletion of ascorbate (vitamin C) which is required for
proline hydroxylation and is an essential vitamin. It is possible
that our observations underestimate the collagen production
potential of RS WI-38 cells as they appear limited in terms of
collagen production by the amount of supplemented vitamin C
[108].

Mellone et al. recently reported that although senescent fibrob-
lasts share features with myofibroblasts, this resemblance does
not extend to fibrogenic ECM components, e.g. collagens [101].
However, it is important to note that Mellone et al. focused
on RIS rather than replicative senescence, and we similarly
observed less or no induction of many of these same genes in
our RIS condition (Figure 8A) revealing another important
distinction between RS and RIS.

Moving forward in our myofibroblast panel, we observed that
expression of TGF-β cytokine, TGF-β1, decreased significantly
with RS in both RNA and protein. However, we see robust
induction of the TGF-β isotype 2 (TGF-β2) cytokine with RS
(Figure 8A) as TGF-β1 abundance drops, which indicates a
switch in TGF-β isotypes with RS. It has been shown TGF-β2
is a more potent inducer of the endothelial to mesenchymal
transition (EndMT) in vitro compared to TGF-β1 and TGF-β3
in human microvascular endothelial cells, and TGF-β2 may
be playing a similar role here in inducing FMT and RS in
WI-38 cells [109]. The distinct functional roles of different
TGF-β isotypes are largely unknown, although both are known
to activate the SMAD transcription factors. On the basis of our
data, it seems likely that the TGF-β paralog relevant here might
not be TGF-β1, but TGF-β2.

2.10 Expression of YAP1/TEAD1 targets during RS

Next, we retrieved a gene set of YAP1/TEAD1 targets assem-
bled by Kurrpa et al. from five separate studies [84]. Taking
the intersection of the five YAP1/TEAD1 gene target lists, we
only kept genes present in at least 2 of the studies and plotted
the remainder in Figure 8C across the three data types. We
arranged the YAP1/TEAD1 targets by the two predominant
expression patterns–decrease with RS (top) and increase with
RS (bottom). As with myofibroblast markers, the data from all
three modalities is largely concordant.

Interestingly, we noted a striking bifurcation whereby YAP1
targets tend towards either strong down-regulation or strong
up-regulation. The down regulated partition is heavily enriched
for classic cell cycle regulated genes such as TOP2A, CDC20,
BIRC5, and CDK9 suggesting that this dichotomy in YAP1
activity is heavily influenced by the cell cycle and consistent
with recent work [110, 111].

Excitingly, TGF-β2 was one of the two genes found in four
out of five collected YAP1/TEAD1 gene sets, supporting the
inference that the TGF-β2 and not TGF-β1 is the relevant
paralog and potentially regulated by YAP1/TEAD1 in the RS
context. In addition, another YAP1 target, thrombospondin-1
(THBS1), is also upregulated with RS; THBS1 is known to act
as an activator of TGF-β signaling, and specifically TGF-β2,
through proteolytic cleavage of latent TGF-β [112]. Figure S15
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Figure 8: Expression of Myofibroblast markers and YAP1/TEAD1 targets during RS across multiple data modalities. (A) Heatmaps of
selected genes based on myofibroblast markers and biology from RNA-seq, single cell RNA-seq and proteomics. Values plotted are log2
fold change of each time point versus first. (B) Diagram of collagen processing (left) with metabolites in blue and proteins in italicized green.
Heatmap of log2 fold changes for metabolites and proteins involved in collagen processing (right). (C) Heatmaps of YAP1 targets collected
Kurppa et al. across RNA-seq, single cell RNA-seq and proteomics. Values plotted are log2 fold change of each time point versus first. Gene
names on the left are colored by the number of studies the gene was present in;>1 black, >2 =red.
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displays examples of expression for several of the myofibroblast
markers and YAP1 targets in single cell UMAP projections.

In all, the data reveal that RS WI-38 cells share multiple defin-
ing transcriptomic and proteomic features with myofibroblasts.
Furthermore, we found that a subset of YAP1/TEAD1 targets
are both induced with RS, and are principal components of
TGF-β signaling (TGF-β2, THBS1). Thus the YAP1/TEAD1
complex may be acting in convergence with TGF-β signaling
with increasing PDL to enact a myofibroblast-like state that we
recognize as RS.

3 Discussion

The study of RS in human tissue culture has proven to be an
informative model for learning how genetic and environmental
factors impact cellular senescence. However, the field has not
fully taken advantage of the ‘omics’ revolution. Rekindled by
the advent of senolytics, interest in the molecular underpinnings
of RS has burgeoned in recent years as researchers seek to
design therapeutic strategies for ablating senescent cells [113,
114, 115, 116]. However, many such studies span only one
or two systematic data modalities. Here, to fully leverage
the power of recent advances in high-dimensional profiling, we
revisit the original Hayflick limit in WI-38 lung fibroblasts cells
with a battery of assays including RNA-seq, ATAC-seq, scRNA-
seq, proteomics, and metabolomics in an effort to capture the
defining features of RS at every step of the central dogma and
beyond. Our results are summarized graphically in Figure 9.

