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Abstract 

Miniature microscopes have gained considerable traction for in vivo calcium imaging in freely 
behaving animals. However, extracting calcium signals from raw videos is a computationally 
complex problem and remains a bottleneck for many researchers utilizing single-photon in 
vivo calcium imaging. Despite the existence of many powerful analysis packages designed to 
detect and extract calcium dynamics, most have either key parameters that are hard-coded or 
insufficient step-by-step guidance and validations to help the users choose the best parameters. 
This makes it difficult to know whether the output is reliable and meets the assumptions 
necessary for proper analysis. Moreover, large memory demand is often a constraint for setting 
up these pipelines since it limits the choice of hardware. Given these difficulties, there is a need 
for a low memory demand, user-friendly tool offering interactive visualizations of how altering 
parameters affects data output. Our open-source analysis pipeline, Minian (Miniscope Analysis), 
facilitates the transparency and accessibility of single-photon calcium imaging analysis, 
permitting users with little computational experience to extract the location of cells and their 
corresponding calcium traces and deconvolved neural activities. Minian contains interactive 
visualization tools for every step of the analysis, as well as detailed documentation and tips on 
parameter exploration. Furthermore, Minian has relatively small memory demands and can be 
run on a laptop, making it available to labs that do not have access to specialized computational 
hardware. Minian has been validated to reliably and robustly extract calcium events across 
different brain regions and from different cell types. In practice, Minian provides an open-source 
calcium imaging analysis pipeline with user-friendly interactive visualizations to explore 
parameters and validate results. 

Introduction 

Overview of related works 

Open-source projects—hardware, software, training curricula—have changed science and 
enabled significant advances across multiple disciplines. Neuroscience, in particular, has 
benefitted tremendously from the open-source movement. Numerous open-source projects 
have emerged [1,2], including various types of behavioral apparatus facilitating the design of 
novel experiments [3,4,5,6], computational tools enabling the analysis of large scale datasets 
[7,8,9,10,11,12,13,14,15,16,17,18,19,20], and recording devices allowing access to large 
populations of neurons in the brain [21,22,23,24,25,26,27,28,29,30]. Miniature microscopy has 
been an area of particular importance for the open-source movement in neuroscience. To 
increase the usability, accessibility, and transparency of this remarkable technology originally 
developed by Schnitzer and colleagues [31,32], a number of labs innovated on top of the 
original versions with open-source versions [25,26,27,28,29,30]. The UCLA Miniscope project, a 
miniature head-mounted microscope for in vivo calcium imaging in freely behaving animals, is 
one such project [21]. The UCLA Miniscopes project increased the tool’s impact by creating 
versions that are user-friendly and accessible to a large number of users [33]. 

With the increasing popularity of miniature microscopes, there is a growing need for analysis 
pipelines that can reliably extract neuronal activities from recording data. To address this need, 
numerous algorithms have been developed and made available to the neuroscience community. 
The principal component analysis or independent component analysis (PCA-ICA)-based 
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approach [12], and region-of-interest (ROI)-based approach [34] were among the earliest 
algorithms that reliably detected the locations of neurons and extract their overall activities 
across pixels. However, one of the limitations of these approaches is that activities from cells 
that are spatially overlapping cannot be demixed. A subsequent constrained non-negative 
matrix factorization (CNMF) approach was shown to reliably extract neuronal activity from both 
two-photon and single-photon calcium imaging data [35], and demix the activities of overlapping 
cells. The CNMF algorithm models the video as a product of a ‘spatial’ matrix containing 
detected neuronal footprints (locations of cells) and a ‘temporal’ matrix containing the temporal 
calcium traces of each detected cell. This approach is particularly effective at addressing 
crosstalk between neurons, which is of particular concern in single-photon imaging, where the 
fluorescence from overlapping or nearby cells contaminate each other. Moreover, by 
deconvolving calcium traces, the CNMF algorithm enables a closer exploration of the underlying 
activity of interest, action potentials [18,36]. Originally developed for two-photon data, the CNMF 
algorithm did not include an explicit model of the out-of-focus fluorescence which is often 
present in single-photon miniature microscope recordings. This issue was addressed via the 
CNMF-E algorithm [10], where a ring-model is used as a background term to account for out-of-
focus fluorescence. Later, an open-source python pipeline for calcium imaging analysis, 
CaImAn, was published, which included both the CNMF and CNMF-E algorithms, as well as 
many other functionalities [15]. The latest development in analysis pipelines for in vivo miniature 
microscope data is MIN1PIPE [11], where a morphological operation is used to 
remove background fluorescence during pre-processing of the data, and a seed-based 
approach is used for initialization of the CNMF algorithm. Other approaches have also been 
used to extract signals from calcium imaging data including an online approach [19], ℓ0-
penalization approach to infer spikes [13,20], and source detection using neural networks [14]. 

The open sharing of the algorithms necessary for the computation of neural activity has been 
exceptionally important for the field. However, implementation of these tools can be complex as 
many algorithms have numerous free parameters (those that must be set by the user) that can 
influence the outcomes, without clear guidance on how these parameters should be set or to 
what extent they affect results. Moreover, there is a lack of ground-truth data for in 
vivo miniature microscope imaging, making it hard to validate algorithms and/or parameters. 
Together, these obstacles make it challenging for neuroscience labs to adopt the analysis 
pipelines, since it is difficult for researchers to adjust parameters to fit their data, or to trust the 
output of the pipeline for downstream analysis. Thus, the next challenge in open-source 
analysis pipelines for calcium imaging is to make the analysis tools more user-friendly and 
underlying algorithms more accessible to neuroscience labs so that researchers can more 
easily understand the pipeline and interpret the results. 

Contributions of Minian 

To increase the accessibility of the mathematical algorithms, transparency into how altering 
parameters alters the data output, and usability for researchers with limited computational 
resources and experience, we developed Minian, an open-source analysis pipeline for single-
photon calcium imaging data inspired by previously published algorithms. We based Minian on 
the CNMF algorithm [15,35], but also leverage methods from other pipelines, including those 
originally published by Cai et al. [34] and MIN1PIPE [11]. To enhance compatibility with different 
types of hardware, especially laptops or personal desktop computers, we implemented an 
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approach that supports parallel and out-of-core computation (i.e. computation on data that are 
too large to fit a computer’s memory). We then developed interactive visualizations for every 
step in Minian and integrated these steps into annotated Jupyter Notebooks as an interface for 
the pipeline. We have included detailed notes and discussions on how to adjust the parameters 
from within the notebook and have included all free parameters in the code for additional 
flexibility. The interactive visualizations will help users to intuitively understand and visually 
inspect the effect of each parameter, which we hope will facilitate more usability, transparency, 
and reliability in calcium imaging analysis. 

Minian contributes to three key aspects of calcium image data analysis: 

1. Visualization. For each step in the pipeline, Minian provides visualizations of inputs and 
results. Thus, users can proceed step-by-step with an understanding of how the data are 
transformed and processed. In addition, all visualizations are interactive and support 
simultaneous visualization of the results obtained with different parameters. This feature 
provides users with knowledge about which parameter values should be used to achieve 
the best outcomes and whether the results appear accurate. Hence, the visualizations also 
facilitate parameter exploration for each step, which is especially valuable when analyzing 
data from heterogeneous origins that may vary by brain region, cell type, species, and the 
extent of viral transfection. 

2. Memory demand. One of the most significant barriers in adopting calcium imaging 
pipelines is the memory demand of algorithms. The recorded imaging data usually take up 
tens of gigabytes of space when converted to floating-point datatypes and often cannot fit 
into the RAM of standard computers without spatially and/or temporally down-sampling. 
CaImAn addresses this issue by splitting the data into overlapping patches of pixels, 
processing each patch independently, and merging the results together. This enables out-
of-core computation since at any given time only subsets of data are needed and loaded 
into memory. In Minian, we extend this concept further by flexibly splitting the data either 
spatially (split into patches of pixels) or temporally (split into chunks of frames). In this way, 
we avoid the need to merge the results based on overlapping parts. The result is a pipeline 
that supports out-of-core computation at each step, which gives nearly constant memory 
demand with respect to input data size. Minian can process more than 20min of recording 
with 8GB of memory, which makes Minian suitable to be deployed on modern personal 
laptops. 

