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Abstract 5 

Applications in synthetic and systems biology can benefit from measuring whole-cell response to 6 

biochemical perturbations. Execution of experiments to cover all possible combinations of 7 

perturbations is infeasible. In this paper, we present the host response model (HRM), a machine 8 

learning approach that takes the cell response to single perturbations as the input and predicts the 9 

whole cell transcriptional response to the combination of inducers. We find that the HRM is able 10 

to qualitatively predict the directionality of dysregulation to a combination of inducers with an 11 

accuracy of >90% using data from single inducers. We further find that the use of known prior, 12 

known cell regulatory networks doubles the predictive performance of the HRM (an R2 from 0.3 13 

to 0.65). This tool will significantly reduce the number of high-throughput sequencing 14 

experiments that need to be run to characterize the transcriptional impact of the combination of 15 

perturbations on the host.  16 

Introduction 17 

Cells enact complex dynamics in response to environmental and biochemical perturbations. The 18 

perturbation can have a widespread effect so as to alter the dynamics of the whole cell through 19 

cascading effects that span through a cell’s regulatory network. Combinations of the biochemical 20 

perturbations are thus not additive and can trigger complex responses such as heat shock 1,2, 21 

osmotic shock 3,4, or sudden shifts in nutrient availability 5,6. Given the complexity of these 22 

responses to these perturbations, prior studies in perturbed whole cell response examine the role 23 

of a specific well-known biophysical perturbation, for which there is a natural intuition or 24 
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sensible alignment with known biophysical mechanisms 7,8,9 . These experiments are carefully 25 

performed, driven by biophysical knowledge and hypothesis-based modeling. 26 

 27 

A natural extension of this research is to examine how the whole cell responds to inputs that are 28 

foreign to the natural workings of the cell. Further, suppose that a cell was presented with 29 

multiple inputs, each of which lent biophysical insight, but the goal was to predict how the cell 30 

responded combinatorially to these inputs. The scale of experiments required to measure 31 

response in such a combinatorially large condition space is infeasible in terms of cost, labor, and 32 

time. In such a setting, there is great value in developing discovery-based approaches for 33 

spotlighting biophysical mechanisms using data-driven algorithms10, such as nonlinear 34 

modeling11  or machine learning12.   35 

 36 

A domain that has grappled with modeling of combinatorially large condition spaces for 37 

prediction of specific cell response is that of drug combination/synergy prediction 12,13. Machine 38 

and deep learning techniques are widely used to model pharmacodynamic and pharmacokinetic 39 

parameters of a drug and identify biomarkers of drug response given a large corpus of drug and 40 

response features 14–17. The techniques used in these efforts require large training datasets that 41 

consist of specific cell responses to tens of thousands of drugs, a condition space that is often too 42 

large for high-throughput omics measurements, such as RNASeq, which provide insight into the 43 

whole-cell response. The ubiquity of high-throughput sequencing offers an opportunity to 44 

revolutionize the modeling of whole cell transcriptional response.  45 

 46 
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The ubiquity of high-throughput sequencing offers an opportunity to revolutionize the modeling 47 

of whole cell transcriptional response. A measure most often used to qualitatively and 48 

quantitatively assess a transcript’s response is its dysregulation as compared to a control. 49 

Differential expression analysis (DEA) is a standard bioinformatics technique that measures 50 

response to perturbations as compared to a control condition18. DEA conducts custom 51 

normalization, dispersion modeling, and Bayesian optimization to account for biological and 52 

experimental variability in the data. It quantifies the transcriptional response to a perturbation in 53 

terms of fold-change and measures its statistical significance. Data-driven prediction using 54 

machine learning of transcription to date, however, has been limited to expression level 55 

predictions from sequences or images 19-20.These techniques are prone to generalization errors 56 

that can arise from artifacts of normalization of counts data across experiments with 57 

combinatorically large condition spaces21.  58 

 59 

In this paper we present the host response model (HRM), a machine learning model that can 60 

predict whole-cell transcriptional response to a combination of biochemical perturbations using 61 

transcriptional response data from single perturbations. Biochemical perturbations, in this 62 

context, amounts to inducing a cell with a chemical. The HRM combines high-throughput 63 

sequencing with machine learning to infer links between experimental context, prior knowledge 64 

of cell regulatory networks, and the RNASeq data to predict differential expression of a gene. 65 