The kinetics and precise timing of the RS process have been
obscured by low temporal resolution and ensemble measure-
ments that cannot differentiate between global shifts in gene
expression versus changing proportions of senescent cells
[36, 117, 118, 119, 32, 33, 34, 35]. Here, with a combination
of high time resolution and single cell RNA-seq, we provide
evidence that the early manifestation of the RS gene expression
reflects gradual changes on a per cell basis rather than changing
cell proportions. In effect, individual cells “show their age”
with increasing PDL long before permanently exiting the cell
cycle and transiting fully into the senescent state. The impli-
cations of this conclusion extend to organismal aging. For ex-
ample, the percentage of senescent cells calculated from aging
organisms varies greatly depending on the marker/phenotype
used (reviewed in [120]. The reported disparities could be ex-
plained in part by the use of early versus end stage markers.
Likewise, it is possible the reported increase in fibroblast het-
erogeneity and altered functionality with age is a direct result
of cells slowly moving along a spectrum towards RS [121, 122].
Importantly, the gradual progression suggests that cells need
not reach the endpoint to elicit a phenotype. For instance, prolif-
erative fibroblasts isolated from IPF patients exhibited multiple
senescent features and phenotypes in addition to accelerated
senescence progression [123]. Lastly, this phenomenon is not
constrained to fibroblasts as we observe that the salient regula-
tory features of RS extend to cell types as distant as astrocytes
(Figure 6D).

In our data, the pattern of gene expression annotated to EMT
as a unique feature of RS that consistently presents early and

robustly at both the RNA, protein, and single cell level. Given
the fundamental nature of the EMT transition with respect
to cellular function (development, fibrosis, and wound heal-
ing), it is not surprising that this hallmark tracks with multiple
proteins and gene sets suggesting drastic metabolic rewiring.
In our metabolic data we highlight shifts in carbon and fatty
acid utilization that have been reported previously as hallmark
metabolic features of EMT. These metabolic changes demon-
strate that our observations represent an authentic change in
cellular state as opposed to a superficial uptick in a few EMT
related genes.

The data presented above across multiple data modalities to
provide a clear connection between RS cells and myofibroblasts
supported by independent observations at the level of DNA,
RNA, protein, transcription factor activity and metabolism (Fig-
ure 9). In light of these, RS resembles a specialized subtype of
EMT specific to the trans-differentiation of fibroblasts into my-
ofibroblasts (FMT) in response to wound healing [124, 98, 97].
We hypothesize that during fibrotic disease states and/or age,
fibroblasts migrate to sites of micro-injuries. As these prolifer-
ating fibroblasts become replicatively aged, they are triggered
(by DNA damage or other insults) to rewire their metabolism
to induce FMT via active epigenetic reorganization (NNMT-
SAM/NAD sink). It is important to note here that the in vitro
DNA damage here arises primarily from telomere erosion doc-
umented by the observation that our hTERT control cultures
do not exhibit the same changes. However, genotoxic stress in
vivo may originate from a variety of endogenous and environ-
mental sources e.g. reactive oxygen species, replication stress,
chemical exposure etc.

Following increases in DNA accessiblity, expression of newly
opened TEAD1/YAP1/SMAD target genes cement FMT tran-
sition by promoting fibrosis and a myofibroblast-like, ECM-
secreting state. This model is supported by the synergy between
TEAD1 motifs and NAD domains we report and reconciles con-
flicting reports that YAP1/TEAD1 inhibition can both prevent
and promote senescence [125, 84, 126, 127]. Basically, the
functional consequences of YAP1/TEAD1 inhibition will de-
pend on the epigenetic organization of the cells used.

Further metabolic changes (hexoasmine/collagen synthesis and
fatty acid oxidation) then support the new pro-fibrotic state.
Finally, end point RS cells reinforce the senescent state and
contribute to neighboring cell RS progression via secretion of
inflammatory factors and SASP.

We think that this transition is distinct from classic FMT as the
endpoint cells are not proliferative, but instead bear striking
resemblance to lingering senescent myofibroblasts that can
persist long after wound repair is complete [97]. Rather than
a privileged or unique state, perhaps RS is better categorized
as a DNA damage mediated path to a potentially common
stress-induced endpoint.

The complex interplay between metabolism and epigenetic
regulation preclude easy determination of a causal factor in
translating DNA damage into the RS/EMT program in WI-38
cells. Does EMT regulate metabolism or vice versa? Here we
present compelling evidence on the side of metabolism. We
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Figure 9: RS Fibroblast to myofibroblast transition (FMT) model. We divided RS progression into three major categories and
summarized our results across all data modalities focusing on features in common with myofibroblasts.
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observe both an early and sharp rise in NNMT expression and
activity in addition to a global increase in heterochromatin ac-
cessibility. These results are consistent with NNMT’s reported
role as global epigenetic regulator through its methylation sink
activity [58, 59, 128, 57].

Importantly, the observed shifts in repressed chromatin induced
by NNMT are functional and may play a central role in fibrob-
last biology and stress response in multiple contexts. First,
Eckert et. al. recently demonstrated that NNMT activity and
the resulting heteromchromatin reorganization initiate the ex-
pression program of cancer-associated fibroblasts (CAFs) as-
sociated with oncogenic stroma in vivo [59]. Similar to RS
fibroblasts and myofibroblasts, the defining features of CAFs
are increased cytokine production, metabolic rewiring, and
ECM alteration and production [129]. Second, NNMT is one
the most up-regulated genes in a TGF-β mediated in vitro FMT
conversion in WI-38 cells [130]. Finally, the changes in si-
lenced chromatin we observed in RS overlap with induction of
gene expression driving the RS phenotype (Figure 5D). In fact,
pseudotime analysis argues that chromatin reorganization may
precedes the FMT induction as evidenced by the loss of poly-
comb activity that appears prior to enrichment of the EMT and
YAP1/TEAD1 transcription factors enrichments (Figure 7D).