3. Accessibility. Minian is an open-source Python package. In addition to the codebase, 
Minian distributes several Jupyter Notebooks that integrate explanatory text with code and 
interactive visualizations of results. For each step in the notebook, detailed instructions, as 
well as intuition about the underlying mathematical formulation are provided, along with the 
actual code, which can be directly executed from within the notebook. Upon running a 
piece of code, visualizations appear directly below that code in the notebook. In this way, 
the notebooks serve as a complement to traditional API documentations of each function. 
In addition, users can easily rearrange and modify the pipeline notebook to suit their needs 
without diving into the codebase and modifying the underlying functions. The notebooks 
distributed by Minian can simultaneously function as a user guide, template, and 
production tool. We believe the inclusion of these notebooks, in combination with Minian’s 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


other unique features, can increase understanding of the underlying functioning of the 
algorithms and greatly improve the accessibility of miniature microscopy analysis pipelines. 

Paper organization 

The paper is organized as follows: Since Minian’s major contribution is usability and 
accessibility, we first present the detailed steps in the analysis pipeline in Materials and 
methods section. Following a step-by-step description of the algorithms Minian adopted from 
existing works, we present novel visualizations of the results, as well as how users can utilize 
these visualizations. In the Results section, we benchmark Minian across two brain regions and 
show that spatial footprints and the temporal activity of cells can be reliably extracted. We also 
show that the cells extracted by Minian in hippocampal CA1 exhibit stable spatial firing 
properties consistent with the existing literature. 

Materials and methods 

Here, we present a detailed description of Minian. We begin with an overview of the Minian 
pipeline. Then, we provide an explanation of each step, along with the visualizations. Lastly, we 
provide information regarding hardware and dependencies. 

Overview of Minian 

Minian comprises five major stages, as shown in Figure 1. Raw videos are first passed into a 
pre-processing stage. During pre-processing, the background caused by vignetting (in which the 
central portion of the field of view is brighter) is corrected by subtracting a minimum projection of 
the movie across time. Sensor noise, evident as granular specks, is then corrected with a 
median filter. Finally, background fluorescence is corrected by the morphological process 
introduced in MIN1PIPE [11]. The pre-processed video is then motion-corrected with a standard 
template-matching algorithm based on cross-correlation between each frame and a reference 
frame [37]. The motion-corrected and pre-processed video then serves as the input to 
initialization and CNMF algorithms. The seed-based initialization procedure looks for local 
maxima in max projections of different subsets of frames and then generates an over-complete 
set of seeds, which are candidate pixels for detected neurons. Because this process is likely to 
produce many false positives, seeds are then further refined based on various metrics, including 
the amplitude of temporal fluctuations and the signal-to-noise ratio of temporal signals. The 
seeds are transformed into an initial estimation of cells’ spatial footprints based on the 
correlation of neighboring pixels with each seed pixel, and the initial temporal traces are in turn 
estimated based on the weighted temporal signal of spatial footprints. Finally, the processed 
video, initial spatial matrix, and temporal matrix are fed into the CNMF algorithm. The CNMF 
algorithm first refines the spatial footprints of the cells (spatial update). The algorithm then 
denoises the temporal traces of each cell while simultaneously deconvolving the calcium trace 
into estimated ‘spikes’ (temporal update). CNMF spatial and temporal updates are performed 
iteratively and can be repeated until a satisfactory result is reached through visual inspection. 
Typically, this takes two cycles of spatial, followed by temporal, updates. Minian also includes a 
demo dataset which allows the user to run and test the pipeline comprised of the pre-made 
Jupyter Notebook immediately after installation. 
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Figure 1: Overview of the analysis pipeline. The analysis is divided into five stages: Pre-
processing, where sensor noise and background fluorescence from scattered light are removed; 
Motion-correction, where rigid motion of the brain is corrected; Seeds-initialization, where the 
initial spatial and temporal matrices for later steps are generated from a seed-based approach; 
Spatial update, where the spatial footprints of cells are further refined; Temporal update, where 
the temporal signals of cells are further refined. The last two steps of the pipeline are iterative 
and can be repeated multiple times until a satisfactory result is reached. 

Pre-processing 

Loading data and down-sampling 

Currently Minian supports .avi movies, the default output from the UCLA Miniscopes, and .tif 
stacks, the default output from Inscopix miniscopes. This functionality can be easily extended to 
support more formats if desired. Users are required to organize their data so that each recording 
session is contained in a single folder. Because Minian can extract relevant metadata from 
folder nomenclature (e.g., animal name, group, date), we suggest organizing the video folders 
based upon animal and other experiment-related groupings to facilitate the incorporation of 
metadata into Minian output files. 

Minian supports down-sampling on any of the three video dimensions (height, width, and 
frames). Two down-sampling strategies are currently implemented: either sub-setting data on a 
regular interval or calculating a mean for each interval. At this stage, users are required to 
specify (1) the path to their data, (2) a pattern of file names to match all the videos to be 
processed (e.g., all files containing ‘msCam’, a typical pattern resulting from Miniscope 
recordings), (3) a Python dictionary specifying whether and how metadata should be pulled from 
folder names, (4) another Python dictionary specifying whether and on which dimension down-
sampling should be carried out, and (5) the down-sampling strategy, if desired. 

Once specified, the data can be immediately visualized through an interactive viewer, as shown 
in Figure 2. Along with a player to visualize every frame in the video, the viewer also plots 
summary values such as mean, maximum, or minimum fluorescence values across time. This 
helps users to check their input data and potentially exclude any artifacts caused by technical 
faults during experiments (e.g., dropped frames). Users can further subset data to exclude 
specified frames, if necessary. Finally, restricting the analysis to a certain sub-region of the field 
of view during specific steps could be beneficial. For example, if the video contains anchoring 
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artifacts resulting from dirt on the lenses, it is often better to avoid such regions during motion 
correction. To facilitate this, the viewer provides a feature where users can draw an arbitrary 
box within the field of view and have it recorded as a mask. This mask can be passed into later 
motion correction steps to avoid the biases resulting from the artifacts. 

 

Figure 2: Interactive visualization of raw input video. One frame is shown in the central panel 
of the visualization which can be interactively updated with the player toolbar on the top. A 
histogram of fluorescence intensity of the current frame is shown on the right and will update in 
response to zooming in on the central frame. A line plot of summary values across time is 
shown on the bottom. Here the maximum, mean, and minimum fluorescence values are plotted. 
These summaries are useful in checking whether there are unexpected artifacts or gaps in the 
recording. Finally, the user can draw an arbitrary box in the central frame, and the position of 
this boxed region can be recorded and used as a mask during later steps. For example, during 
motion correction a sub-region of the data containing a stable landmark might provide better 
information on the motion. 

Vignetting correction 

Single-photon miniature microscope data often suffer from a vignetting effect in which the 
central portion of the field of view appears brighter than the periphery. Vignetting is deleterious 
to subsequent processing steps and should be removed. We find that the effect can be easily 
extracted by taking the minimum fluorescence value across time for each pixel and subtracting 
this value from each frame, pixel-wise. One of the additional benefits of subtracting the 
minimum is that it preserves the raw video’s linear scale. 

The result of this step can be visualized with the same video viewer used in the previous step. 
In addition to visualizing a single video, the viewer can also show multiple videos side-by-side 
(e.g., the original video and the processed video), as shown in Figure 3. The 
operation/visualization is carried out ‘on-the-fly’ upon request for each frame, and users do not 
have to wait for the operation to finish on the whole video to view the results. 
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Figure 3: General visualization of pre-processing. The same visualization of input video can 
be used to visualize the whole video before and after specific pre-processing steps side-by-side. 
The effect of vignetting correction is visualized here. The image and accompanying histogram 
on the left side show the original data; the data after vignetting correction are shown on the right 
side. Any frame of the data can be selected with the player toolbar and histograms are 
responsive to all updates in the image. 

