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Abstract9

Decision-making in breeding increasingly depends on the ability to capture and predict crop responses to10

changing environmental factors. Advances in crop modeling as well as high-throughput field phenotyping (HTFP)11

hold promise to provide such insights. Processing HTFP data is an interdisciplinary task that requires broad12

knowledge on experimental design, measurement techniques, feature extraction, dynamic trait modeling, and13

prediction of genotypic values using statistical models. To get an overview of sources of variations in HTFP, we14

develop a general plot-level model for repeated measurements. Based on this model, we propose a seamless stage-15

wise process that allows to carry on estimated means and variances from stage to stage and approximates the gold16

standard of a single-stage analysis. The process builds on the extraction of three intermediate trait categories;17

(1) timing of key stages, (2) quantities at defined time points or periods, and (3) dose-response curves. In a first18

stage, these intermediate traits are extracted from low-level traits’ time series (e.g., canopy height) using P-splines19

and the quarter of maximum elongation rate method (QMER), as well as final height percentiles. In a second20

and third stage, extracted traits are further processed using a stage-wise linear mixed model analysis. Using a21

wheat canopy growth simulation to generate canopy height time series, we demonstrate the suitability of the22

stage-wise process for traits of the first two above-mentioned categories. Results indicate that, for the first stage,23

the P-spline/QMER method was more robust than the percentile method. In the subsequent two-stage linear24

mixed model processing, weighting the second and third stage with error variance estimates from the previous25

stages improved the root mean squared error. We conclude that processing phenomics data in stages represents26

a feasible approach if using appropriate weighting through all stages. P-splines in combination with the QMER27

method are suitable tools to extract timing of key stages and quantities at defined time points from HTFP data.28
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Highlights30

• General plot-level model for repeated high-throughput field phenotyping measurements31

• Three main intermediate trait categories for dynamic modeling32

• Seamless stage-wise process that allows to carry on estimated means and variances33

• Phenomics data processing cheatsheet34

1. Introduction35

Advances in high-throughput field phenotyping (HTFP) allow capturing large data sets with high temporal36

and spatial resolution (Rebetzke et al., 2019). Summarizing these spatio-temporal data in a meaningful way is37

essential to support selection and decision-making in breeding. In HTFP the primary data often consists of images,38

point measurements, orthophotos, or point clouds from which low-level traits (e.g., shoot counts, canopy cover,39

canopy height, or senescence) are extracted. After feature extraction, these low-level traits may be tracked over40

time in a subsequent temporal modelling step (van Eeuwijk et al., 2019; Moreira et al., 2020). If monitored41

across the lifetime of a plant, low-level traits often follow some sort of monotonically increasing function (e.g.,42

canopy height or senescence) or concave functions (e.g., number of growing shoots or canopy cover), which43

allows estimating a dynamics’ characteristics, referred to as intermediate traits.44

Estimating such intermediate traits from spatio-temporal measurements implies a priori knowledge of growth45

processes, best summarized in crop growth models. The performance of these crop growth models can only46

advance if they become validated with field-based data (Ramirez-Villegas et al., 2015). Crop models have rapidly47

gained in complexity over time, culminating in the description of plants by 3-D functional-structural models48

(Vos et al., 2010). Indoor platforms have proven useful to characterize the dynamics of such models (Tardieu49

et al., 2017), but discrepancies between field and indoor experiments raised doubts if results are always directly50

transferable (Poorter et al., 2016). Field-based phenotyping may help to bridge this gap (Araus et al., 2018).51

While under controlled conditions environmental factors may be adequately controlled, the lack of control52

over meteorological conditions poses a major challenge for field phenotyping. Several additional types of errors53

need to be considered, which can be classified into those directly affecting the sensor reading, and those affecting54

the plant development.55

In HTFP there are attempts to quantify genotype-specific timing of phenology stages (Hurtado et al., 2012)56

and response patterns to distinct environmental variables like temperature (Grieder et al., 2015; Kronenberg57

et al., 2020a). A comparable approach in genomics uses functional mapping of quantitative trait loci (QTLs),58

e.g., based on logistic growth curves (Ma et al., 2002; Malosetti et al., 2006). Ma et al. proposed to distinguish59

three biological processes in such models: allometric laws, growth models, and reaction norms. Characterizing60

crop model dynamics using field data becomes increasingly difficult as models become more complex. A solution61
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is to model the dynamic process of growth based on traits or scores that lack a clear physiological interpretation.62

In phenomics, this was demonstrated using serial measurements as predictors for statistical learning (e.g. Ubbens63

et al., 2020; Maimaitijiang et al., 2020; Herrero-Huerta et al., 2020). In genomics, comparable approaches are64

based on functional principal component analysis, where curves are specified as linear combinations of basis65

functions, and the corresponding scores then used as intermediate traits (Kwak et al., 2016; Moreira et al.,66

2020).67

From a plant physiology point of view, such approaches represent a ’black box‘: Drawing conclusions on the68

biological importance of the underlying traits is rather difficult. Therefore, we believe that a classical approach to69

extract traits related to distinct crop ideotypes based on a priori knowledge is more suitable (see also van Eeuwijk70

et al., 2019; Bustos-Korts et al., 2019). This approach may then represent a standard to compare modern learning71

approaches with.72

Based on HTFP literature and the biological processes described in Ma et al. (2002), we identified three main73

intermediate trait categories which can be related to ideotype concepts:74

1. Timing of key stages: Turning points in the dynamics of numeric measurements which may be related to75

phenology; e.g., beginning of stem elongation (Kronenberg et al., 2017), time of canopy closure (Soltani76

and Galeshi, 2002), time of maximum canopy growth rate (Borra-Serrano et al., 2020), heading and flow-77

ering (Sadeghi-Tehran et al., 2017), or onset and end of senescence (Anderegg et al., 2020; Aasen et al.,78

2020). Genotype-specific responses to environmental covariates and/or indices may help to predict key79

stages; e.g., flowering time (Millet et al., 2019).80

2. Quantities at defined time points or periods: Traits based on numeric measurements; either at a steady81

state; e.g., canopy temperature between flowering and beginning of senescence (Perich et al., 2020), or82

at well-defined time points; e.g., number of tillers at beginning of stem elongation (Roth et al., 2020) and83

at harvest (Jin et al., 2019), number of ears at harvest (Fernandez-Gallego et al., 2018), or canopy cover84

at maximum (Borra-Serrano et al., 2020). Area-under-the-curve traits may represent a special case of this85

category where one summarizes quantities over a defined range of time points (Blancon et al., 2019).86

3. Dose-response curves: Traits that describe developmental responses in dependence on covariates between87

clearly defined boundary key stages. Dose-response experiments are classically conducted under controlled88

conditions, e.g., by examining the response of leaves to temperature and water deficit (Reymond et al.,89

2003) and to soil water deficiency and evaporative demand (Welcker et al., 2011) during their linear90

growth phase. More recently, such experiments were conducted in the field; e.g., in the early, exponential91

development phase of canopy cover between emergence and tillering (Grieder et al., 2015) or at the linear92

development phase of canopy height between start and end of stem elongation (Kronenberg et al., 2020a).93