The path to replicative senescence process has many in vivo
parallels with implications for aging and pathogenesis. Af-
ter observing induction in WI-38 cells of IPF myofibroblast
markers (Fig. 8A), we expanded our literature search and
found a striking overlap (TGF-β signaling, YAP1 activity, and
EMT) between our RS data and scRNA-seq expression profiles
from alveolar epithelial cells collected from IPF patients [131].
These studies also report a large induction of TGF-β2 relative
to TGF-β1 which is consistent with our findings and highlights
a clear connection between in vitro RS and an in vivo disease
state.

Another example of such a connection arises from our LISA
analysis: one of the top enriched transcription factors, TCF21,
has been implicated in atherosclerotic disease progression.
Wirka et. al. found that TCF21 promotes the transition of
vascular smooth muscle cells into a novel fibroblast-like cell
type they dub "fibromyocytes" owing to their possession of both
fibroblast and myocyte phenotypes in atherosclerotic lesions in
both mice and humans [132].

In general, the FMT hypothesis provides a conceptual frame-
work and integrative model for linking the RS multi-modal phe-
notypes we observed to multiple human age-related diseases.
Given the observation that fibrosis and senescence markers
correlate with increasing age in multiple tissues, it is possi-
ble that FMT might be a widespread phenomenon underlying
many age-related pathologies [55, 133]. Future work harness-
ing multi-modal single cell technology coupled with relevant
in vivo models will aid greatly in determining the exact order
of events and physiological import.

4 Methods

4.1 Cell Culture

4.1.1 WI-38 maintenance for RS time course-WT and
hTERT

WI-38 cells were obtained from the Coriell Institute (AG06814-
N) at PDL 15. The cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco) with 1 mg/ml of glucose,
supplemented with 10% dialyzed fetal bovine serum (FBS)
and maintained in an incubator set to 37o C, 5% CO2, and
20% O2. The cells were maintained on 10 cm collagen coated
plates (Corning) and split every four to five days until cells
slowed down in growth (PDL 37) with approach to senescence
and were split every seven days instead. No change was made
to hTERT sampling. Cells were tested every month for my-
coplasma contamination every month using the MycoAlert
Mycoplasma Detection Kit (Lonza). A smaller subset of three
PDL timepoints (PDL 45, PDL 55, PDL 56) generated in a sec-
ondary time course to ensure "deep" senescence (2-4 months
after cell cycle cessation) was profiled as previously reported
[134].

4.1.2 WI-38 irradiation time course

WI-38 cells at PDL 20 were plated in DMEM supplemented
with 10% FBS with 50,000 cells per well in a 6-well collagen
coated plate. Cells were allowed to settle for 2 hours and were
subsequently treated with 10 Gy of X-rays. Cells were sampled
between 1 day and 9 days for transcriptome profiling. RNA
was extracted according to methods below.

4.1.3 WI-38 cell density time course

WI-38 cells at PDL 23 were grown on 10 cm collagen coated
plates in DMEM supplemented with 10% FBS. Cells were
grown and sampled intermittently between 1 day and 10 days
for transcriptome profiling. RNA was extracted according to
methods below.

4.1.4 SA-βGAL staining

Cells were stained for senescence associated beta-gal using the
Senescence β-Galactosidase Staining Kit (Cell Signaling) by
following the manufacturer’s published protocols exactly.

4.1.5 WI-38 hTERT cells and lentiviral transduction

293T cells were transfected with the appropriate target plasmid
and packaging constructs (lentiviral or retroviral) overnight;
48 hr later, viral supernatant was collected. WI-38 cells were
transduced in the presence of 5 µg/mL Polybrene and selected
for 7 days with a selection drug.

4.2 Bulk RNA-seq methods

4.2.1 RNA collection and library preparation

Total RNA was extracted from cells using the Direct-zol RNA
purification kit (Zymo Research) for all bulk RNA-seq time
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course experiments. RNA was quantified using the Fragment
Analyzer Standard Sense RNA kit, 15 nt (Agilent Technologies,
formerly Advanced Analytical). RNA sequencing libraries
were prepared as directed using TruSeq® Stranded mRNA
Library Prep Kit and the TruSeq® Stranded Total RNA Li-
brary Prep Human/Mouse/Rat Library Prep kit (Illumina), with
1000ng of input material. Samples were amplified for 12 cy-
cles of PCR with TruSeq RNA CD Index Plate (Illumina) and
pooled into two separate libraries for each method, before run-
ning 3nM libraries across 4 lanes for each set (TruSeq mRNA -
4 lanes and Total RNA - 4 lanes) on the HiSeq 4000 (Illumina).

4.2.2 Read processing and quantification

Reads generated from the Illumina HiSeq 4000 were demulti-
plexed with bcl2fastq based on the barcode sequence of each
sample. Average read depth across samples was 50 milllion
paired-end reads. Reads were pseudo-aligned and then quanti-
fied using Salmon by deploying the mapping based mode using
a Salmon generated index based on Hg38 and optimized for sin-
gle cell RNA-seq cellRanger v3 to ensure accurate comparison
between bulk and single cell RNA-seq. [135].

4.2.3 Differential expression analysis

DESeq2 was used for differential analysis of the RNA-seq
data [136]. Wald test was used to estimate fold change and
significance using the model: time + batch, where time is
a numeric variable representing the fraction of time course
complete and batch is a categorical variable used only with RS
with the addition of the "deep" senescence time points. DEGs
were defined as having p-values < 0.001.