Denoising 

Next, we correct for salt-and-pepper noise on each frame, which usually results from electronic 
pixel noise. By default, we pass each frame through a median filter, which is generally 
considered particularly effective at eliminating this type of noise, though other smoothing filters 
like Gaussian filters and anisotropic filters can also be implemented. The critical parameter here 
is the window size of the median filter. A window size that is too small will make the filter 
ineffective at correcting outliers, while a window size that is too large will remove finer gradient 
and edges that are much smaller than the window size, and can result in a failure to distinguish 
between adjacent cells. 

The effect of the window size can be checked with an interactive visualization tool used across 
the pre-processing stage, as shown in Figure 4. Additionally, here we show an example of the 
effect of window size on the resulting data in Figure 5. Users should see significantly reduced 
amount of salt-and-pepper noise in the images, which should be made more obvious by the 
contour plots. At the same time, users should keep the window size below the extent where 
over-smoothing occurs. As a heuristic, the average cell radius in pixel units works well, since a 
window of the same size as an average cell is unlikely to blend different cells together, while still 
being able to adequately smooth the image. 
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Figure 4: Visualization of denoising. Here, a single frame from the data is passed through the 
background removal and both the image and a contour plot are shown for the frame before and 
after the process. The contour plots show the iso-contour of 5 intensity levels spaced linearly 
across the full intensity range of the corresponding image. The plots are interactive and 
responsive to the slider of the window size on the right, thus the effect of different window sizes 
for denoising can be visualized. 

 

Figure 5: Effect of window size on denoising. One example frame is chosen from the data, 
and the resulting images (top row) and contour plots (bottom row) are shown to demonstrate the 
effect of window size on denoising. Here, a window size of 11 (middle column) is appropriate 
while both smaller and larger window sizes result in artifacts. 

Morphological background removal 

Next, we remove any remaining background presumably caused by out-of-focus and tissue 
fluorescence. To accomplish this, we estimate the background using a morphological opening 
process first introduced for calcium imaging analysis in MIN1PIPE [11], which acts as a size 
filter that removes cell bodies. The morphological opening is composed of two stages: erosion 
followed by dilation. In morphological erosion the image is passed through a filter where each 
pixel will be substituted by the minimum value within the filter window. The effect of this process 
is that any bright ‘feature’ that is smaller than the filter window will be ‘eroded’ away. Then the 
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dilation process accomplishes the reverse by substituting each pixel with the maximum value in 
the window, which ‘dilates’ small bright features to the extent of the filter window size. The 
combined effect of these two stages is that any bright ‘feature’ that is smaller than the filter 
window is removed from the image. If we choose the window size to match the expected cell 
diameter, performing a morphological opening will likely remove cells and provide a good 
estimation of background. Hence, each frame is passed through the morphological opening 
operation and the resulting image is substracted from the original frame. 

Although the window size parameter for the morphological opening can be pre-determined by 
the expected cell diameter, it is helpful to visually inspect the effect of morphological 
background removal. The effect of different window sizes can be visualized with the same tool 
used in denoising, as shown in Figure 6. Additionally, here we show an example of the effect of 
window size on the resulting data in Figure 7. In this case, a window size of 20 pixels is 
considered appropriate because the resulting cells are appropriately sized and sharply defined. 
In contrast, a smaller window results in limiting both the size and intensity of the cells. On the 
other hand, residual out-of-focus fluorescence becomes visible when the window size is set too 
large. 

 

Figure 6: Visualization of background removal. Here, a single frame from the data is passed 
through background removal and both the image and a contour plot are shown for the frame 
before and after the process. The plots are interactive and responsive to the slider of the 
window size on the right, thus the effect of different window sizes for background removal can 
be visualized. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 7: Effect of window size on background removal. One example frame is chosen from 
the data, and the resulting images (top row) and contour plots (bottom row) are shown to 
demonstrate the effect of window size on background removal. The contour plots show the iso-
contour of 5 intensity levels spaced linearly across the full intensity range of the corresponding 
image. Here a window size of 20 pixels (middle column) is appropriate while both smaller and 
larger window sizes produce unsatisfactory results: a window size too small (left column) 
artificially limits the size of cells, and a window size too large (right column) does not remove the 
background effectively. 

Motion correction 

Estimate and apply translational shifts 

We use a standard template-matching algorithm based on cross-correlation to estimate and 
correct for translational shifts [37]. In practice, we found that this approach is sufficient to correct 
for motion artifacts that could have a significant impact on the final outcome. Briefly, for a range 
of possible shifts, a cross-correlation between each frame and a template frame is calculated. 
The shift producing the largest cross-correlation is estimated to reflect the degree of movement 
from the template and is corrected by applying a shift to the frame in that direction. To properly 
handle border effects produced by cross-correlations with different degrees of shift, the template 
should be trimmed so that it is smaller than each frame. The amount of trimming in turn 
determines the maximal shift. In practice, the maximal shift can be set liberally, estimating the 
largest possible shift, since there is little drawback to setting this number large, as long as there 
is enough information left in the trimmed template for it to be correctly registered with each 
frame. Moreover, if the user would like to take advantage of anatomical landmarks (such as 
blood vessels) within the field of view and would like to implement motion correction before all of 
the background subtraction steps have been performed, the pipeline can be easily modified to 
do so. However, we recommend that initial smoothing of the image be performed first. After the 
estimation of shifts, the shift in each direction is plotted across time and visualization of the data 
before and after motion correction is displayed in Minian (see Figure 2, top right). 
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Seed initialization 

Generation of an over-complete set of seeds 

The CNMF algorithm is a powerful approach to extract cells’ spatial structure and corresponding 
temporal activity. However, the algorithm requires an initial estimate of cell locations/activity, 
which it then refines. We use a seed-based approach introduced in MIN1PIPE [11] to initialize 
spatial and temporal matrices for CNMF. The first step is to generate an over-complete set of 
seeds, representing the potential centroids of cells. We iteratively select a subset of frames, 
compute a maximum projection for these frames, and find the local maxima on the projections. 
This workflow is repeated multiple times and we take the union of all local maxima across 
repetitions to obtain an over-complete set of seeds. In this way, we avoid missing cells that only 
fire in short periods of time that might be masked by taking a maximum projection across the 
whole video. 

During seed initialization, the first critical parameter is the spatial window for defining local 
maxima. Intuitively, this should be the expected diameter of cells. The other critical parameter is 
an intensity threshold for a local maximum to be considered a seed. Since the spatial window 
for local maxima is small relative to the field of view, a significant number of local maxima are 
usually false positives and do not actually reflect the location of cells. Thresholding the 
fluorescence intensity provides a simple way to filter out false local maxima, and usually a very 
low value is enough to produce satisfactory results. We have found a value of 3 usually works 
well (recall that the range of fluorescence intensity is usually 0-255 for unsigned 8-bit data). An 
alternative strategy to thresholding the intensity is to model the distribution of fluorescence 
fluctuations and keep the seeds with relatively higher fluctuations. This process is described 
in Seeds refinement with a Gaussian-Mixture-Model, and is accessible if the user prefers explicit 
modeling over thresholding. 

Finally, the temporal sampling of frames for the maximum projections also impacts the result. 
We provide two implementations here: either taking a rolling window of frames across time, or 
randomly sampling frames for a user-defined number of iterations. For the rolling window 
approach, users can specify a temporal window size (the number of successive frames for each 
subset) and a step size (the interval between the start of subsets). For the random approach, 
users can specify the number of frames in each subset and the total number of repetitions. We 
use the rolling window approach as the default. 