Despite the differences in subsequent processing, the extraction of each of the three different trait categories94

is a highly repetitive task which requires analysis routines with sufficient robustness and generality. While timing95
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of key stages and quantities belong to growth model processes, dose-response curves relate to reaction norm96

processes (Via et al., 1995). Arguably, dose-response curves represent the most challenging modelling aspect in97

field phenotying, as they require quantifying growth and relate it to environmental covariates. We will cover this98

aspect in a follow-up paper. However, a robust evaluation of such dose-response curves requires to determine the99

boundaries between which a steady development takes place. Here, we aimed to develop a method to extract100

such timing of key stages and quantity traits.101

We start by developing a plot-level model for repeated measurements, with a focus on the outdoor field102

phenotyping platform FIP (Kirchgessner et al., 2017). The FIP allows to densely monitor a large set of replicated103

genotypes (≥ 2×300) over a whole growing season with genotypes being the only treatment. The aim of such104

experiments is to i) allow developing new traits and phenotyping methodologies; ii) characterize a specific target105

environment including the targeted ideotypes; and iii) to serve as part of a multi-environment experiment that106

covers a mega-environment. We propose a possible solution to analyze such experiments based on existing107

statistical tools such as P-spline fitting and stage-wise linear mixed model analysis. We further evaluate and108

demonstrate the suitability of the approach to extract the timing of key stages and quantities at defined time109

points from low-level traits using simulated wheat canopy height data.110

2. Materials and Methods111

2.1. A plot-level model for repeated measurements112

A planned experiment generally includes an experimental design (Figure 1b, green boxes) in which the treat-113

ment factors to be tested are randomly assigned to experimental units (usually plots). For the FIP, the only114

treatment factor are genotypes. The design comprises only one site but multiple years. The data for each year115

holds a subset of treatment levels (genotypes) together with checks and design factors (blocks) to allow correcting116

for spatial variability at the site. In the specific case of the FIP, a panel of on average 345 genotypes is replicated117

twice per year and each replication is planted on a different lot in the FIP area. Each replication is augmented118

with spatial checks in a 3×3 block arrangement.119

Performing measurements includes the application of a sensing device collecting measurements from a plot120

(Figure 2a-c). This process results in data which either directly represent a trait value (e.g., a point measurement121

of temperature) or can be translated to one or several low-level traits by means of feature-extraction (Figure 1b,122

blue boxes). Measurements of the same type on the same set of plots, but at subsequent time points, can be123

summarized as campaigns (Figure 1b, red boxes). The sensing concept and the degree of automation determine124

the time intervals at which measurements can be taken.125

Nowadays, the measuring intervals of campaigns often last days rather than minutes or hours. Here, we126

define a campaign time point as the time at which the whole set of plots (usually belonging to an experimental127

design or year-site) is completely measured. Such a measurement may take seconds to hours depending on the128
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Figure 1: Minimal process-driven model for the FIP: a) Process model, b) Data model.

phenotyping methodology and size of the design. By contrast, a measuring time point (or timestamp) is the exact129

timing at which an experimental unit (usually a plot) is measured.130

The same approach of campaigns and measurements also applies to covariate measurements. Covariates are131

usually measured at very short time intervals of minutes to hours. In contrast to traits, environmental covariates132

can be measured at various levels (e.g., year-site, plot, plant, or plant organ). The measurement level determines133

what is regarded as phenotypic heterogeneity caused by covariate variation. The FIP site comprises a site-specific134

local weather station, which corresponds to covariate measurements at year-site level (Figure 3b). Therefore,135

one must consider heterogeneity caused by covariate variations at plot, plant and organ levels and their effects on136

plant growth (Figure 3a)—namely variations of the timing of key stages (Figure 3c1) resulting in growth period137

condition variations (Figure 3c2) and consequently variations of quantities at defined time points (Figure 3c3).138

In a phenotyping experiment one has to distinguish between nuisance factors affecting the growth and devel-139

opment of the plant (Figure 3a1–3), and measurement errors affecting the precision at which a certain phenotype140

is measured at a given time (Figure 3a4). The latter factors may affect whole campaign time points (i.e., at the141

day-to-day level, Figure 3c4, red one-sided arrow) but also individual measuring time points within a day (Figure142

3c4, red two-sided arrow). Nuisance factors affecting growth and development are, e.g., soil fertility inhomo-143

geneities, spatial temperature gradients, mices, herbivore damages, and other abiotic and biotic factors varying144

spatially and temporally in the field. Such factors will in the best case lead to spatio-temporally correlated phe-145

notypic observations.146
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Figure 2: Phenomics data processing cheatsheet: Extraction of timing of key stages and quantities at defined time points from high-throughput
field phenotpying data.
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Figure 3: Sources of variation in HTFP on the example of canopy height measurements. (a) Canopy height development of two replications
of the same genotype (green and blue lines) and realized measurement time points (green and blue points). (b) Covariate measurements
during the growth phase of canopies (e.g., temperature and precipitation). (c) Sources of variation: (1) spatial and crop-husbandry effect
leading to different timings of key stages, e.g., start and end of stem elongation; (2) timing of key stage variations leading to variations in
the different gradients of environmental covariates, e.g., temperature gradients in the stem elongation phase; (3) spatial and crop-husbandry
effects leading to quantitative variations in trait values; e.g., final height at the end of the stem elongation phase; (4) Day-to-day random
measuring errors, e.g., related to differing conditions between measurement days; and independent random measuring errors, e.g., related
to the measurement precision of the device.
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Sources for measurement errors are, e.g., factors differing between campaign time points. These factors may147

lead to day-specific under- or overestimation of measurements, e.g., due to positioning shifts of the sensor head,148

re-adjustment of sensor settings between measurement campaigns, changes in canopy characteristics after rain149

or during hot days, and differing illumination conditions (Figure 3c4, red one-sided arrow). Taking reference150

measurements (e.g., by the use of calibration targets) allows correcting for some of these errors, but such mea-151

sures may not always be feasible in crop phenotyping experiments. Apart from the effects related to the whole152

campaign time point, changing conditions during the measuring sequence may lead to additional, temporally cor-153

related measurement errors among measuring time points. Sources for such errors are, e.g., changing weather154

conditions during a measurement that takes a considerable amount of time. Such temporal effects may translate155

into apparent spatial effects within a campaign time point and therefore be confounded with nuisance factors. Fi-156

nally, random measurement device errors (Figure 3c4, red two-sided arrow) represent another source of variation157

in HTFP. These errors are usually assumed to be identically and independently normally distributed.158

Consequently, we define a HTFP observation ykt for the t-th time point on the k-th plot (k = 1, . . . , K) as the159

result of a dynamic model g that is a function of time t and of a vector (~) of plot-specific crop growth parameters160

~θk(i) associated with genotype i modulated (;) by a vector of time-varying covariates ~x t , and of a plot residual ekt161

that is i.i.d. (∼N (0,σ2
k)),162

ykt = g(t, ~θk(i); ~x t) + ekt . (1)