4.2.4 Batch correction and hierarchical clustering

For clustering and visualization we corrected the raw RS count
table by batch before converting to TPM with a +1 pseudocount
and combining with RIS and CD samples using Combat-seq
[137]. Significant genes from each condition were concatenated
to generate a universe of significant change genes used for
Figure 1. Each sample was then converted to log2 fold change
vs. the mean of the initial time point. Prior to hierarchical
clustering, the log2 fold changes for each gene were row scaled
to emphasize differences across the conditions.

4.2.5 Gene set enrichment analysis

For gene set enrichment analysis, we downloaded the msigDB
Hallmark gene sets. For each time course (RS, RIS, and CD)
we we ranked all genes by the differential expression log2FC
across time generated by DESeq2. Then GSEA was performed
on the ranked gene set using the R package "fgsea" which is a
new implementation of GSEA in R [30, 138, 31]. By default,
GSEA tests for enrichment of each gene set in each condition
in both directions. We report the -log10 p-value in Figure
1 and use the normalized enrichment score (NES) to assign
directionality of the change.

4.3 Single Cell 3’ RNASeq Methods

4.3.1 Cell collection

At each time point, singlet hTERT controls and experimental
samples were processed with Chromium Single Cell 3’ RNAseq
kit V2 (10x Genomics) through cDNA amplification cleanup,
where they were frozen at -20oC. Once all time points were con-
verted to cDNA, the frozen cDNAs were thawed and batched for
library construction. The following modifications were made to
the process: Reverse transcription reactions were brought up to
volume with DMEM + 10% FBS instead of water, each emul-
sion targeted 3000 cells (5200 cells loaded), and cDNA was
amplified 12 cycles, with 12 cycles of index PCR. There was no
hTert control for time point 3, and one of the replicates for PDL
25 dropped out during library construction. Remaining samples
were pooled equimolarly and sequenced on a HiSeq4000 with
the standard 26,8,0,98 run configuration.

4.3.2 single cell data processing, normalization, scoring,
clustering and DEG analysis

The raw single cell reads were demultiplexed by sample using
bcl2fastq. Alignment, cell barcode demultiplexing, transcript
quantification and sample merging were carried out with Cell-
Ranger 3.0 using the hg38 CR 3.0 gene annoation (also used for
bulk RNA-seq). Filtered cell by gene matrices were normalized
using Seurat 3.0. and SCTransform [139, 140]. Dimension
reductionality was carried out with PCA (n = 50). Clusters
were defined using the louvain algorithm and cells were visu-
alized with UMAP projection [141, 142, 143]. For cell cycle
scoring and phase determination as well as senescence scoring
we applied the Seurat implementation of the scoring function
as previously described [37].

DESeq2 was used for differential gene expression analysis to
identify significantly changing genes within individual clusters
as a function of increasing PDL (PDL cluster) (Fig. 3D) us-
ing a an input matrix of gene counts by cells per PDL cluster.
Briefly, we summarized gene counts across cells for each clus-
ters and used the top 8,000 genes to expedite analysis. For each
PDL cluster, we required that >15 representative cells must
exist to be considered in analysis. To visualize differentially
expressed genes, we converted single cell counts to CPM (+1
pseudocount) and averaged across PDL cluster and calculated
the log2 fold change at each PDL cluster against the earliest
PDL for that cluster using a concatenated list of all significantly
changing genes.

4.3.3 pseudotime analysis

For pseudotime analysis of the single cell data, we used the R
package Monocle 2 and Monocle 3 which implements PCA,
Leiden clustering, and UMAP prior to partitioning and trajec-
tory analysis. To focus trajectory analysis on the RS progres-
sion, we regressed out the S-Phase and G2M scores for each
cell calculated using Seurat (see above) and used only the top
genes found to significantly change with RS in bulk RNA-seq
( 350 up and down) for PCA. [93, 92, 144, 145, 146, 141]. We
then employed the Monocle3 "graph test" function to isolate
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genes that significantly change as a function of pseudotime.
Pseudotime estimation was output from monocle3 using the
learn graph function for building a trajectory. Smoothed pseu-
dotime trajectories use for Figure 8C were calculated for sig-
nificantly changing genes (with pseudotime) by binning cells
across pseudotime into 60 bins and using a cubic spline to es-
timate expression at each bin. For each gene, the smoothed
trajectory was set from 0 (minimal) to (1) maximal expression.
Genes were organized with K-median clustering (k=25) using
cosine similarity. For visualization the median expression value
for each pseudotime bin and cluster was calculated. Genes
from each cluster were fed into LISA TF analysis (below)

4.4 ATAC-SEQ methods

4.4.1 ATAC-seq Library Preparation and Sequencing

Freshly harvested cells were used for all reactions. Briefly, the
cell monolayer was washed with PBS, trypsinized with TrypLE
(Gibco), resuspended in media, and cells were pelleted. Cells
were counted and 100,000 cells were used in each reaction. Cell
lysis, DNA transposition, and library construction was adapted
from the Omni-ATAC protocol (Corces et al. 2017). Libraries
were amplified for 13 total cycles. Sample purification and
size selection was done with SPRI Ampure Beads (Beckman
Coulter). Libraries were run on the Pippin HT using 2% agarose
cassettes for further size selection (Sage Science). Quality of
ATAC-seq libraries were assessed with the Agilent Bioanalyzer
2100 with DNA high sensitivity chips (Agilent Technologies).
Libraries were sequenced on the HiSeq4000 with paired end
sequencing using 2 x 150 bp reads (Illumina).

4.4.2 ATAC-seq data processing

We first trimmed the raw fastq files with Trimmomatic, then
using bowtie2 to align the trimmed reads to hg38. After align-
ment, we used samtools flags (-f 0x02 and -q2 0) to filter for
only properly paired and high quality reads. PCR duplicates are
removed using picard MarkDuplicates. Finally for each bam
file, we adjusted the reads ends by Tn5 offset (+4 on + strand,
-5 on -strand).