The HRM was tested in two organisms, Escherichia coli MG1655 (E. coli) and Bacillus subtilis 66 

Marburg 168 (B. subtilis). E. coli is a well-studied and characterized Gram-negative bacteria that 67 

served as a proof of concept in the development of the HRM. B. subtilis is a well characterized 68 
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and frequently used model organism for Gram-positive bacteria that was used to pressure test the 69 

HRM. For conciseness, the figures for E. coli are provided in Supplementary information. 70 

Results 71 

Training and Validation of a Machine Learning Model 72 

In this study, we train and test a model per organism with embeddings of prior known 73 

transcriptional networks of the host cells to train three machine learning models for 74 

combinatorial prediction of DEA from single inducers (Figure 1A). The best performing model 75 

was selected using a validation dataset from two double-inducer conditions at two time points. 76 

Experiments are then conducted with all remaining inducer combinations at two time points to 77 

test the best performing model (in total 18 experimental conditions, 136 samples) (Figure 1B).  78 

 

Figure 1: (A) Host response model experiment and knowledge integration for machine learning 
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training and validation. For B. subtilis, RNASeq data was generated for single inducer 

conditions at each time point and passed through a configuration based differential expression 

analysis pipeline. Three machine learning models were validated with two held out pairs of 

inducer combinations. (B) The best model for the HRM is selected and tested with experiments 

run from all remaining combinations of inducers. 

The HRM is formulated as a transcriptional dysregulation model trained with differential 79 

expression data and prior knowledge of gene networks of the host. The full set of conditions and 80 

samples collected for the training, validation, and test sets can be found in Supplementary Table 81 

1 and a detailed description of the model can be found in the Methods section.  82 

 83 

Training data for E. coli included used EColiNet22 as the prior gene network and experimental 84 

data that consisted of two inducers, Isopropyl β-d-1-thiogalactopyranoside (IPTG) and arabinose 85 

at four time points (5, 6.5, 8,18 hours). The test set was made up of the combination of the two 86 

inducers at all four time points. The non-induced, earliest time point (5 hours) was used as a 87 

control condition to measure host response using DEA for both training and testing data 88 

(Supplementary Figure 1). Training data for B. subtilis consisted of a transcriptional regulatory 89 

network23 with experiments at two phases of growth (log and stationary), and four inducers: 90 

IPTG, cuminic acid (CA), vanillic acid (VA), and xylose. The data was passed through a QC and 91 

DEA pipeline which removed low-quality samples and genes (Supplementary Table 2). 92 

 93 

A challenge faced by the HRM is that the number of differential expression comparisons can 94 

have many factors, and thus, many design formulas. A Python-based configurable toolkit, which 95 

we call omics_tools, that parallelizes the execution of DEA for the large condition space was 96 
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developed to address this challenge. The tool aggregates the outputs from the parallelized runs 97 

and combines all the data into a single unified dataset where each row represents a gene, it’s 98 

differential expression, statistical significance, and the condition for downstream machine 99 

learning. Omics_tools uses edgeR24 to conduct DEA across the set of design variables. A control 100 

condition of non-induced at the earliest time point was used to quantify the impact of induction 101 

and time. The same control condition was measured for all runs of the experiment that made up 102 

the training, validation and test set of data. The training corpus was formatted as follows: rows 103 

represented genes in each experimental condition, while columns consisted of features of the 104 

condition space, the node embedding features for the gene, and finally, the log fold change and 105 

associated statistical significance of the gene in the condition as compared to the control. The 106 

data can be found with the tutorial.  107 

 108 

We find, surprisingly, a subspace representation of the individual responses enables prediction of 109 

response to combination of inputs. Qualitative performance of the model was measured as the 110 