While ekt will account for random measurement device errors, we assume here that g will absorb any spatio-163

temporal correlation among measurements. Dynamic modeling (Equation 1) is done separately for each individ-164

ual plot-based time series (Stage 1), i.e., (yk1, . . . , ykT) (Figure 2d-g).165

Stage 1 therefore estimates plot-specific crop growth model parameters ~θk(i). Those crop growth model pa-166

rameter will become a phenotypic trait when measured / estimated at a set of genotypes. Correcting for spatial167

correlations is done in a subsequent stage (Stage 2) of a stage-wise approach to get estimates of genotype specific168

crop growth model parameters ~θi (Figure 2h-k). This estimation step is done separately for each crop growth169

model parameter in ~θi based on fitting the linear model170

bθk(i) = θi + uk + ek , (2)

where bθk(i) is the crop growth parameter estimate from Stage 1, uk a spatially correlated random component, and171

ek are plot residuals assumed to be normally distributed with zero mean and var(ek) = σ2w−1
k , where wk = (s.e.)−2

k172

are weights based on the standard error estimates (s.e.) from Stage 1. For a stage-wise approach with weights173

based on variance estimations, one usually fixes σ2 to unity. Nevertheless, if expecting proportionality of var(ek)174

to w−1
k only—e.g., when the s.e.’s are derived from a correlated trait—it is required to estimate σ2. The spatially175

correlated error term uk will absorb any spatial correlation caused by random measurement errors and by physical176

phenotypic differences, and ek any plot-specific residual.177
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This approach is not limited to parametric or dimensionality reduction techniques but allows including ar-178

bitrary dynamic models g with high complexity based on biologically meaningful traits. Nevertheless, it also179

obviates modeling a spatio-temporally correlated residual term in its full extent by assuming that all serial cor-180

relation is accounted for by the time-dependence of g. In the following, we hypothesize and exemplify with a181

simulation that our approximation of the spatio-temporal correlation structure is well suited to extract interme-182

diate traits with adequate precision from HTFP data.183

2.2. Dynamic modeling of three trait categories184

In dynamic modeling, one has to specify a method, based on g of Equation 1, to estimate a vector of meaning-185

ful plot-level traits ~θk(i) (for brevity we henceforth drop the index i for genotypes, referring to ~θk, it being under-186

stood that a plot-level parameter is always genotype-specific) based on measured phenotypes ykt and measured187

covariates x at (potentially differing) time points t. In the following, we will provide theoretical considerations188

and specific examples for each of the three trait categories defined in the introduction, (1) timing of key stages’189

traits, (2) quantities at defined time points or periods, and (3) dose-response curve traits.190

The first intermediate trait category—timing of key stages—describes growth as a sequence of key stages.191

Such phenology traits are well-known in agronomy, e.g., the timing of jointing, heading, and flowering in wheat.192

The second intermediate trait category—quantities at defined time points or periods’ traits—describes pheno-193

typic characteristics at key stages or steady state phases. Hence, such traits include a time point definition, e.g.,194

with traits of the first category. The number of tillers per plant at jointing, the number of ears per square unit at195

harvest, or the average canopy cover between tillering and jointing are examples of such traits for wheat.196

The third intermediate trait category—dose-response curves—describes phenotypes as the result of a dose-197

response model dependent on a covariate course between key stages. Hence, also these traits require time point198

definitions, e.g., with traits of the first category. The response of the stem elongation to temperature is an example199

of such a trait for wheat.200

To obtain traits of the first two categories, we favor semi-parametric approaches (e.g., spline fitting) over201

parametric approaches (e.g., logistic regression) for the dynamic modeling based on the following considerations:202

Taking the example of early canopy development of winter wheat, where one wants to extract a timing (1) or203

quantity (2) trait at a specific stage, growth may fluctuate strongly due to the environment, leading to a “stepped”204

growth curve (Figure 3a). While non-parametric approaches are able to follow such growth curves, parametric205

approaches would require to modify the timescale to, e.g., thermal time. Despite the fact that thermal time is a206

widely accepted concept in agriculture (Parent et al., 2019), it is nevertheless based on model assumptions such207

as the existence of a base temperature, and the linearity of the response. Using such a scale is therefore at odds208

with the research aim to identify the model behind timing and quantity traits.209

When using a semi-parametric approach (e.g., P-splines), one approximates g with a plot-specific model, i.e.210

a smooth function of time s(t). To extract traits of the first category—timing of key stages—from such a smooth211
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function, a set of methods qn (n = 1, . . . , N) to estimate timing traits θ T (n) (e.g., to approximate the end of the212

stem elongation phase) from s has to be defined,213

g(t, ~θk; x t) Ò= sk(t) , (3)

θ
T (n)
k = qn(sk) , (4)

where Ò= indicates that sk estimates g for the k-th plot.214

Extracting traits of the second category—quantities at defined time points or periods—builds on the spline215

function s (Equation 3) and extracted timing of key stages (Equation 4) but inverts the approach of extracting216

key stages: If θ T (n) represent timing of key stages (e.g., the end of stem elongation), then quantities at defined217

time points θQ(n) (e.g., canopy cover at the approximated end of stem elongation) may be extracted from the218

spline s as219

θ
Q(n)
k = sk(θ

T (n)
k ) . (5)

It is important to note that the underlying low-level traits for the timing trait θ T (n) and the spline s in Equation 5220

may differ, giving rise to a vast amount of possible trait combinations, e.g., when combining canopy height221

timing traits with canopy cover quantity traits. While Equation 5 extracts quantities at points in time, extracting222

aggregated quantities (e.g., normalized area-under-the-curve traits) for a period of time may be of interest as223

well. If θ T (a) and θ T (b) represent two cautiously chosen timings of key stages’ traits where θ T (a) < θ T (b) (e.g.,224

approximated start and end of flowering), then a quantity at defined time period trait θQ(a...b) (e.g., average225

temperature at approximated flowering) may be extracted from s as226

θ
Q(a...b)
k =

1

θ
T (b)
k − θ T (a)

k

∫ θ
T (b)
k

θ
T (a)
k

sk(t) d t . (6)

If either θ T (a)
k or θ T (b)

k corresponds to a time series boundary (e.g., end of stem elongation to end of time series),227

the trait may represent an initial or final trait value (e.g., final height).228

For the third trait category—dose-response curves—one describes a phenotype as the result of a dose-response229

model ġ that relates growth rates to a covariate course x t and a corresponding set of crop growth model param-230

eters θ C = (θ C(1),θ C(2), . . . ,θ C(L)) where L is the total number of parameters of the dose-response curve,231

g(t, ~θk; x t) =

∫ θ
T (b)
k

θ
T (a)
k

ġ(θ C
k , x t) d t . (7)

Similar to quantities at defined time periods’ traits (Equation 6), dose-response curve traits require the definition232

of a corresponding growth phase, characterized by a start (θ T (a)) and a stop (θ T (b)). Therefore, a preliminary233

extraction of traits of the category one (Equation 4) is required. Subsequently, θ C may be estimated.234

The striking similarity of Equation 6 and 7 is no coincidence: The area-under-the-curve of a defined growth235

period can be seen as a direct cause of a response to covariates in this growth phase. The two approaches differ236
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in how they include covariates: While dose-response curves model an explicit dependency to covariates, an area-237

under-the-curve quantifies implicitly the result of such a dependency.238

An example for a dose-response curve ġ at a defined growth phase is the stem elongation rate of wheat in239

relation to temperature. Extracting such a dose-response curve implies that one is interested in fitting a specific240

non-linear function.241

2.3. Combining multi-year measurements242

HTFP platforms such as the FIP are usually run on a continuous basis, thus increasing the number of year243

measurements with each year of operation since inauguration. Experimental designs and genotype sets may244

change to some extent along the years. The question is how to combine such multi-year measurements in a way245

that one can process years in stages, which is of high benefit for both documentation purpose and processing246

requirements.247

The problem of stage-wise analysis we are addressing here has a long history (Cochran, 1954) and is well248

known in plant breeding (Smith et al., 2005; Piepho et al., 2012) and also in other contexts, most notably in249

meta-analysis (Whitehead, 2002; Borenstein et al., 2009). Most commonly, the problem arises in settings were250

information needs to be combined across several experiments, whereas in the present work we consider the case251