For peak calling, we created a condition specific peak atlas
by pooling all replicates in a specific condition and applied
macs2 for peak calling on the pooled bam file with options (-g
hs -p 1e-1 –nomodel –shift -37 –extsize 73). In addition, we
performed peak calling on each individual replicates as well.
Then we performed irreproducible discovery rate analysis on
each condition specific peak atlas for each pair of replicates and
filter for peaks that are reproducible in at least two replicates
(IDR threshold of 0.05). A single accessibility atlas is created
by merging condition-specific peak atlas across all conditions.
Peak is assigned to nearest gene if it is within 50kb, otherwise
it is annotated as intergenic.

Read count is performed using countOverlaps function from
R package GenomicRanges [147]. We performed quantile
normalization of the count matrix using normalize.quantiles
function of R package preprocessCore. DESeq2 normalization
didn’t work well for our ATAC-seq data since we observed that

median accessibility per sample is still a function of read depth
after DESeq2 normalization.

Limma is used for differential accessibility analysis [148]. Fold
change and p-value are estimated using moderated t-test statistic
based on the model: time + condition + time:condition. We
performed separate tests for time point 1 versus each of the
other time points.

4.4.3 ATAC-seq chromatin state and NAD/LAD analysis

To quantify ATAC-seq reads in chromatin states we retrieved
hg38 ENCODE IMR-90 chromatin state labels from [65]. Next
we quantified coverage for each instance of all 25 chromatin
states genome wide using countOverlaps function from R
package GenomicRanges [147]. We performed quantile nor-
malization of the chromatin state count matrix using normal-
ize.quantiles function of R package preprocessCore (Fig. 6A).

RS ATAC-seq peaks were assigned to chromatin states using
the findOverlapsOfPeaks function from the R package Genomi-
cRanges [147]. We used only significantly (p < 0.001) changing
peaks(with RS) from LIMMA analysis. To simplify the overlap
of these two sets of genomic intervals, we took only peaks
that fell within ("inside") or encompassed a chromatin state
annotation ("inside feature"). Peaks encompassing more than
one chromatin state interval were discarded (Fig. 6A,B).

For analysis of NAD and LAD domain overlap we collected
IMR-90 NAD labels from [62] and IMR-90 LAD labels from
[63]. For calculating overlap Z-score between genomic inter-
vals sets (e.g. NADs) and ATAC-peaks by chromatin state
Figure ??B we used the overlapPermTest function from the R
package regioneR [149] using ATAC-seq peaks overlapping
chromatin states that significantly increase with RS against a
universe of all peaks detected within a given chromatin state
type to control for NADbias across different chromatin states.

For testing overlaps between NAD/LAD domains and signifi-
cantly changing genes, we used the overlapPermTest function
from the R package regioneR [149] using the top 1000 genes
from each bulk RNA-seq condition (RS,RIS, and CD) against a
universe of all genes sampled from the same expression distri-
bution to control NADbias across different levels of expression.

4.5 Metabolomics

4.5.1 Extraction of water-soluble metabolites from lung
fibroblast cell culture

WI-38 cells were grown to around 70% confluency in 100
mm cell culture dishes, yielding approximately 2 million cells.
Twenty-four hours before metabolite extraction, the medium
was aspirated, cells were washed with unconditioned medium
and then the medium was replaced. For metabolite extraction,
cells were washed once in 37°C warm PBS-buffer (vendor?) im-
mediately followed by the addition of 3.5 mL of freezer-cooled
(-20°C) LC-MS grade 80:20 MeOH/H2O (Sigma Aldrich). The
plates were then held at -20°C for 2 h, then harvested with a
sterile cell scraper while at -20°C and transferred to -20°C cold
5 mL centrifuge tubes (Eppendorf Lo-Bind). After centrifuging
the cell-extracts in a 4°C centrifuge for 5 min at 2000 x g, the
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supernatants were transferred into new cold centrifuge tubes
and dried under nitrogen at 4°C. Dried extracts were stored at
-20°C.

4.5.2 LC-MS/MS analysis of cell culture extracts

Dried supernatants were resuspended in 200 µL of water con-
taining 1 µg/mL of deuterated lysine and deuterated phenylala-
nine and 250 ng/mL of deuterated succinate (Sigma Aldrich)
as internal standards. For negative ion mode, the resuspended
samples were diluted 1:4 in water, for positive ion mode, they
were diluted 1:4 in acetonitrile. Samples were then centrifuged
at 18000 x g for 5 minutes, the supernatant was moved to HPLC
vials and 5 µL was injected for analysis by LC-MS on Vanquish
UPLCs (Thermo Scientific) coupled to Q Exactive Plus mass
spectrometers (Thermo Scientific).