number of dysregulated genes whose direction (up/down) was predicted correctly. Quantitative 111 

performance was measured with an R2 metric comparing predicted versus actual fold-changes on 112 

a logarithmic scale.  113 

HRM Predicts Transcriptional Response for E. coli 114 

The first question to address was whether the set of differentially expressed genes had a large 115 

overlap between the train and test set. If so, then the task of machine learning would likely be 116 

trivial. We measured the Jaccard similarity between the set of genes of pairs of conditions to 117 

estimate the overlap (Supplementary Figure 2). The overlap between the conditions has a median 118 
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of 0.2 with a standard deviation of 0.25, indicating a significant difference between the train and 119 

test differentially expressed genes (DEGs).  120 

 121 

Three machine learning models were trained in two ways: using only genes present in the prior 122 

gene network versus using the whole transcriptome. To measure the impact of prior knowledge 123 

on the model, the best performing machine learning model with prior knowledge was selected 124 

and trained without prior knowledge to be used as a control. The criterion to label a gene as a 125 

DEG for E. Coli are genes with absolute log2(Fold Change) >1.1 and an FDR of <0.01. 126 

Qualitatively and quantitatively it was clear that machine learning could accomplish the task, but 127 

the impact of prior knowledge was marginal for E. coli (Table 1).  128 

 129 

Table 1: E. coli results of qualitative and quantitative predictions for three different models using 130 

two training methods as compared to a control method for model selection. 131 

Model Name 

Prior Networks 

Used? Training Method Qualitative Quantitative 

Gradient Boosted Regression Yes Genes only in network 58.39% 0.104 

Gradient Boosted Regression Yes Whole Transcriptome 58.07% 0.103 

Linear Regression Yes Genes only in network 51.85% 0.007 

Linear Regression Yes Whole Transcriptome 51.73% 0.006 

Random Forest Regression Yes Genes only in network 90.20% 0.887 

Random Forest Regression Yes Whole Transcriptome 87.66% 0.846 
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Random Forest Regression No Control 89.59% 0.829 

 132 

Quantifying Prior Knowledge Impact for B. subtilis 133 

Similar to the validation framework of E. coli, all single inducers and a subset of the double 134 

inducer data was used to train/validate the model (Table 2). Prior knowledge has a profound 135 

impact on the B. subtilis predictions showing that models trained and tested with genes only 136 

present in the prior network achieves >90% accuracy. Most interestingly, a model that does not 137 

use any prior knowledge of the host network achieved an R2=0.306, while one that used prior 138 

knowledge achieved R2=0.708, a 2.5x increase in performance.  139 

 140 

Table 2: B. subtilis results of qualitative and quantitative predictions for three different models 141 

using two training methods as compared to a control method for model selection.  142 

Model Name 

Prior 

Networks 

Used? Training Method Qualitative Quantitative 

Gradient Boosted 

Regression Yes Genes only in network 51.20% 0.227 

Gradient Boosted 

Regression Yes Whole Transcriptome 50.43% 0.194 

Linear Regression Yes Genes only in network 47.24% 0.031 
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Linear Regression Yes Whole Transcriptome 47.27% 0.029 

Random Forest Regression Yes Genes only in network 90.42% 0.917 

Random Forest Regression Yes Whole Transcriptome 78.52% 0.708 

Random Forest Regression No Control 53.04% 0.306 

 143 

The discrepancy with E. coli can be explained by the heterogeneity of transcriptional response to 144 

the larger set of induction conditions. We computed a rank, or Spearman, correlation between the 145 

train and test induction conditions across all time points for both organisms. Specifically, this 146 

would be three comparisons for E. coli (double induced to none and single induced) and 39 147 

comparisons for B. subtilis (single induced to all combinations).  A distribution of the statistic is 148 

shown in Supplementary Figure 3. The larger distribution observed in the conditions of B. 149 

subtilis versus E. coli explains the impact of prior knowledge. 150 

Testing the HRM with All Inducer Combinations in B. subtilis 151 

The best performing machine learning model, the random forest regressor, for the whole 152 

transcriptome was selected to test all remaining combinations. Specifically, predictions at 153 

remaining double, triple, and quadruple inducer conditions at the two time points were both 154 

qualitatively and quantitatively evaluated (Figure 2). Certain conditions could not be evaluated 155 

because there were less than two replicates that passed quality control (QC) (Supplementary 156 