where different pieces of information need to be combined across units in a single experiment. Despite these252

differences in scale, the statistical challenges are the same. To illustrate, consider a simple setting in which a set253

of replicated genotypes is tested for yield at a number of years in a platform. The response of the i-th genotype254

on the k-th plot at the j-th year can be written as255

yijk = µ+ gi + v j + (gv)ij + eijk, (8)

where µ is an intercept, gi is the main effect of the i-th genotype, v j the main effect of the j-th year, assumed to256

be normal with zero mean and variance σ2
v , (gv)ij is the interaction of the i-th genotype and j-th year assumed to257

be normal with zero mean and variance σ2
gv , and eijk a residual error assumed to be normal with mean zero and258

year-specific variance σ2
e( j). An objective among others in field phenotyping platforms is to estimate genotype259

means across years, ηi = µ+ gi and their differences.260

This can be done in a single stage by fitting the model (Equation 8) directly to plot data yijk. Alternatively,261

we may proceed in two stages and first estimate genotype means per year using sample means y ij·. These means262

have variance var(y ij·) = r−1
ij σ

2
e( j), where rij is the number of replications of the i-th genotype in the j-th location.263

In the second stage, we can fit the model264

y ij· = µ+ gi + v j + (gv)ij + eij·, (9)

where var(eij·) = r−1
ij σ

2
e( j), which is the conditional variance of the genotype means computed in the first stage.265

The estimates of genotype means, ηi = µ+ gi , are identical for single-stage and two-stage analysis, provided the266
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variance components are known (Piepho et al., 2012). Differences arise in practice because variances need to267

be estimated. Stage-wise analysis entails an approximation of the gold standard of single-stage analysis because268

variances var(y ij·) = r−1
ij σ

2
e( j) as estimated in the first stage are treated as known quantities in the second stage,269

disregarding the degrees of freedom associated with these estimates and their uncertainty. A key feature of270

stage-wise analysis is that the inverses of these estimated variances act as weights in the second-stage analysis.271

A major challenge in any stage-wise analysis is how to best determine the weights and how to account for the272

uncertainties associated with them.273

The situation faced in the analysis of HTFP is comparable in that it proceeds in stages with necessity because274

a single-stage analysis is in conflict with performance and generalization demands (i.e., multi-year HTFP data275

may comprise a number of differing experimental designs that require individual processing in a first stage) and276

that the primary interest is the genotype main effect gi , which equals θi in HTFP (Figure 2l-n). The statistical277

challenges are rather more daunting, however, for several reasons: (i) HTFP involves high-frequency time series in278

which observations are serially correlated; (ii) summarizing time-series data usually requires nonlinear regression279

models; (iii) analyses of field trials are often done exploiting spatial correlations among neighboring plots; (iv)280

remote or proximate sensed data are affected by environmental conditions (wind, illumination) and may change281

during the course of a measurement; (v) the number of stages required for the full analysis process is much282

greater than two. These additional features make the determination of appropriate weights to be carried forward283

from one stage to the next even more challenging than in the simple example given above.284

Here, we propose a weighing approach for the intermediate trait category (1) (timing of key stages) and (2)285

(quantities at defined time points or periods) only for brevity, and illustrate its application using a simulation286

study described in the following section. Traits of the third category (dose-response curves) will be considered287

in a follow-up paper.288

2.4. Simulation of canopy height data289

To demonstrate the extraction of traits of the first two categories (timing of key stages and quantities at290

defined time point or periods), winter wheat canopy height data were simulated implementing a temperature291

dose-response curve (trait category three, Equation 7). The temperature response of the stem elongation phase292

was assumed to follow a dose-response curve with break points (Figure 4),293

rBP(T,θ C) =























0, T < Tmin

rmax, T > Topt

rmax ·
T−Tmin

Topt−Tmin
, otherwise ,

(10)

where Tmin is the base temperature below which the elongation rate r is zero and Topt the optimum temperature294

above which the elongation rate reaches the maximum hourly elongation rate rmax, while θ C = (rmax, Tmin, Topt)295

(Figure 4).296
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As starting point for the simulation, existing experimental designs of three consecutive years at the ETH297

research station of agricultural sciences in Lindau Eschikon, Switzerland (47.449 N, 8.682 E, 556 m a.s.l.) were298

used. The experiment consisted of 352 wheat genotypes, replicated twice per year on two spatially separated299

fields, both augmented with spatial checks in a 3×3 block arrangement.300

To simulate canopy height time series, existing weather data were used to introduce a close-to-realistic301

stochastic behavior. Canopy growth was simulated for a measurement interval of one per day and for a pe-302

riod between first of March and 20th of July (d = 1, . . . , 142) for each of the three simulated years j ( j =303

2016,2017, 2018). Growth between daily campaign time points t was modeled as cumulative response to hourly304

temperature measurements Tjdh (h = 1, . . . , 24). The canopy height yijkt of genotype i (i = 1, . . . , 352) at plot k305

(k = 1, . . . , 704) in the year j at a specific time point (t = 1, . . . , 142) was then simulated as306

yijkt = gT (t,θ
C
ijk,θ T

ijk; Tjdh) + ejkt , (11)

where gT depends on rBP in Equation 10 (see below) and simulates growth as a function of temperature Tjdh,307

time point t, a vector of plot-specific crop growth model parameters θ C
ijk = (rmax, Tmin, Topt), and a vector of308

plot-specific timing traits θ T
ijk = (tPHstart, tPHstop). The error term ejkt simulates plot and time point residuals.309

The growth function gT was specified as310

gT (t,θ
C ,θ T ; Tdh) =

t
∑

d=1







∑24
h=1 rBP(Tdh,θ C) tPHstart < d < tPHstop

0, otherwise
, (12)

where rBP represents a dose-response as function of hourly temperatures Tdh and a vector of crop growth model311

parameters θ C (Equation 10), tPHstart the time point where canopy growth started, and tPHstop the time point312

where canopy growth stopped.313

This approach produced realistic-looking canopy growth curves (compare Figure 5 with, e.g., real data in314

Kronenberg et al. 2017, 2020a) with a characteristic start of growth (tPHstart) and a stop of growth (tPHstop),315

corresponding to the first intermediate trait category (timing of key stages). Additionally, growth curves indi-316

Figure 4: Schematic drawing of the dose-response model ( ġ of Equation 7) implemented as break-point model (rBP, Equation 10) used for
the simulation of canopy height time series based on temperature courses.
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cated a characteristic final height (PHmax), corresponding to the second intermediate trait category (quantities at317

defined time points or periods).318

Noise as specified in Section 2.1 was introduced on a genotype, plot and time point level. Genotype-year319

interactions were not explicitly introduced, as it was assumed that they will emerge as the result of random θ C
i320

and θ T
i combinations applied to year-specific temperature courses.321

To add noise to genotype traits, the crop growth model parameters θ C
ijk and the timing traits θ T

ijk were further322

decomposed in genotypic and spatially correlated parts,323

θ C
ijk = θ

C
i + θ

C
jk (13)