For analysis in negative ion mode, separation of compounds
was achieved by reverse-phase liquid chromatography on a
Zorbax Extend C18 column (150 x 2.1 mm, 1.8 µm particle
size) from Agilent. Mobile phase A was 10 mM Tributylamine
and 15 mM Acetic Acid in 97:3 water:methanol at pH 4.95 and
mobile phase B was methanol. Prior to injection, the column
was equilibrated in 0% B for 4 minutes. The gradient eluted
isocratically in 0% B for 2.5 minutes, increased to 20% B over
2.5 min, held at 20% B for 2.5 min, increased to 55% B over
5.5 min, increased to 95% B over 2.5 minutes, maintained at
95% B for 3 min, then decreased to 0% B over 0.5 min, where
it was held for 3 min, resulting in a total run time of 26 min.
The LC separation was carried out at 30°C column temperature
using a 200 µL/min flow rate. For MS-analysis, parameters on
MS1 were set to 70,000 resolution with an AGC target of 1e6 at
a maximum IT of 100 ms. The scan range was 70 to 1050 m/z.
MS2 parameters were set to 17,500 resolution at loop count 6,
an AGC target of 1e5 at a maximum IT of 50 ms, an isolation
window of 1 m/z and an underfill ratio of 1

For analysis in positive ion mode, compounds were separated
via hydrophilic liquid interaction chromatography (HILIC),
using a SeQuant ZIC-pHILIC column (150 x 2.1 mm, 5 µm par-
ticle size) from Millipore. Mobile phase A consisted of 20 mM
ammonium bicarbonate at pH 9.2 in H2O, and mobile phase B
was acetonitrile. Prior to injection, the column was equilibrated
for 6 minutes in 80% B. The gradient then decreased to 20%
B over 20 min, then to 15% B over 2 min, returned to 80% B
over 0.5 min and held there for 1.5 min for a total run time of
30 min. The column temperature was 35°C with a flow rate
of 150 µL/min. For MS-analysis the MS1 parameters were as
described for negative ion mode except the AGC target was
3e6. MS2 parameters were the same with following exceptions:
dynamic exclusion was set to 25s with an apex trigger from 3
to 10s. Stepped collision energies were set to 20, 40 and 80%
NCE.

4.6 Proteomics methods

4.6.1 Materials and sample preparation, extraction and
digestion

LC-MS grade organic solvents, water, and tandem mass tag
(TMT) isobaric reagents were purchased from Thermo Fisher

Scientific (Waltham, MA). Trypsin was ordered from Promega
Corporation (Madison, WI) and Lys-C from Wako Chemicals
USA (Richmond, VA). Sep-Pak C18 cartridges were from Wa-
ters Corporation (Milford, MA). Unless otherwise stated, all
other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO).

Cell pellets were resuspended in 450 µL of lysis buffer (75mM
NaCl, 3% SDS, 50 mM HEPES, pH 8.5) and lysed by passage
through a BD PrecisionGlide 21-gauge needle (20X). The lysate
was sonicated for 5 minutes and then centrifuged (5 min, 16,000
x g) to remove cellular debris and the supernatant was collected.

Proteins were reduced with 5 mM dithiothreitol (DTT) for 30
minutes at 56°C with shaking. Proteins were then alkylated
with 15 mM iodoacetamide (IAM) for 30 minutes at room
temperature (RT) in the dark, and excess IAM was quenched
with 5 mM DTT for 20 minutes at RT in the dark. Protein
purification was accomplished using a methanol-chloroform
precipitation. Briefly, 800 µL methanol, 200 µL chloroform and
600 µL water were sequentially added to 200 µL of cell lysate,
with 5 second intervals of vortexing between each addition. The
samples were centrifuged for 30 minutes (16,000 x g at 4°C)
to induce phase separation and both the top and bottom layers
were removed. The precipitated protein pellet was washed
with 600 µL methanol, vortexed briefly, then centrifuged for 10
minutes (16,000 x g at 4 °C). The methanol layer was removed
and protein pellets were dried at RT for 10 minutes. Protein
pellets were resuspended in digestion buffer (8 M urea, 50 mM
HEPES, pH 8.5). The urea concentration was diluted to 4 M,
then proteins were digested with Lys-C overnight (10 ng/µL,
25 °C, 16 h). The urea concentration was further diluted to 1 M
and samples were digested with trypsin (5 ng/µL) for 6 hours
at 37°C.

Following digestion, peptides were acidified with trifluoroacetic
acid (TFA) to a final concentration of 0.5% TFA. Peptides
were desalted using Sep-Pak C18 solid-phase extraction (SPE)
columns and samples were eluted sequentially, first with 40%
acetonitrile (ACN)/0.5% acetic acid and then 80% ACN/0.5%
acetic acid. Eluted peptides were dried in a CentriVap Benchtop
Vacuum Concentrator (Labconco, Kansas City, MO) running at
30 °C. Peptide concentrations were measured using the Pierce
BCA Protein Assay Kit, then 50 µg aliquots of each samples
were dried in the CentriVap for further processing.

4.6.2 Tandem mass tag (TMT) labeling

Dried peptides were resuspended in 50 µL 200 mM
HEPES/30% anhydrous ACN, then 200 µg of each TMT tag
was added to 50 µg peptides. TMT 131c was used as the
‘bridge sample’ while the other tags (126, 127n, 127c, 128n,
128c, 129n, 129c, 130n, 130c, 131n) were used to label the
individual samples. The TMT reaction was incubated for 1
hour at room temperature with gentle shaking, then quenched
with 11 µL 5% hydroxylamine/200mM HEPES. All samples
were acidified to a final concentration of 0.5% TFA. A small
amount (4 µL) of each labeled sample was combined and de-
salted using StageTips1 to check TMT ratios and labeling ef-
ficiency. The TMT-labeled samples were then combined at a
1:1:1:1:1:1:1:1:1:1:1 peptide ratio into 11-plex samples. The
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combined samples were desalted using Sep-Pak C18 cartridges
and dried under vacuum.