The resulting seeds are visualized on top of a maximum projection image (plot not shown). 
Although the spatial window size of local maxima can be pre-determined, the parameters for 
either the rolling window or random sampling of frames are hard to estimate intuitively. We 
provide default parameters that generally provide robust results. However, the user is also free 
to vary these parameters to obtain reasonable seeds. As long as the resulting seeds are not too 
dense (populating almost every pixel) or too sparse (missing cells that are visible in the max 
projection), subsequent steps can be performed efficiently and are fairly tolerable to the specific 
ways the seeds are initialized. 
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Refinement with peak-to-noise ratio 

Next, we refine the seeds by looking at what we call the peak-to-noise ratio of the temporal 
traces and discard seeds with low peak-to-noise ratios. To compute this ratio, we first separate 
the noise from the presumed real signal. Calcium dynamics are mainly composed of low 
frequency fluctuations (from the slow kinetics of the calcium fluctuations) while noise is 
composed of higher frequency fluctuations. Thus, to separate the noise from the calcium 
dynamics we pass the fluorescence time trace of each seed through a low-pass and a high-
pass filter to obtain the ‘signal’ and ‘noise’ of each seed. We then compute the difference 
between the maximum and minimum values (or peak-to-peak values) for both ‘signal’ and 
‘noise’, and the ratio between the two difference values defines the peak-to-noise ratio. Finally, 
we filter out seeds whose peak-to-noise value falls below a user-defined threshold. 

The first critical parameter here is the cut-off frequency that separates ‘signal’ from ‘noise’. This 
parameter is also important for subsequent steps when implementing the CNMF algorithm. We 
provide a visualization tool, shown in Figure 8, to help users determine cut-off frequency. In the 
visualization, 6 seeds are randomly selected, and their corresponding ‘signal’ and ‘noise’ traces 
are plotted. The user is then able to use a dynamic slider on the right side of the plots to adjust 
the cut-off frequency and view the results. The goal is to select a frequency that best separates 
signal from noise. A cut-off frequency that is too low will leave true calcium dynamics absorbed 
in ‘noise’ (left panel in Figure 9), while a frequency that is too high will let ‘noise’ bleed into 
‘signal’ (right panel in Figure 9). A suitable frequency is therefore the one where the ‘signal’ 
captures all of the characteristics of the calcium indicator dynamics (i.e., large, fast rise, and 
slow decay), while the ‘noise’ trace remains relatively uniform across time (middle panel in 
Figure 9). The interactive plots make this easy to visualize. We also provide an example in 
Figure 9 to show how cut-off frequency influences the separation of ‘signal’ from ‘noise’. The 
second parameter is the threshold of peak-to-noise ratio value. In practice, we have found a 
threshold of 1 works well in most cases. An additional advantage of using 1 is that it reflects the 
intuitive interpretation that fluctuations in a real ‘signal’ should be larger than fluctuations in 
‘noise’. 
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Figure 8: Visualization of noise frequency cut-off. The cut-off frequency for noise is one of 
the critical parameters in the pipeline that affects both the seed initialization process and 
CNMF’s temporal update steps. Here we help the user determine that parameter by plotting 
temporal traces from six example seeds. In each plot the raw signal is passed through a high-
pass and low-pass filter at the chosen frequency, and the resulting signals are plotted 
separately as “noise” and “signal”. The plots are responsive to the chosen frequency controlled 
by the slider on the right. In this way, the user can visually inspect whether the chosen 
frequency can effectively filter out high frequency noise without deforming the calcium signal. 

 

Figure 9: Example of filtered traces with different frequency cut-offs. Here the temporal 
dynamics of three example seeds are chosen, and the low-pass and high-pass filtered traces 
with different frequency cut-offs are shown. The low-pass filtered trace corresponds to ‘signal’, 
while the high-pass filtered trace corresponds to ‘noise’. Here a 1 Hz cut-off frequency is 
considered appropriate, since calcium dynamics and random noise are cleanly separated. A 
cut-off frequency smaller than 1 Hz left the calcium dynamics in the ‘noise’ trace, while a cut-off 
frequency larger than 1 Hz let random noise bleed into the ‘signal’ trace (i.e., high frequency 
fluctuations are presented in periods where the cells seem to be inactive). 
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Refinement with Kolmogorov-Smirnov tests 

Finally, we refine the seeds with a Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test 
assesses the equality of two distributions and can be used to check whether the fluctuation of 
values for each seed is non-normally distributed, as would be expected of a real cell. In theory, 
the distribution of fluorescence values of a cell should be a mixture of two Gaussian 
distributions: one with low mean value corresponding to when the cell is silent, and the other 
with higher mean value corresponding to when the cell is active. Therefore, seeds 
corresponding to cells should be non-normally distributed. We use a default significance 
threshold of 0.05. In some cases, this might be too conservative or too liberal. Users can tweak 
this threshold or skip this step altogether depending on the resulting seeds. 

Merge seeds 

There will usually be multiple seeds for a single cell and it is best to merge them whenever 
possible. We implement two criteria for merging seeds: first, the distance between the seeds 
must be below a given threshold, and second, the correlation coefficient of the temporal traces 
between seeds must be higher than a given threshold. To avoid bias in the correlation due to 
noise, we implement a smoothing operation on the traces before calculating the correlation. The 
critical parameters are the distance threshold, the correlation threshold, and the cut-off 
frequency for the smoothing operation. While the distance threshold is arbitrary and should be 
explored, often the average radius of cells provides a good starting point. The cut-off frequency 
should be the same as that used during the peak-to-noise-ratio refinement described above, 
and the correlation should be relatively high (we typically use 0.8, but this can be refined by the 
user). The resulting merged seeds can be visualized on the max projection. Since the main 
purpose of this step is to alleviate computation demands for downstream steps, it is fine to have 
multiple seeds for a single visually distinct cell. However, users should make sure each of the 
visually distinct cells still has at least one corresponding seed after the merge. 

Initialize spatial and temporal matrices from seeds 

The last step before implementing CNMF is to initialize the spatial and temporal matrices for the 
CNMF algorithm from the seeds. The spatial matrix has one dimension representing each pixel 
and the other representing each putative cell, with its values representing the spatial footprint for 
each cell at each pixel location (in other words, each pixel has a weight on each cell). The 
temporal matrix has one dimension representing time and the other representing each cell, with 
its values representing the temporal fluorescence value of each cell on each frame. We assume 
each seed is the center of a potential cell, and we first calculate the spatial footprint for each cell 
by taking the cosine similarity between the temporal trace of a seed and the pixels surrounding 
that seed. In other words, we generate the weights in the spatial footprint by computing how 
similar the temporal activities of each seed are to the surrounding pixels. Then, we generate the 
temporal activities for each potential cell by taking the input video and weighting the contribution 
of each pixel to the cell’s temporal trace by the spatial footprint of the cell. The final products are 
a spatial matrix and a temporal matrix. 

Besides the two matrices representing neuronal signals, there are two additional terms in the 
CNMF model that account for background fluorescence modeled as a spatial footprint for the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


background and a temporal trace of background activity. To estimate these terms, we subtract 
the dot product of our spatial and temporal matrices, which represent cellular activities, from the 
input data. We take the mean projection of this remainder across time as an estimation of the 
spatial footprint of the background, and we take the mean fluorescence for each frame as the 
temporal trace of the background. 

Users can tweak two parameters to improve the outcome and performance of this step: a 
threshold for cosine similarity and a spatial window identifying pixels on which to perform this 
computation. To keep the resulting spatial matrix sparse and keep irrelevant pixels from 
influencing the temporal traces of cells, we set a threshold for the cosine similarity of temporal 
traces compared to the seed, where pixels whose similarity value falls below this threshold will 
be set to zero in the spatial footprint of the cell. Cosine similarity is, in essence, a correlation 
(the scale is 0-1) and thresholds of 0.5 and higher work well in practice. Computing many pair-
wise similarity measurements is computationally expensive, and it is unnecessary to compute 
the similarities between pixels that are far apart because they are unlikely to have originated 
from the same cell. We therefore set a window size to limit the number of pixel pairs to be 
considered. This size should be set large enough so that it does not limit the size of spatial 
footprints, but not unnecessarily large to the extent where it will impact performance. In practice, 
a window size equal to the maximum expected cell diameter is reasonable. 