θ T
ijk = θ

T
i + θ

T
jk , (14)

where θ C
i and θ T

i were simulated using normal distributions (∼N (µ,σ2)). Trait-specific µ and σ2 were chosen324

based on literature if available, and otherwise based on own unpublished field data. θ C
jk and θ T

jk were spatial325

correlated heterogeneity components for those traits (AR(1)x⊗AR(1)y), where AR(1)⊗AR(1) is a two-dimensional326

first-order autoregressive model in row (x) and range (y) direction, mimicking the influence of other covariates327

and therefore spatial heterogeneity. Note that a high autocorrelation in row and range direction with ρ = 0.95328

and half the variance of the corresponding input parameter (Appendix Table 2) was assumed, which appeared329

reasonable for cereal experiments (e.g. Velazco et al., 2017).330

The plot residual ejkt was simulated as sum of three error terms,331

ejkt = ejkt,1 + ejk + ejkt,2 . (15)

The first error term ejkt,1 corresponds to the serial correlation of measurement errors (AR(1)t) that g in Equation332

1 presumably absorbs. The second error term ejk mimics a systematic spatially correlated measurement error,333

e.g., after an incomplete correction with reference measurements (AR(1)x ⊗ AR(1)y). We note that adding this334

error introduces an intentional discrepancy between the analysis model and the simulation: the proposed plot-335

level model for repeated measurements does not include such a systematic error in the first stage (dynamic336

modeling). Consequently, estimating the spatial correlation in the second stage will confound measurement errors337

and nuisance factors, which corresponds to a situation we frequently encounter in HTFP. The third error term ejkt,2338

corresponds to ekt in Equation 1 and represents a plot-based i.i.d. residual (∼N (0,σ2)). The first error term was339

assumed to cause most of the known measurement error, wherefore σ was set accordingly to 0.01 m (Roth et al.,340

2020), while for the second and third error term σ was significantly reduced. The autocorrelation parameter ρ341

was arbitrary set to 0.7. All simulation input parameters and sources for the aforementioned assumptions are342

summarized in the Appendix (Table 2).343

A total of 500 simulation runs were performed. These simulated time series with a measurement interval344

of one day were then further thinned to intervals of three, five, seven and 14 days to study the effect of lower345

frequencies.346
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We note that the simulation (Equation 11) comprised θ T , i.e. traits of the first category, and θ C , i.e. traits of347

the third category. The second trait category θQ was dependent on the first and third category and year specific348

temperature courses, and therefore only an indirect input parameter of the simulation. Therefore, the simulation349

allowed extracting traits of all three categories, and validating traits of category one (θ T ) and three (θ C) with350

genotypic input data, and traits of category two (θQ) with plot-level (indirect) input data. Here, we illustrate the351

extraction of θ T and θQ only for brevity. The extraction of θ C and therefore dose-response curve parameters of352

a crop growth model will be considered in a follow-up paper.353

We further note that all simulation input parameters for a given genotype i (θ T
i and θ C

i ) were uncorrelated.354

In reality, genetic effects and artificial selection have certainly resulted in weak to strong correlations for those355

parameters. Dynamic modeling may introduce new, artificial correlations of parameters. When examining a real-356

world genotype set, e.g., a breeding population, these effects will be confounded, but using a simulation with357

uncorrelated input parameters allows quantifying the extraction artifacts.358

2.5. Stage 1: Extracting the timing of key stages and quantities at define time points359

To extract timing of key stages, a monotonically increasing P-spline was fitted to plot time series using the R360

package scam (Pya, 2019), thus implementing sk(t) of Equation 3. The package fits shape constrained generalized361

additive models (GAM) (Pya and Wood, 2015). A Bayesian approach to uncertainty quantification is used to362

obtain standard errors of predictions.363

The number of knots was set proportional to 3/4 of the observations. In a next step, the start and end of364

stem elongation (tPHstart and tPHstop) were extracted based on the quarter of maximum elongation rate (QMER)365

method, which in brief extracts key time points with elongation rates greater than a threshold of 1/4 of the366

maximum elongation rate. Thus, the QMER method represents an implementation of qn(sk) of Equation 4.367

In detail, in a first step spline predictions for canopy heights ŷt and standard error estimates s.e.( ŷt) were368

calculated separately for each plot at hourly time steps using the prediction function of the scam package. There-369

after, hourly growth rates r̂t were derived from the difference between subsequent predictions, r̂t = ŷt − ŷt−1370

(Figure 2e). Then, the following algorithm was applied to extract intermediate traits and corresponding weights371

w based on standard errors of spline predictions:372

1. Determine maximum elongation rate:373

r̂max =max(r̂t)374

2. Filter r̂t for data points with an elongation rate greater than 1/4 of the maximum elongation rate:375

r̂t,set1 = r̂t where r̂t ≥ 1/4 · r̂max376

3. Define the earliest time points that is left after filtering as the start of growth:377

tPHstart = t of first(r̂t,set1)378

wtPHstart

−1/2 = s.e.( ŷt) where t = tPHstart379
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4. Filter r̂t for data points with an elongation rate lower than 1/4 of the maximum elongation rate and a380

minimum distance of 40 days to the approximated start of growth:381

r̂t,set2 = r̂t where r̂t ≤ 1/4 · r̂max ∧ t − tPHstart ≥ 40382

5. The earliest value that is left after filtering indicates the approximated end of growth:383

tPHstop = t of first(r̂t,set2)384

wtPHstop

−1/2 = s.e.( ŷt) where t = tPHstop385

Note that the weights for timing of key stages’ traits in this work were based on the standard errors of spline386

predictions ŷ . We will address the conditions that should be met to justify our approach in the following section.387

We extracted the growth stages start and end of stem elongation (tPHstart and tPHstop) and corresponding388

standard error estimates based on the quarter of maximum elongation rate (QMER) method. To compare the389

QMER method with the approach taken by Kronenberg et al. (2017), we additionally determined the time points390

where 15% (tPH15) and 95% (tPH95) of final height was reached (for details, see Kronenberg et al., 2017). In391

Figure 2e, we depict only the QMER method.392

The quantity at a defined time point final height (PHmax) was calculated as the median of 24 hourly spline393

predictions after the estimated stop of growth:394

1. Filter ŷt for data points after reaching final height:395

ŷt,final = ŷt where tPHstop ≤ t ≤ tPHstop + 24 h396

2. Aggregate data points:397

PHmax =median( ŷt,final)398

wPHmax

−1/2 = s.e.( ŷt) where t = tPHstop399

2.6. Weigting based on estimated standard errors400

The chosen implementation of the QMER method did not provide standard errors for the derived growth rate401

(r̂) and time points (t). Therefore, weighting for further processing after the dynamic modeling was based on402

standard errors of spline-based predictions of the response (s.e.( ŷt)).403

Using weights based on the standard errors of spline predictions is intuitive for quantities at defined time404

points or periods’ traits (e.g., PHmax), as both s.e.( ŷt) and ŷt share the same unit. Nevertheless, for timing405

of key stages (e.g., tPHstart and tPHstop), such a weighting approach requires a positive and high association406

between the true weights for t and y for a given (to be determined) time point. Alternatively, one could use407

an inverse regression approach (e.g., the Fieller’s theorem (Seber, 2003) or the delta method (Johnson et al.,408

1993)) to determine weights for two means with different units. Such an inverse regression approach becomes409

non-trivial when involving a combination of statistical tools—e.g., P-splines and the QMER method. Therefore,410

using an inverse regression approach may contradict the requirement to provide a seamless workflow to integrate411

arbitrary complex dynamic models g (Equation 2).412
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Consequently, we decided to assume proportionality of weights for standard errors of spline predictions and413

timing of key stage estimations. The factor of proportionality was estimated via the residual variance (σ2), which414

was estimated in each analysis, rather than fixed at unity, as is customary in standard weighted analysis, where the415

inverse weights are taken to be the known residual variances (Piepho et al., 2012). Our assumption is based on416

considerations on a concrete example (see Appendix). In addition, standard errors of spline predictions suppose417

that observations of plot-based time series are independent. As this is—at least for the simulation—not true418