4.6.3 High pH Reversed-Phase (HPRP) fractionation

The pooled TMT-labeled peptides were fractionated using high
pH reversed-phase liquid chromatography on an Agilent 1260
Infinity HPLC equipped with a diode array detector set at 215,
220 and 254 nm wavelengths (Agilent Technologies, Santa
Clara, CA). Peptides were separated on an Agilent ZORBAX
Extend-C18 column (4.6 mm x 250 mm, 5 µm particle size)
running at 500 µl/min at 25°C. Peptides were eluted with a gra-
dient with initial starting condition of 100% buffer A (5% ACN,
10 mM ammonium bicarbonate) and 0% buffer B (95% ACN,
10 mM ammonium bicarbonate). Buffer B was increased to
35% over 60 minutes, then ramped up to 100% B in 6 seconds
where it was held for 5 minutes. Buffer B was then decreased to
0% over 6 seconds and held for 10 minutes to re-equilibrate the
column to original conditions. The samples were fractionated
into 96 fractions, then pooled into 12 fractions as previously
described2. The fractions were dried under vacuum and re-
suspended in 5% ACN/5% formic acid (FA) for LC-MS/MS
analysis.

4.6.4 Proteomics Data Acquisition and Analysis

LC-MS/MS Data Acquisition All samples were analyzed by
an Orbitrap Fusion Lumos Tribrid mass spectrometer coupled
to an EASY-nLC 1200 (Thermo Fisher Scientific). Peptides
were separated using a microcapillary column (100 µm x 250
mm long, filled in-house with Maccel C18 AQ resin, 1.8 µm,
120 Å; Sepax Technologies, Newark, DE) operating at 60 °C
with a flow rate of 300 nL/min. Peptides were eluted into the
mass spectrometer using a 180 min method, with acetonitrile
increasing from 6 to 30% over a 165 min linear gradient in
0.125% formic acid. Mass spectrometry data was collected in
data-dependent acquisition (DDA) mode. A high resolution
MS1 scan (500-1200 m/z range, 60,000 resolution, AGC 5 x
105, 100 ms max. injection time, RF for S-lens 30) was col-
lected in the Orbitrap, and the top 10 precursors were selected
for MS2 and MS3 analysis. Ions were isolated using a 0.5 m/z
window for MS2 spectra. The MS2 scan was performed in
the quadrupole ion trap (CID, AGC 1 x 104, 30% normalized
collision energy, 35 ms max. injection time) and the MS3 scan
was analyzed in the Orbitrap (HCD, 60,000 resolution, max.
AGC 5 x 104, 250 ms max. injection time, 50% normalized
collision energy). The max. cycle time was set at 5 s. For TMT
reporter ion quantification, up to 6 fragment ions from each
MS2 spectra were selected for MS3 analysis using synchronous
precursor selection (SPS).

4.6.5 Proteomics data analysis

An in-house software pipeline was used to process all pro-
teomics data3. Raw files were converted to mzXML files and
searched against a composite human UniProt database contain-
ing forward and reverse sequences using the Sequest algorithm.
MS/MS spectra were matched with fully tryptic peptides from
this composite dataset using a precursor ion tolerance of 20
ppm and a product ion tolerance of 0.6 Da. TMT modification

of peptide N-termini and lysine residues (+229.162932 Da)
and carbamidomethylation of cysteine residues (+57.02146
Da) were set as static modifications. Oxidation of methionine
residues (+15.99492 Da) was set as a variable modification.
Peptide spectral matches were filtered to a 1% false discov-
ery rate (FDR) using linear discriminant analysis (LDA) as
previously described3. Non-unique peptides that matched to
multiple proteins were assigned to proteins that contained the
largest number of matched redundant peptides sequences using
the principle of Occam’s razor3.

Quantification of TMT reporter ion intensities was performed
by extracting the most intense ion within a 0.003 m/z window
at the predicted m/z value for each reporter ion. TMT spectra
were used for quantification when the sum of the signal-to-noise
for all the reporter ions was greater than 200 and the isolation
specificity was greater than 0.754.

Peptide level intensities were then used to fit a Bayesian model
for protein quantification as previously described5. Posterior
means and variances were extracted from the samples and used
to generate all figures.

4.7 Regulatory analysis

4.7.1 LISA TF analysis

Identification of putative regulators of the gene expression
changes observed in the bulk RNA-seq experiments and the
pseudotime analysis was carried out using LISA [74]; a recent
algorithm built to levergae the vast amount of protein-DNA
interactions catalogued via ENCODE. We used the GUI hosted
at http://lisa.cistrome.org/ to enter lists of genes derived from
K-medians clustering (above). The online GUI has a max input
of 500 genes. Accordingly, for clusters containing >500 genes,
each gene was ranked by correlation with the cluster median
and the top 500 genes were used. LISA output consists of a
ranked file of transcription factors and chromatin modifiers
with enrichment p-values associated with specific ENCODE
experiments. Given that the calculated p-values were derived
from gene sets of different sizes and from different number
of supporting experiments, we used the ranks as the input pa-
rameter for the LISA analysis shown in Figures 7A and 8D. A
universe of top factors across clusters was compiled by concate-
nating the top 5 TFs from each individual LISA output. The
rank matrix was then centered across clusters to identify TFs
with the highest rank in specific clusters.

4.7.2 ATAC-seq peak motif enrichment

We built a binary peak-by-motif matrix where each row is a bi-
nary vector representing the presence of 405 motifs in CIS-BP
that are expressed in WI-38 (cite CIS-BP). In order to charac-
terize transcription factor activity changes during senescence,
we implemented both a gene-centric and a gene-indepedent
approach.