CNMF 

Estimate spatial noise 

CNMF requires that we first estimate the spatial noise over time for each pixel in the input video. 
The spatial noise of each pixel is simply the power of the high frequency signals in each pixel. 
The critical parameter here is again the cut-off frequency for ‘noise’, and users should employ 
the visualization tools as described above during peak-to-noise ratio refinement to determine 
this frequency (see Refinement with peak-to-noise ratio). 

Spatial update 

Next, we proceed to the spatial update of the CNMF algorithm. The original paper describing 
this algorithm [35] contains a detailed theoretical derivation of the model. Here, we provide only 
a conceptual overview of the process so that users can understand the effect of each 
parameter. The CNMF framework models the input video to be the product of the spatial and 
temporal matrices representing signals contributed by real cells, a background term, and 
random noise. In equation form, this is 𝐘 = 𝐀𝐂 + 𝐁 + 𝐄, where 𝐘 represents the input video, 𝐀 
represents the spatial matrix containing the spatial footprints for all putative cells, 𝐂 represents 
the temporal matrix containing the calcium dynamics for all putative cells, 𝐁 represents the 
spatial-temporal fluctuation of background, and 𝐄 represents error or noise. Since the full 
problem of finding proper 𝐀 and 𝐂 matrices is hard (non-convex), we break down the full 
process into spatial update and temporal update steps, where iterative updates of 𝐀 and 𝐂 are 
carried out, respectively. Each iteration will improve on previous results and eventually converge 
on the best estimation. 
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During the spatial update, given an estimation of the temporal matrix and the background term, 
we seek to update the spatial matrix so that it best fits the input data, along with the 
corresponding temporal traces. To do so, we first subtract the background term from the input 
data so that the remainder is composed only of signals from cells and noise. Then, for each 
pixel, the algorithm attempts to find the weights for each cell’s spatial footprint that best 
reproduces the input data (𝐘) with the constraint that individual pixels should not weigh on too 
many cells (controlled through what is called a sparseness penalty). To reduce computational 
demand, we do this for each pixel independently and in parallel to improve performance, while 
retaining the ‘demixing’ power of the CNMF algorithm by updating the weights for all cells 
simultaneously. In the optimization process, the function to be minimized contains both 
a squared error term to assess error, and an ℓ1-norm term to promote sparsity [15]. 

In other CNMF implementations, the estimated spatial noise is used to determine the scaling of 
the ℓ1-norm term in the target function and control the balance between error and sparsity of the 
result. However, in practice we find that it does not always give the best result for all types of 
datasets. For example, sometimes the estimated spatial noise is too large, which results in an 
overly-conservative estimation of spatial footprints. Hence, we have introduced a sparseness 
penalty on top of the estimated scaling factor for the ℓ1-norm term. This parameter gives users 
more control over how sparsity should be weighted in the updating process. The higher the 
number, the higher the penalty imposed by the ℓ1-norm, and the more sparse the spatial 
footprints will become. The effect of this parameter can be visualized with the tool shown in 
Figure 10. Users can employ this tool to determine the best sparseness penalty for their data, 
where the binarized spatial footprint representing non-zero terms should approach the visible 
part of the spatial footprint as much as possible, without reducing the amplitude of spatial 
footprints to the extent that cells are discarded in the spatial update. Figure 11 shows an 
example of the effect of changing the sparseness penalty on the resulting spatial footprints. A 
sparseness penalty of 0.1 is considered appropriate in this case. When the sparseness penalty 
is set much lower, many of the additional ‘fragments’ begin to appear in the binarized spatial 
footprint, even if they are not part of the cell. On the other hand, when the sparseness penalty is 
set too high, some cells are discarded. In the interactive visualization tool, users can inspect the 
temporal dynamics of these discarded cells. In general, however, we do not recommend 
exploiting the sparseness penalty during the spatial update to filter cells since this step does not 
have an explicit model of the temporal signal and thus has no power to differentiate real cells 
from noise. 

In addition, a dilation window parameter must be specified by the user. To reduce the amount of 
computation when calculating how each pixel weighs onto each cell, we only update weights for 
cells that are close to each pixel. For each cell, an ROI is computed by performing a 
morphological dilation process on the previous spatial footprints of that cell. If a pixel lies outside 
of a cell’s region of interest, this cell will not be considered when updating the pixel’s weight. 
Thus, the dilation window parameter determines the maximum distance a cell is allowed to grow 
during the update compared to its previous spatial footprints. This parameter should be set large 
enough so that it does not interfere with the spatial update process, but at the same time not so 
large as to impact performance. The expected cell diameter in pixels is a good starting point. 
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Figure 10: Visualization of spatial updates. Here 10 cells are randomly chosen to pass 
through spatial update with different parameters. The resulting spatial footprints, as well as 
binarized footprints, are plotted. In addition, the corresponding temporal traces of cells are 
plotted. The user can visually inspect the size and shape of the spatial footprints and at the 
same time easily determine whether the results are sparse enough by looking at the binarized 
footprints. 

 

Figure 11: Effect of sparseness penalty in spatial update. Here the sum projection of the 
spatial matrix and binarized spatial matrix are shown for 3 different sparse penalties. A 
sparseness penalty of 0.1 is considered appropriate in this case. When the sparseness penalty 
is set lower, artifacts begin to appear. On the other hand, when the sparseness penalty is set 
higher, cells are dropped out. 

Temporal update 

Next, we proceed to the temporal update of the CNMF algorithm. Please refer to the original 
paper for the detailed derivation [35]. Here, given the spatial matrix and background terms, 
we update the temporal matrix so that it best fits the input data (𝐘). First, we substract the 
background term from the input data, leaving only the noisy signal from cells. We then project 
the data onto the spatial footprints of cells, taking into account the overlaps between cells. This 
process results in a two-dimensional matrix representing the raw temporal activity of each cell. 
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The CNMF algorithm models the relationship between the underlying ‘spiking’ and the calcium 
dynamics of a cell as an auto-regressive (AR) process. It should be noted that although the 
underlying process that drives calcium influx is presumably the actual firing of cells, the ‘spiking’ 
signal is modeled as a continuous variable instead of a binary variable, and strictly speaking, it 
is only a de-convolved calcium signal. Following convention, we will refer to this variable 
as ‘spike signal’, which is an approximation of the underlying cellular activity that drives calcium 
influx. But it should be understood that the exact relationship between this variable and the 
actual firing rate of cells is unclear, since the absolute amount of fluorescence generated by a 
single spike, as well as the numerical effect of integrating multiple spikes on the resulting 
calcium signal, is unknown. 

We first estimate the coefficients for the AR model. The coefficients of the AR model can be 
conveniently estimated from the autocorrelation of the estimated temporal activity. In addition, 
noise power for each cell is also estimated directly from the signal. In practice, we find that 
during the estimation of the AR model parameters, it is helpful to first smooth the signal, 
otherwise the time constant of the AR model tends to be biased by high frequency noise. Users 
should again use the peak-to-noise-refinement cut-off frequency for both estimation of the noise 
power and smoothing of the signals. Finally, we update the temporal matrix by minimizing a 
target function for different cells, similar to what was done with the spatial matrix. Again, the 
target function contains an error term and a ℓ1-norm term. We also introduce a sparseness 
penalty parameter to control the balance between the two terms. The error term contains the 
difference between input signal and estimated calcium dynamics, while the ℓ1-norm term 
regulates the sparsity of the “spiking” signal. Pre-estimated AR coefficients allow for a 
determined relationship between the ‘spiking’ signal and calcium dynamics for a given cell. 
Thus, the problem can be transformed and simplified as minimizing the target function over 
‘spiking’ signals of different cells. 