(see Section 2.1), the calculated standard errors of the estimates will be biased. To test whether weighting was419

advantageous, despite possible bias in the weights and imperfect proportionality for timing of key stage traits,420

we optionally provided the weights in the next processing step.421

2.7. Stage 2: Calculating adjusted genotype means per year422

The extraction of dynamics characteristics resulted in measurement time point independent trait values at a423

plot level (Stage 1). These plot values were subsequently processed in a two-stage linear mixed model analysis424

(Stage 2 and 3), where the second stage averaged over within-year effects (e.g., spatial heterogeneity) and the425

third stage over between-year effects.426

We used SpATS (Rodríguez-Álvarez et al., 2018) to fit a model with a smooth bivariate surface defined over427

spatial coordinates of plot centers ( f (x( jk), y( jk))) and added fixed genotype effects (θij) and random effects of428

plot rows and ranges (pr(jk) and pc(jk)),429

θ̂jk = θij + f (x( jk), y( jk)) + pr(jk) + pc(jk) + ejk . (16)

Model parameters are listed and explained in Table 1 (Stage 2). Stage 2a and 2b are two nested models;430

Stage 2b corresponds to Stage 2a but additionally includes weights. Equation 16 was applied to all intermediate431

traits to calculate BLUEs of genotype means per year.432

2.8. Stage 3: Genotypic marginal means calculation433

The second stage already covered aspects such as spatial heterogeneity and design-specific characteristics434

such as row and range arrangements, and allowed obtaining adjusted year genotype means θ̂ij (BLUEs). In the435

third stage, those means were further processed with a model based on Equation 9,436

θ̂ij = µ+ v j + θi + (θ v)ij + eij . (17)

The model assumes that genotype-environment effects can be partitioned into genotype response effects (θi) and437

genotype-year interaction effects ((θ v)ij) (Piepho et al., 2012) while the residual errors (eij) are assumed to be438

identically and independently normally distributed. Model parameters are listed and explained in Table 1 (Stage439

3). Stage 3a and 3b are two nested models; Stage 3b corresponds to Stage 3a but additionally includes weights.440

Models were fitted using the R package R-asreml (Butler, 2018).441
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Table 1: Model parameters for the second and third stage of the stage-wise linear mixed model analysis. k denotes the k-th plot, j the j-th
year, and i the i-th genotype.

Stage Term Description Part

2) θ̂jk Plot response based on dynamic modeling Response

θij Year genotype response Fixed
pc(jk) Range effect on field (main working direction, e.g., for sow-

ing)
Random

pr(jk) Row effect on field (orthogonal to main working direction) Random
f (x( jk), y( jk)) Smooth bivariate surface in spatial x and y coordinates (map-

ping real distances on the field) consisting of a bivariate poly-
nomial and a smooth part (for details see Rodríguez-Álvarez
et al., 2018)

Spatial

a) ejk Residuals with var(e) = σ2 Residual
b) ejk Residuals with var(e) = σ2w−1, where w are weights based

on the standard error estimations from the previous dynamic
modeling step (Stage 1), and σ2 the residual variance param-
eter

Weights

3) θ̂ij Adjusted year genotype mean (BLUE) from Stage 2 Response

µ Global intercept Fixed
v j Year effect Random
θi Genotype response Fixed
(θ v)ij Genotype year interaction Residual

a) eij Residuals with var(e) = σ2 Residual
b) eij Residuals with var(e) = σ2w−1, where w are weights based on

the square rooted diagonal of the variance-covariance matrix
from Stage 2, and σ2 the residual variance parameter

Weights
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Separating the dynamic modeling step from further processing steps prevents implementing the gold standard442

of a one-stage analysis. Nevertheless, subsequent processing stages can be summarized in one stage, hence result-443

ing in a two-stage approach. To allow comparing such an approach with a three-stage approach, the estimated444

intermediate traits from Stage 1 were additionally processed using a two-stage model,445

θ̂jk = µ+ v j + θi + (θ v)ij + pr(jk) + pc(jk) + f (r(jk), c(jk)) + ejk , (18)

where µ is a global intercept, v j a year intercept, θi the genotype response, (θ v)ij genotype year interactions,446

pr(jk) and pc(jk) range and row effects, f (r(jk), c(jk)) year specific AR(1) ⊗ AR(1) interactions based on ranges447

(c()) and rows (r()) of plots, and ejk plot residuals with year-specific variances.448

2.9. Simulation validation449

Bias, variance, root-mean squared error (RMSE) and Pearson’s correlation were calculated both after dynamic450

modeling (Stage 1) and after the stage-wise linear mixed model analysis (Stage 2 and 3) separately for each451

simulation run.452

3. Results453

A total of 176,000 genotypes replicated on 1,056,000 plots (500 runs × 3 years × 2 replications × 352454

genotypes) containing 149,952,000 data points (number of plots × 142 measurement days) were simulated. In455

the following, we give insights on the precision of extracted traits influenced by the choice of method, weighting,456

and measurement interval.457

3.1. Dynamic modeling458

P-splines model fits converged for all simulated plot time series and produces smooth-looking growth curves459

(Figure 5). Start and end of stem elongation estimations were successfully extracted using the QMER method as460

well as the final height percentile method.461

Figure 5: Simulated canopy heights (a) and fitted canopy height splines (b) for one simulation run with 352 genotypes, two replications per
year, and three years.
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The timing of the key stage trait tPHstart was better estimated by the P-spline/QMER method with a lower462

median RMSE and lower median bias (Figure 6). Nevertheless, in comparison to the final height percentile463

method, the median variance was higher, and larger outliers for RMSE and variance were found. The trait464

tPHstop was better estimated by the final height percentiles method with lower median bias, median RMSE and465

median variance than by the P-spline/QMER method, but the percentiles method also produced larger outliers466

for variance and RMSE than the P-spline/QMER method.467

Both the P-spline/QMER and final height percentile methods performed comparably and were able to predict468

tPHstart with a strong and tPHstop with a very strong correlation to input values (Figure 7), but also for both469

methods, the estimated start of stem elongation (tPHstart) was weakly biased by the input trait base temperature.470

Nevertheless, the correlation between the extracted start and end of stem elongation—an artifact of the method,471

as the simulation input was uncorrelated—was much higher for the Percentile method than for the P-spline/QMER472

method. Based on these findings, the P-spline/QMER model was selected for further processing in the stage-wise473

analysis.474

3.2. Required measurement intervals475

Estimating tPHstop and PHmax using the P-spline/QMER or Percentile method was not affected by increased476

or reduced measurement intervals unless reduced from 7 to 14 days, where the correlation for both tPHstart and477

tPHstop dropped (Figure 8). The estimation of tPHstart was, in contrast to the two other traits, sensitive to reduced478

measurement intervals above five days for the P-spline/QMER method. The prediction of final height was not479

affected by increased measurement intervals.480

3.3. Stage-wise linear mixed model analysis481

For both traits tPHstart and tPHstop, calculating overall adjusted genotype means reduced the median variance482

and median bias if compared to plot-based values for the P-spline/QMER method (Figure 6) and improved the483

median RMSE for tPHstart but not for tPHstop (Figure 9, Appendix Table 3). Based on bias and variance, for the484

three-stage model (dynamic modeling followed by a two-stage linear mixed model analysis), weighting Stage 2485

with errors of the prediction from dynamic modeling (Stage 1) was of advantage for tPHstart. The lowest median486

bias was found for the combination of weighting Stage 2 as well as Stage 3 and the lowest median variance487

for the combination of weighting Stage 3 but not Stage 2 (Figure 9, Appendix Table 3). For tPHstop, median488

differences between weighting combinations for Stage 2 and 3 were overall very small, but weighting stage 2489

reduced outliers for bias and RMSE.490

When compared to a two-stage model (dynamic modeling followed by a one-stage linear mixed model anal-491

ysis), using a three-stage model was of disadvantage for tPHstart, indicated by a lower median RMSE and larger492

outliers (Figure 9). For tPHstop, the median RMSE was slightly higher for the two-stage model than for the493

three-stage model, but outliers were more frequent for the three-stage model.494
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Figure 6: Box plots for the 500 simulated datasets of plot-based bias, variance and root-mean squared error (RMSE) of two timing of key
stages models (P-spline/QMER model and final height percentiles).
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and final height percentiles (Percentiles method).