In the gene-centric approach, we tested enrichment of each
of the 405 motifs in peaks that are 1) associated with a gene
set of interest (within 50kb), and 2) significantly associated
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with senescence (adjusted p-value < 0.05 in TP7 vs TP1) as
compared to all the other peaks using binomial test.

Alternatively, we trained a ridge logistic regression model using
the binary motif matrix as features to distinguish peaks of
significantly increased accessibility during senescence from
peaks of significantly reduced accessibility in TP7 vs TP1. A
model trained on two thirds of the data distinguishes the two
sets of peaks with AUC=0.67 on held-out peaks. We then
trained 10 independent models using all the data to evaluate the
coefficients to identify features (motifs) that are most predictive
of senescence.

5 Data Availability

Our data have been submitted to the NCBI Gene Expres-
sion Omnibus under accession number XXX. We have ad-
ditionally made our data and software tools available at
XXX.research.calicolabs.com.
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Figure S1: Senescent WI-38 cells express classic senescence markers. (A) Barplot of the expression of CDKN1A (p21) in WI-38 cells
through the time course. Expression values are fold changes of TPMs normalized to PDL 20. Error bars represent the standard deviation of
triplicate samples. (B)Barplot of expression levels of CDKN2A (p16) in WI-38 cells. (blue) TPM values generated by Salmon using the
gencode v29 annotation set that includes p16 and p14 in one locus. (orange) a manual summation of the p16 only transcripts in the locus are
shown. Error bars represent the standard deviation of three samples.
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Figure S2: Individual time point GSEA enrichments for replicative senescence (RS), radiation induced senescence (RIS), increasing
cell density (CD). (A) GSEA was run using misigDB Hallmark gene sets as the annotations. Data used for ranked list was the log2 fold
changes at each time point vs. first the initial time point for each condiion. Color indicates -log10 p-value and direction of change e.g. red =
enriched in up-regulated genes, blue=enriched in down-regulated genes
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Figure S3: Using a modified resuspension buffer of DMEM+FBS increases detection of senescent cells with the 10x Genomics 3’ single
cell RNA-seq protocol. (A) Barplot comparing the number of cells detected (y-axis) as a function of the age of cells (x-axis). (B) Barplot
representing the number of cells detected (y-axis) with various cell resuspension buffers (y-axis).
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Figure S4: RS dependent gene expression changes measured by Bulk RNA-seq and single cell RNA-seq are highly concordant. (A)
Scatter plot comparing the log2 fold changes of PDL50 vs PDL25 measured using single cell pseudo-bulk count summations (x-axis) and
actual bulk RNA-seq (y-axis). The color for each gene is the log10 normalized counts. The r for all genes is 0.77. The r for genes filtered at >
50 counts is 0.83. The linear fit line was drawn using genes > 50 counts.
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Figure S5: UMAP projection of RS time course and hTERT cells colored with "senescence score" derived from bulk RNA-seq
signature(top 1000 genes)

Figure S6: Single cell UMAPs of mitotic Cells. (A) S phase and G2M cells were isolated and reprocessed visualized with a UMAP projection
ahowing that in mitotic cells, PDL is the primary source of variance across all PDLs
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Figure S7: PDL-dependent changes in the RS proteome vs hTERT cells (A) hierarchical clustering of protein log2 fold changes at each
time point/PDL versus first (not shown) for RS WT WI38 (left) and hTERT WI38 cells right from high induction (orange) to depletion (green)
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Figure S8: Replicative senescence driven changes in the transcriptome and proteome are highly correlated (A) Scatterplot comparing
the log2 fold change expression of genes (x-axis) vs. protein (y-axis) in PDL 50 cells relative to PDL 20 cells. Oxphos leading edge genes
from GSEA plotted in red. Point density colored from high (white) to low (green
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Figure S9: Breakdown of the hallmark oxidative phosphorylation gene set into functional subsets reveals up regulation of most
mitochondrial functions during RS (A)Heatmaps of log2 FC proteomics data for the MsigDB hallmarks Oxidative Phosphorylation
annotations set broken into constituent functional groups
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Figure S10: Heatmap of log2 FC metabolomics data for nucleotides
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Figure S11: Kennedy pathway utilization during RS (A) Kennedy Pathway diagram. Metabolites in blue, proteins in italicized green (B)
Heatmaps of log2 fold changes for metabolites and proteins from A
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Figure S12: RS ATAC-seq QC metrics, controls, and NADs/LADs browser shot. (A) Fraction of reads in peak by PDL. (B) PDL 46 read
distribution across chromatin states +/- PMA. (C) Chromatin state overlap Z-scores with genes/NADs and LADs. (D) Log2 fold change of
peak accessibility in gene annotations. (E) Browser shot of ATAC peaks, ATAC peaks up in quiescent state, over NADs and LADs.
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Figure S13: Gene expression trajectories for the top 5,000 differentially expressed genes using Monocle3. (A) Heatmap of the pseudotime
trajectories for the top 5,000 differentially expressed genes. Genes were hierarchically clustered and gene expression levels are depicted (white
= low expression, red = high expression).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442497


PREPRINT

Figure S14: Gene expression trajectories for the top 5,000 differentially expressed genes using Monocle3. (A) Heatmap of p values for
GO-term enrichment analysis on individual clusters from 8. Values plotted are -log10 p-value; light purple to dark purple. The ordered
pseudotime clusters are shown on the x-axis while hierarchically clustered gene sets are shown on the y-axis. Hierarchical clustering of gene
set enrichment was used to divide gene sets into 10 major clusters. GO-term names were used to create word clouds reflective of the types and
functions of enriched gene sets.
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Figure S15: UMAP examples of genes from Figure 8.
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