In practice, it is computationally more efficient to break down the minimization problem into 
smaller pieces and update subsets of cells independently and in parallel. To do so, we first 
identify non-overlapping cells using a Jaccard index, which measures the amount of overlap 
between the spatial footprints of different cells. Once we identify these individual cells, we can 
update them independently so that an optimization problem and target function are formulated 
for each cell independently. Here, we set a cutoff Jaccard index where cells above this amount 
of overlap are updated in parallel. During the updating process, two additional terms are 
introduced: a baseline term to account for constitutive non-zero activity of cells and an initial 
calcium concentration to account for a ‘spiking’ that started just prior to recording. The initial 
calcium concentration term is a scalar that is recursively multiplied by the same AR coefficient 
estimated for the cell. The resulting time trace, modeling the decay process of a ‘spiking’ event 
prior to the recording, is added on top of the calcium trace. The baseline activity term is also a 
scalar that is simply added on top of all the modeled signals. Both terms are often zero, but they 
are nevertheless saved and visualized. The ℓ1-norm in the optimization problem is known to 
reduce not only the number of non-zero terms (i.e., promotes sparsity), but also the 
amplitude/value of non-zero terms. This effect is unwanted, since in some cases the numerical 
value of the resulting ‘spike’ signal can become too small as a side-effect of promoting sparsity, 
making it hard to interpret and compare the ‘spike’ signal for downstream analysis. To 
counteract this phenomenon, we introduce a post hoc scaling process. After the temporal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


update, each cell is assigned a scaling factor to scale all the fitted signals to the appropriate 
values. The scaling factor is solved by least square minimizing the error between the fitted 
calcium signal and the projected raw signal. 

The critical parameters in temporal updates are as follows: (1) The order of the AR model, 
which is usually 1 or 2. Users should choose 1 if near-instantaneous rise time is presented in 
the calcium dynamics of the input data (i.e., from the relatively slow sampling rate) and should 
choose 2 otherwise; (2) the cut-off frequency for noise used for both noise power estimation and 
pre-smoothing of the data during AR coefficients estimation. Users should use the values set 
during peak-to-noise ratio refinement; (3) the threshold for the Jaccard index determining which 
cells can be updated independently. Users should use a value as low as possible, as long as 
the speed of this step is acceptable (with large amounts of cells packed closely together, a low 
threshold may dramatically slow down this step), or visually inspect how sparse the spatial 
footprints are and determine what amount of overlap between spatial footprints results in 
significant crosstalk between cells; (4) The sparseness penalty is best set through visualization 
tools. The effect of any parameter on the temporal update can be visualized through the tool 
shown in Figure 12, where the result of the temporal update for 10 randomly selected cells are 
plotted as traces. There are a total of 4 traces shown for each cell: the calcium signal, the 
deconvolved ‘spiking’ signal, the projected raw signal, and the ‘fitted signal’. The ‘fitted signal’ is 
very similar to the calcium signal and is often indistinguishable from the later. The difference 
between them is that the ‘fitted signal’ also includes the baseline term and the initial calcium 
concentration term. Hence, the ‘fitted signal’ should better follow the projected raw signal, but it 
may be less ineteresting for downstream analysis. Toggling between different parameters 
triggers the dynamic update of the plots, helping the user to determine the best parameters for 
their data. Additionally, we highlight the effect of the sparseness penalty on resulting fitted 
calcium signals and spike signals in Figure 13. The effect is most evident in the ‘fitted spikes’ 
trace, which corresponds to the spike signal and can arguably be interpreted as a measure of 
the underlying neural activity per frame scaled by an unknown scalar. Here, a sparseness 
penalty of 1 is considered most appropriate. A lower sparseness penalty will introduce many 
false positive signals which do not correspond to real calcium dynamics, as can be seen in the 
plots. On the other hand, too high a sparseness penalty will produce false negatives where clear 
rises in the raw signal are not accompanied by spikes. 
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Figure 12: Visualization of temporal update. Here, a subset of cells is randomly chosen to 
pass through temporal updates with different parameters. The raw signal, the fitted signal, the 
fitted calcium traces, and the spike signals are overlaid in the same plot. In addition, a simulated 
pulse-response based on the estimated auto-regressive parameters is plotted with the same 
time scale. Furthermore, the corresponding spatial footprint of the cell is plotted for cross-
reference. With a given set of parameters, the user can visually inspect whether the pulse-
response captures the typical calcium dynamics of the cell, and whether the timing and sparsity 
of the spike signal fit well with the raw data. 

 

Figure 13: Effect of the sparseness penalty in temporal update. Here, 3 example cells are 
selected and passed to the temporal update with different sparseness penalties. The “Raw 
Signal” corresponds to the input video projected onto predetermined spatial footprints. The 
“Fitted Signal” and “Fitted Spikes” correspond to the resulting model-fitted calcium dynamics 
and spike signals. A sparseness penalty of 1 (middle column) is considered appropriate in this 
case. 
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Merging cells 

The CNMF algorithm can sometimes misclassify a single cell as multiple cells. To counteract 
this phenomenon, we implement a step to merge cells based on their proximity and temporal 
activity. All cells with spatial footprints sharing at least one pixel are considered candidates for 
merging, and the pair-wise correlation of their temporal activity is computed. Users can then 
specify a threshold where cell pairs with activity correlations above the threshold are merged. 
Merging is done by taking the sum of the respective spatial footprints and the mean of all of the 
temporal traces for all cells to be merged. Since this is only a simple way to correct for the 
number of estimated cells and does not fit numerically with what the model CNMF assumes, 
merging is only done between iterations of CNMF, but not at the end. 

Cross registration 

After completing the analysis of individual recording sessions, users can register cells across 
sessions. While more complex approaches are proposed in other pipelines [15,16], here, our 
intention is simplicity. To account for shifts in the field of view from one session to the next, we 
first align the field of view from each session based upon a summary frame. Users can either 
choose a max projection of each pre-processed and motion-corrected video, or a summed 
projection of the spatial footprints of all of the cells. Users can also choose which session should 
be used as the template for registration, to which every other session should be aligned. We 
use a standard cross-correlation based on a template-matching algorithm to estimate the 
translational shifts for each session relative to the template and then correct for this shift. The 
weighted centroid of each cell’s spatial footprint is then calculated and pair-wise centroid 
distances are used to cross-register cells. A distance threshold (maximum pixel distance) is set. 
Users should choose this threshold carefully to reflect the maximum expected displacement of 
cells across sessions after registration. We found that a threshold of 5 pixels works well. Finally, 
a pair of cells must be the closest cells to each other in order to be considered the same cell 
across sessions. 

To extend this method to more than two sessions, we first cross-register all possible session 
pairs. We then take the union of all these pair-wise results and transitively extend the cross-
registration across more than two sessions. At the same time, we discard all matches that result 
in conflicts. For example, if cell A in the first session is matched with cell B in the second 
session, and cell B is in turn matched with cell C in the third session, but cells A and C are not 
matched when directly registering the first and third sessions, all of these matches are 
discarded and all three cells are treated as individual cells. We recognize that this approach 
might be overly conservative. However, we believe that this strategy provides an easy-to-
interpret result that does not require users to make decisions about whether to accept cell pairs 
that could conflict across sessions. 

To save computation time, we implement a moving window where centroid distances are only 
calculated for cell pairs within these windows. Users should set the size of windows to be much 
larger than the expected size of cells. 
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Hardware and dependencies 

Minian has been tested using OSX, Linux, and Windows operating systems. Additionally, 
although we routinely use Minian on specialized analysis computers, the pipeline works on 
personal laptops for many standard length miniature microscope experiments. Specifications of 
all of the computers that have been tested can be found in Tested hardware specifications. We 
anticipate that any computer with at least 16GB of memory will be capable of processing at least 
20 minutes of recording data, although increased memory and CPU power will speed up 
processing. Moreover, due to the read-write processes involved in out-of-core computation, we 
recommend that the videos to be processed are held locally at the time of analysis, preferably 
on a solid-state drive. The relatively slow speed of transfer via ethernet cables, Wi-Fi, or USB 
cables to external drives will severely impair analysis times. 