tPHstart

B
ia

s 
 (y

da
y)

V
ar

ia
nc

e 
 (y

da
y2 )

R
M

S
E

  (
yd

ay
)

three−stage two−stage

−30

−20

−10

0

10

20

0

50

100

150

200

0

10

20

30

tPHstop

B
ia

s 
 (y

da
y)

V
ar

ia
nc

e 
 (y

da
y2 )

R
M

S
E

  (
yd

ay
)

three−stage two−stage

−40

−20

0

20

0

10

20

30

0

10

20

30

40

Stage 2

not weighted

weighted

Stage 3

not weighted

weighted

−

Figure 9: Box plots for the 500 simulated datasets of genotype based bias, variance, and root-mean squared error (RMSE) for the key stages
P-spline/QMER model for the three-stage model and the two-stage model.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.02.442243doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442243


4. Discussion495

4.1. Data processing in stages496

The overall workflow of HTFP requires a joint effort of disciplines (Cobb et al., 2013; Araus and Cairns, 2014)497

which may be separated into three main domains: (1) automation and sensing including feature extraction498

from sensor readouts, (2) applied phenotyping including dynamic modeling and trait extraction from sensor-499

derived features, and (3) analysis of designed agricultural experiments or breeding experiments. Plant phenomics500

must bridge these three disciplines with the overall aim to characterize phenotypes as the result of genotype,501

environment and management. A plot-level model for repeated measurements may help to link the highly specific502

domains of sensing and the analysis of experiments. The link to genomic information in breeding and quantitative503

genetics further increases the complexity of the topic, but is only marginally addressed in this study.504

Here, we presented a strategy to process HTFP data. Based on the evaluated sources of variation, we decided505

to process in stages, starting with dynamic modeling, followed by two stages of a linear mixed model analysis.506

This approach is to some extent the reverse of van Eeuwijk et al. (2019) who suggested correcting time point507

measurements in a first stage of a stage-wise linear mixed model analysis, followed by dynamic modeling and508

modeling of environmental dependencies, and a second stage of a stage-wise linear mixed model analysis to cal-509

culate adjusted means across years. Both options—correcting for spatial or temporal correlations first—represent510

valid alternatives. In the present case, we decided not to correct for spatial gradients before dynamic modeling511

for two reasons:512

(1) Calculating adjusted genotype means in a first stage will correct for spatially correlated measurement513

errors, but also for effects caused by start and lag phase variations, quantitative trait variations, and environment514

variations due to start and lag phase variations (Figure 3). While correcting for measurement errors is a desired515

effect, correcting for other effects will bias the result of dynamic modeling by altering the time point variances516

of low-level traits. Using measurement references and correcting for day-to-day random measurement errors517

outside the framework of the stage-wise processing may therefore be of advantage. (2) In a linear mixed model518

analysis interlaced by a dynamic modeling part, weighting becomes a daunting task. In opposite, weighting is an519

integral part of the stage-wise analysis strategy presented in this study.520

For the P-spline/QMER method, processing multiple years using a linear mixed model analysis reduced the521

variance and bias of predictions while slightly increasing the RMSE. Weighting the first stage recovered the RMSE.522

For the second stage, using weights based on estimated variances to approximate the gold standard of a single-523

stage analysis proved to be of advantage for all traits if using meaningful weights for the first stage as well. These524

findings indicate that our assumption about dynamic modeling was justified: the spatio-temporal correlation525

caused by unconsidered covariates yields spatial correlated intermediate traits ~θijk. Nevertheless, using a one-526

stage linear mixed model with an AR(1)⊗AR(1) autocorrelation structure outperformed the stage-wise approach527

for tPHstart and to some extent for tPHstop.528
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Providing robust and reusable analysis routines represented an essential objective of the proposed approach.529

The resulting generalization requirements may be in conflict with well-established analysis principles. This530

conflict became well visible when formulating a linear mixed model for Stage 2: The philosophy “analyse-as-531

randomise” would require to include all randomization factors—e.g., incomplete blocks—in the analysis. A gen-532

eralized model as used in this work that includes besides a smooth bivariate surface just row and range effects533

is certainly less efficient, but may nevertheless be suitable to draw correct conclusions on the outcome of the ex-534

periment. Proposing a robust and reusable processing workflow therefore always represents a trade-off between535

generalization and most efficient modeling.536

4.2. Intermediate trait categories537

In this study, we proposed three different trait categories: (1) Timing of key stages, (2) quantities at defined538

time points or periods, and (3) dose-response curves. A fundamental difference between traits of the first two539

categories and dose-response curve traits is how they include covariate dependencies. Dose-response curve traits540

describe an explicit dependency on covariates. In contrast, timing of key stages’ traits include the effects of541

covariates implicitly through the dependency on the timescale: Favorable conditions in spring may for example542

accelerate the development of plants and therefore early key stages. Quantities at defined time points or periods’543

traits may show a similar behavior, but here the directions are less clear: Early jointing in cereals due to favorable544

conditions in spring may for example reduce the early canopy cover in the corresponding phase because of a545

reduced growing time span. Nevertheless, one may also argue that favorable conditions in this reduced time546

span may increase canopy cover. Both categories have in common that they describe an implicit reaction to a set547

of covariate courses.548

Consequently, to analyze traits of the first two categories, one reduces growing seasons with their charac-549

teristic covariate courses to environments (E) and quantifies the influence of genotypes (G) and environments550

on measured traits in a subsequent G×E analysis (for an overview see van Eeuwijk et al., 2016). In contrast,551

dose-response curve traits are less affected by—but rather drivers of—G×E. This difference may require differing552

processing steps. We will cover dose-response curves in a follow-up paper.553

4.3. Limitations of dynamic modeling554

Clear limitations of the proposed approach became visible: Although all input parameters of the simulation555

were completely uncorrelated, the extracted traits were to varying extents correlated. The simulation consisted of556

500 independent simulation runs, and correlations were aggregated over all runs. Therefore, the observed effects557

are a systematic result of the extraction methods and should be seen as corresponding limitations. When using558