Minian is built on top of project Jupyter [38], and depends heavily on packages provided by the 
open-source community, including numpy [39], scipy [40], xarray [41], holoviews [42], 
bokeh [43], opencv [44], and dask [45]. A complete list of direct dependencies for Minian can be 
found in List of dependencies. Of note, the provided install instructions handle the installation of 
all dependencies. 

Results 

To validate Minian, we looked at the spatial footprints and spike signals from Minian’s CNMF 
output and compared them to the preprocessed data to see if they produced expected results 
across two brain regions, hippocampal CA1 and the nucleus accumbens (Figure 14). 
Specifically, we began by validating spatial footprints. We computed a maximum projection 
across all frames in the preprocessed video and compared them with all the spatial footprints of 
detected cells. We saw that the spatial footprints correlated well with the max projection. To 
quantify this result, we calculated the correlation between the max projection image and the 
summed projection of spatial footprints across all cells. Then, we generated a null distribution of 
this correlation value by shuffling the location of each cell randomly 1000 times and calculating 
the correlation between the max projection and shuffled spatial footprints. We found that the 
observed correlation is significant compared to the correlations from the shuffled footprints (p < 
0.001). Our results indicate that Minian is able to extract cell locations that match the expected 
locations based on the maximum projection. 

Finally, we validated the spike signal by inspecting whether they captured meaningful calcium 
dynamics. We first projected the preprocessed video onto the spatial footprint of each cell to get 
a preprocessed signal for each cell. Since the spike signals tend to be noisy, we binarized the 
spike signal by fitting a Gaussian-mixture model. We assumed that larger values in the spike 
signals corresponded to real calcium events, and that all other values that fell into a Gaussian 
distribution with lower mean were set to zero. We then aligned the preprocessed signals to the 
onset of all the calcium events and inspected the mean across all cells. We found that on 
average the aligned preprocessed signals show a waveform that is similar to the expected 
calcium dynamics. In contrast, when we randomly shuffled the timing of the spike signals 
independently for each cell and aligned the shuffled preprocessed signal to the shuffled 
“calcium events”, the waveform completely vanished. Taken together, these validations confirm 
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that Minian is indeed capable of detecting both the location of cells and the calcium activities for 
each cell. 

 

Figure 14: Validation of Minian in hippocampal CA1 (A) and nucleus accumbens (B). The 
spatial footprints and spike signals are validated against preprocessed data. For both brain 
regions, the max projection of preprocessed video and pseudo-colored spatial footprints are 
plotted. These plots reveal that the spatial footprints of detected cells match with the max 
projection, where presumably all cells can be seen. To quantify this result, we calculate the 
correlation between the max projection image and the sum projection of spatial footprints of all 
cells. Then, a null distribution of the correlation value is generated by shuffling the location of 
cells. Both the observed correlation and the null distribution are summarized in a single plot 
showing that the observed correlation is significant (p < 0.001). Finally, the spike signal is 
validated against signals extracted from preprocessed data. The preprocessed signal is either 
aligned to the onset of each binarized spike signal or shuffled. The resulting averaged 
preprocessed signal is plotted with a 95% confidence interval. The onset of the binarized spike 
signal is shown as frame 0 and marked with a dashed line. We observe that on average the 
onset of a binarized spike signal captured calcium dynamics similar to what would be expected, 
and which completely vanished in the shuffled data. 
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In addition to direct validation of the output for single session, we wanted to validate the 
scientific significance of the spike signal, as well as the quality of the cross-session registration, 
and ensure that Minian is capable of generating meaningful results consistent with the existing 
literature. We leveraged the extensively documented properties of place cells in rodent 
hippocampal CA1 [46]. Place cells have been shown to have consistent place fields across at 
least two days [32,47] with only a minority of detected cells undergoing place field remapping. 
Here, we looked at place field stability across two linear track sessions (Figure 15 A). Briefly, 
animals were trained to run back and forth on a 2 m linear track while wearing a Miniscope to 
obtain water rewards available at either end [48]. The time gap between each session was 2 
days. Calcium imaging data were analyzed with Minian, while the location of animals was 
extracted with an open-source behavioral analysis pipeline ezTrack [17]. The resulting calcium 
dynamics and animal behavior were aligned with the timestamps recorded by Miniscope data 
acquisition software (miniscope.org). We used the spike signal for our downstream analysis. To 
calculate average spatial activity rate, we binned the 2-meters long track into 100 spatial bins. In 
addition, we separated the epochs when the animals are running in opposite directions, 
resulting in a total of 200 spatial bins. We then smoothed both the binned activity rate and 
animal’s occupancy with a Gaussian kernel with a standard deviation of 5 cm. We classified 
place cells based on three criteria: a spatial information criterion, a stability criterion, and a place 
field size criterion [48]. (See Classification of place cells for more detail.) Finally, we analyzed 
cells that are cross-registered by Minian and are classified as place cells in both sessions. We 
then calculated the Pearson correlation for the average spatial firing rate for each cross-
registered cell. We found that, on average, place cells have a correlation of ~0.6, which is 
consistent with the existing literature [48]. 

Next, we validated the cross-session registration to verify that the correct cells were being 
matched across days. We translated the spatial footprints of the second session in both 
directions up to 50 pixels and registered the cells with the shifted spatial footprints. We then 
carried out the same analysis with the registration results from shifted spatial footprints. We 
found that the average correlations between spatial firing patterns have higher values when the 
shifts are close to zero (Figure 15 B). 

In conclusion, Minian can reliably process in vivo calcium imaging data and produce results that 
are in agreement with the known properties of rodent CA1. Minian can thus help neuroscience 
labs easily implement and select the best parameters for their calcium analysis pipeline by 
providing detailed instructions and visualizations. 
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Figure 15: Validation of Minian with hippocampal CA1 place cells. (A) Matching place cells 
from two recording sessions. In both sessions, animals run on a 2-meter-long linear track with 
water reward at both ends. The track is divided into 200 spatial bins. The mean “firing” rate 
calculated from the spike signal for each cell is shown. Cell IDs are assigned by Minian when 
each session is analyzed independently. (B) Averaged correlations of spatial firing rates with 
different artificial shifts. We artificially shifted the spatial footprints of the second linear track 
session, then carried out registration and calculated a mean correlation of spatial firing rates for 
all place cells. The artificial shifts were relative to the aligned spatial footprints and range from -
50 to 50 pixels. 

Discussion 

Making open science more accessible 

Neuroscience has benefitted tremendously from open-source projects, ranging from DIY 
hardware [1] to sophisticated algorithms [2]. Open-source projects are impactful because they 
make cutting-edge technologies available to neuroscience labs with limited resources, as well 
as opening the door for innovation on top of previously established methods. We believe that 
openly sharing knowledge and tools is just the first step. Making knowledge accessible even to 
non-experts should one of the ultimate goals of open-source projects. 
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With the increasing popularity of miniaturized microscopes [33], there has been significant 
interest in analysis pipelines that can reliably extract neural activities from the data. Numerous 
algorithms have been developed to solve this problem [10,12,14,18,19,35], and many of them 
are implemented as open-source packages that can function as a one-stop pipeline [11,13,15]. 
However, one of the biggest obstacles for neuroscience labs in adopting analysis pipelines is 
the difficulty in understanding the exact operation of the algorithms, leading to two notable 
challenges: First, researchers face difficulties adjusting the parameters when the data they have 
collected are out of the expected scope of the pipeline’s default parameters. Second, even after 
neural activity data is obtained, it is hard for researchers to be sure that they have chosen the 
best approaches and parameters for their dataset. Indeed, it has been found that depending on 
the features of the data and the metric used, more sophisticated algorithms do not always out-
perform simpler algorithms [49], making it even harder for researchers to interpret the results 
obtained from some analysis pipelines. Researchers therefore often have to outsource data 
analysis to experts with strong computational backgrounds or simply trust the output of the 
algorithms being used. Minian was created to address these challenges. By providing not only 
detailed documentation of all functions, but also by providing rich interactive visualizations, 
Minian helps researchers to develop an intuitive understanding of the operations of algorithms 
without expertise in mathematics or computer science. These insights help researchers choose 
the best parameters, as well as to become more confident in their interpretation of results. 
Furthermore, transparency regarding the underlying algorithms enables researchers to develop 
in-house modifications of the pipeline, which is a common practice in neuroscience labs. We 
believe that Minian will contribute to the open science community by making the analysis of 
calcium imaging data more accessible and understandable to neuroscience labs. 

Limitations 

Although Minian provides users with insights into the parameter tuning process across different 
brain regions, these insights are achieved mainly through visual inspection. Ultimately, however, 
the performance of an analysis pipeline should be measured objectively. Although calcium 
imaging has been validated with electrophysiology under ex vivo settings [50], ground-truth data 
for single-photon in vivo calcium imaging are lacking, making objective evaluation of the 
algorithms difficult. Therefore, here we have provided only indirect validations of the pipeline by 
recapitulating well-established biological findings. 

Supplemental information 

Parallel and out-of-core computation with dask 

In Minian, we use a modern parallel computing library called dask to implement parallel and out-
of-core computation. Dask divides the data into small chunks along all dimensions, then flexibly 
merges the data along some dimensions in each step. We leverage the fact that each step in 
our pipeline has at least one dimension where each slice on that dimension can be processed 
independently, thus requiring no interpolation or special handling of borders when merged 
together which produces results as if no chunking had been done. Consequently, our pipeline 
fully supports out-of-core computation, and memory demand is dramatically reduced. In 
practice, a modern laptop can easily handle the analysis of a full experiment with a typical 
recording length of up to 20 minutes. Dask also enables us to carry out lazy evaluation of many 
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steps where the computation is postponed until the result is needed, for example, when a plot of 
the result is requested. This enables selective evaluation of operations only on the subset of 
data that will become part of the visualization and thus helps users to quickly explore a large 
space of parameters without committing to the full operation each time. 

Seeds refinement with a Gaussian-Mixture-Model 

As described in the main text, an alternative strategy to thresholding fluorescence intensity 
during seeds initialization is to explicitly model the distribution of fluorescence fluctuations of all 
candidate seeds and select those with relatively higher fluctuation. Here, we describe this 
process and the rationale. Since the seeds are generated from local maxima, they include noise 
from relatively empty regions with no actual cells. The seeds from these regions usually have 
low fluctuations in fluorescence across time and can be classified as spurious. To identify these 
cases, we compute a range of fluctuation for each seed (range of min-max across time), and 
model these ranges with a Gaussian-Mixture-Model of two components. The fluctuations from 
‘noise’ seeds compose a Gaussian distribution with low fluctuation, while seeds from actual cells 
assume a higher degree of fluctuation and form another Gaussian distribution with a higher 
mean. Any seed whose fluctuations belong to the lower Gaussian distribution is discarded in 
this step. To compute the range of fluctuation for each seed, we compute the difference 
between the 99.9 and 0.1 percentile of all fluorescence values across time, which is less biased 
by outliers than the actual maximum and minimum values. 

Normally, this step is parameter-free. In rare cases, there are regions containing noise while 
other regions are almost completely dark. Thus, seeds from these two regions will form two 
peaks in the distribution of what the user would consider ‘bad seeds’, and a Gaussian-Mixture-
Model with two components will no longer be valid. In such cases users can tweak the number 
of components (number of modeled Gaussian distributions), as well as the number of 
components to be considered as composed of real signal. However, because the two noise 
distributions are likely to overlap to some degree, using two components will likely suffice. The 
distribution of fluctuations, the Gaussian-Mixture-Model fit, and the resulting seeds, are 
visualized, enabling the user to judge the appropriateness and accuracy of this step. It should 
be noted that in practice, we have found this process to depend heavily on the relative 
proportion of the ‘good’ and ‘bad’ seeds and can easily result in a significant amount of false 
negatives if the proportion of the ‘bad’ seed is too low. This makes the Gaussian-Mixture-Model 
approach less stable and in general less preferable to simple thresholding unless a good 
threshold of fluorescence intensity cannot be easily determined. 

Classification of place cells 

We use the spatially-binned averaged ‘firing’ rate calculated from binarized spike signals to 
classify whether each cell is a place cell. A place cell must simultaneously satisfy three criteria: 
a spatial information criterion, a stability criterion, and a place field size criterion. For the spatial 
information criterion, we use the joint information between ‘firing’ rate and an animal’s location 
measured in bits per ‘spike’. A cell must have significantly high (see below) spatial information 
to pass the spatial information criterion . For the stability criterion, we calculate the Fisher z-
transformation of the Pearson correlation coefficient between spatial ‘firing’ patterns across 
different trials within a recording session. A trial is defined as the time which the animal runs 
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from one end of the linear track to the other and returns to the starting location. We calculate the 
z-transformed correlation between the odd number of trials and the even number of trials, as 
well as between the first half of the trials and the second half of the trials. We then average 
these two measures of correlations and use that as the measure of stability for a cell. Again, a 
cell must have significantly high (see below) stability to pass the stability criterion. For the place 
field size criterion, we define the place field of each cell as the longest contiguous spatial bin 
where the averaged ‘firing’ rate exceeded the 95th percentile of all averaged firing rate bins. A 
cell must have a place field larger than 4 cm (i.e. 2 spatial bins) to pass the place field size 
criterion. To define significance for both the spatial information criterion and the stability 
criterion, we obtain a null distribution of the measurements (spatial information and stability) with 
a bootstrap strategy, where we roll the timing of activities by a random amount for each cell 
1000 times. The true measurement is defined as significant if it exceeds the 95th percentile of 
its null distribution (p < 0.05). 

Tested hardware specifications 

The hardware specifications of computers that have effectively run Minian are summarized in 
the table below. 

Table 1: A list of computers tested with Minian with specifications. Listed roughly by 
increasing computation power.  

Manufacture Model CPU RAM Storage 
Operating 
System 

Microsoft Surface Pro 6 Intel Core i5-8250U 
1.6GHz x 4 

8GB 256GB 
SSD 

Windows 10 

Dell Precision 
5530 

Intel Core i5-8400H 
2.5GHz x 4 

16GB 256GB 
SSD 

Ubuntu 18.04 

Apple MacBook Pro 
152 

Intel Core i7-8559U 
2.7GHz x 4 

16GB 1TB SSD macOS 10.14 
Mojave 

custom-built custom-built Intel Xeon E5-1650 
3.6GHz x 6 

128GB 6TB HDD Ubuntu 17.1 

List of dependencies 

Table 2: A list of open-source packages and the specific versions on which Minian 
depends.  

Package Version 
av 7.0 
bokeh 1.4 
bottleneck 1.3 
cairo 1.16 
cvxpy 1.0 
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dask 2.11 
datashader 0.1 
distributed 2.11 
ecos 2.0 
ffmpeg 4.1 
fftw 3.3 
holoviews 1.12 
ipython 7.12 
ipywidgets 7.5 
jupyter 1.0 
matplotlib 3.1 
natsort 7.0 
netcdf4 1.5 
networkx 2.4 
nodejs 13.9 
numba 0.48 
numpy 1.18 
opencv 4.2 
pandas 1.0 
panel 0.8 
papermill 2.0 
param 1.9 
pip 20.0 
pyfftw 0.12 
python 3.8 
scipy 1.4 
scs 2.1 
statsmodels 0.11 
tifffile 2020.2 
tqdm 4.43 
xarray 0.15 
zarr 2.4 
medpy 0.4 
simpleitk 1.2 
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