P-splines to extract key points of the stem elongation, the estimated start of the stem elongation may be biased559

by the base temperature of growth. Nevertheless, this effect presumably applies to any other method including560

the Percentile method, as both early start and low base temperature may result in a comparable phenotype in561

early stages.562
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An increased length of the measurement interval may save considerable time and labor costs which may be563

invested in larger number of tested genotypes. If aiming to extract timing of key stages, high frequencies are564

to some extent superfluous if using P-splines, as the spline approach is presumably able to interpolate critical565

measurement time points. Therefore, one to two measurements a week are sufficient, providing that the total566

number of measurements does not drop below eight data points (as fitting a shape constrained P-spline using the567

scam package to a time series with less than eight data points becomes to our experience challenging).568

4.4. Limitations of processing in stages569

A salient feature of our suggested approach is to proceed in several stages, starting with an analysis of time570

series per plot. Because of this feature, our approach does not explicitly account for gross day-dependent errors571

operating across all plots, although such errors represent an issue in real field data (Kronenberg et al., 2020b).572

Explicitly accounting for such errors while also modelling the temporal trajectory would require joint spatio-573

temporal modelling of the time series across all plots simultaneously. There are several approaches for spatio-574

temporal modelling of environmental data that could be used here. As we are using splines for modelling both575

the temporal and the spatial dimension, the most immediate option would be to use three-dimensional tensor576

spline smoothing (Wood, 2017; Verbyla et al., 2018; Pérez et al., 2020). However, most of these are rather577

more complex and computationally demanding and as such less suited for a seamless implementation for routine578

analysis.579

5. Conclusion580

Processing repeated plot-level measurements using a well-defined process and data model revealed insights581

on best practice in phenomics data handling. The results confirmed that HTFP measurements allow extracting582

genotype specific timing of key stages and quantities at defined time points. P-splines combined with the QMER583

method allowed extracting the timing of key stages and quantities at define time points with a precision that is584

suitable for, e.g., plant breeding purposes.585

Weighting turned out to be essential if processing HTFP data in stages, and linear mixed model analysis was586

suitable to account for heterogeneity introduced by not considered covariates. Clear restrictions of the proposed587

data processing strategy became obvious: Correlations between extracted traits cannot only arise from data, but588

also from the extraction method itself. Therefore, care has to be taken when interpreting such correlations.589

Yet, overall, the scientific community dealing with crop phenotyping has not come up with generally accepted590

procedures how to organize the workflow from raw data generation to extraction of physiologically meaningful591

results. Hopefully, the herein introduced modeling framework can contribute to achieving this aim; not only for592

the merit of increased scholarly knowledge generation, but in the interest of a more efficient workflow for crop593

breeding to improve global nutrition aspects in times of climate change.594
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Appendix595

5.1. Table: Simulation input parameters596

Table 2: Model input parameters for the simulation

Distribution Values Sources

θ C
i N

�

µ,σ2
�

Tmin: µ= 8, σ = 2 Kemp and Blacklow (1982)
Topt: µ= 18, σ = 2 Kemp and Blacklow (1982)
rmax: µ= 0.9, σ = 0.2 Own data

θ C
jk AR(1)row ⊗AR(1)range ρ = 0.95, σT =

σ

2
p

2
Velazco et al. (2017)

θ T
i N

�

µ,σ2
�

2016: µtPHstart
= 108, σtPHstart

= 2.8 Kronenberg et al. (2020a)
2017: µtPHstart

= 103, σtPHstart
= 3.0 Kronenberg et al. (2020a)

2018: µtPHstart
= 101, σtPHstart

= 3.1 Own data

2016: µtPHstop
= 165, σtPHstop

= 2.5 Kronenberg et al. (2020a)
2017: µtPHstop

= 162, σtPHstop
= 3.5 Kronenberg et al. (2020a)

2018: µtPHstart
= 158, σtPHstop

= 4.0 Own data

θ T
jk AR(1)row ⊗AR(1)range ρ = 0.95, σ = σPH

2
p

2
Velazco et al. (2017)

ejkt,1 AR(1)t ρ = 0.7, σm = 0.01 Roth et al. (2020)
ejk AR(1)row ⊗AR(1)range ρ = 0.7, σ = σm

50 Assumption
ejkt,2 N

�

µ,σ2
�

µ= 0, σ = σm
100 Assumption

5.2. Table: Median bias, variance and root-mean squared errors for the P-spline/QMER method597

Table 3: Genotype based bias, variance, and root-mean squared error (RMSE) for the key stages obtained using the P-spline/QMER method,
with weighting as option for the second and third stage of the three-stage model, and weighting as option for the second stage of the two-
stage model. Results report the median values over the 500 simulated datasets. For sake of completeness, plot-based median values for the
P-spline/QMER method are reported as well.

Trait Model Weighted? Bias Variance RMSE
Stage 2 Stage 3 (yday) (yday2) (yday)

tPHstart Plot-based -6.8 57.6 10.3

Three-stage no no -6.4 10.1 7.49
no yes -6.21 8.68 7.32
yes no -6.27 10 7.54
yes yes -5.97 9.09 7.55

Two-stage no - -0.417 2.01 4.44
yes - -0.37 2.07 4.41

tPHstop Plot-based -2.85 11.5 4.43

Three-stage no no -2.52 3.29 5.42
no yes -2.52 3.28 5.46
yes no -2.53 3.38 5.47
yes yes -2.54 3.42 5.49

Two-stage no - -0.11 2.5 5.6
yes - -0.139 2.58 5.66
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5.3. A thought on weighting for traits of the second category (timing of key stages)598

Splines can be thought of as polynomials, or other functions that are linear in the regression parameters,599

pieced together at the knots. Thus, to gain some insight, we here consider a quadratic polynomial as a simple600

concrete example: f (t) = µ+β1 t +β2 t2. We observe data yi(t) = f (t)+ ei (i = 1, . . . , n), where ei ∼N (0,σ2).601

The model is linear and can be written in general for as y = Xβ + e, where e ∼MVN (0, Inσ
2). Parameters can602

be estimated by ordinary least squares using β̂ = (X T X )−1X T y with603

var(β̂) = (X T X )−1σ2 . (19)

A prediction at a particular value of t is obtained from ŷ(t) = f̂ (t) = kT β̂ with kT = (1 t t2), and this has604

variance605

var(kT β̂) = kT (X T X )−1kσ2 . (20)

Now assume that the aim is to find the value of t at which the response f (t) is maximized. For simplicity,606

we take for granted that a maximum indeed occurs in the relevant range for t. At the maximum, the slope of607

the curve, i.e. the first derivative equals zero. This can be used to determine the optimal input level: ∂ f (t)
∂ t =608

β1 + 2β2 t = 0⇔ topt = −
β1
2β2

. This can be estimated by t̂opt = −
β̂1

2β̂2
.609

Now what can be said about the variance of this estimator, which would be needed for weighting? Here, we610

may use the delta method (Johnson et al., 1993) to find611

var( t̂opt)≈
�

∂ topt

∂ β1

�2

β1=β̂2

var(β̂1) +

�

∂ topt

∂ β2

�2

β2=β̂2

var(β̂2) + 2

�

∂ topt

∂ β1

�

β1=β̂1

�

∂ topt

∂ β2

�

β2=β̂2

cov(β̂1, β̂2) . (21)

From Equation 19, this is a linear function of σ2 . Now Equation 20 is also linear in σ2. This suggests that612

the weights for t̂opt will be positively associated with those for ŷ(topt). Exact proportionality cannot be expected,613

however, because whereas kT (X T X )−1k in Equation 20 is constant across plots, the variance in Equation 21614

depends on regression parameters that are plot-specific. However, so long as these parameters are not very615

variable between plots, the association between weights for t̂opt and ŷ(topt) may be expected to be positive and616

high.617
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