Table 2 and Discussion for more details).  157 
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Figure 2: Predictions of transcriptional response -- log2(Fold change) -- for B. subtilis at 18 

hours for over 2,000 genes. Conditions tested do not overlap with training and validation sets. 

Missing conditions are due to sample quality control. Red points are genes that are not 

differentially expressed while green genes are ones that are differentially expressed. 

The model always maintained its performance within statistical error as the number of inducer 158 

combinations increased (Figure 3A). Stationary phase predictions showed less variability and 159 

achieved >90% accuracy. The cells in log phase were of lower quality exhibiting lower OD and 160 

RNA integrity (Supplementary Figure 4) across all inducer conditions.  161 

 162 

11 
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163 

Figure 3: (A) Qualitative predictive performance of predictions on B. subtilis test set as it varies 164 

by the  number of inducers. The performance stays within statistical error as the number of 165 

inducers increase. (B-C) Confusion matrices at 5 and 18 hours post-induction indicate that the 166 

model predicts more down-regulated genes as up-regulated. (D) The number of up and down 167 

regulated genes across inducers and time-points show 2x more up-regulated genes than down-168 

regulated genes at 5 hours which indicates a large class imbalance. The distribution is more 169 

evenly balanced at 18 hours. (E) Quantitative error analysis shows most of the errors occur at 170 

|log2(Fold change)|<2.1 or when the gene is not present in the network. As a matter of fact, the 171 

gene’s not present in the network place an upper bound on the performance of the model. 172 

 173 

Confusion matrices to assess the qualitative predictions show that the model had a more difficult 174 

time predicting up-regulated genes at both time points (Figure 3B, 3C). Namely, there are more 175 

up-regulated genes predicted as down-regulated than there are down-regulated predicted as up-176 

regulated. We should note that the log phase of growth had double the number of up-regulated 177 

genes as down-regulated ones (Figure 3D), commonly known as a class imbalance. This 178 

provides an opportunity to get more up-regulated genes incorrect at that phase. When the class is 179 
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balanced, as in the stationary phase, the model’s predictions improve but hit an upper bound 180 

which will be explained in the quantitative assessment. 181 

Quantitatively, the relative error is normally distributed with larger error at smaller 182 

dysregulations as those changes are harder to detect and predict. Genes with no network context 183 

available were mapped to a single point in the embedding space and so the model always 184 

predicted a constant value for all those genes (Figure 3E). The network is composed of 2,608 185 

genes from the total 4,266 genes in our reference strain. While this is >50% of the genome, genes 186 

with no network information make up only 25% of the DEGs. Even so, these genes make up the 187 

majority of qualitatively incorrect predictions and have greater than a single fold error (Table 3). 188 

This results in an upper bound on the performance of a model as the majority of the model’s 189 

errors are due to a lack of network context for certain genes.  190 

 191 

Table 3: Number of incorrect predictions with greater than a single fold change error are 192 

primarily made up of genes with no embedding information.  193 

Number of 

Inducers in 

Test 

Conditions 

Total 

number of 

predictions 

Number of Incorrect 

Predictions due to 

absence of gene in 

network 

Number of Incorrect 

Predictions due to 

presence of gene in 

network 

Percent of Total 

Incorrect predictions 

due to absence of 

gene in network 

2 3,765 1,016 134 88.4% 

3 4,050 1,092 142 88.5% 

4 1,240 313 41 88.4% 

 194 
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4 Discussion 195 

In this paper, we present a machine learning model enriched with features from prior, known 196 

transcriptional networks to qualitatively and quantitatively predict dysregulation of genes to a 197 

combination of induction conditions at two phases of growth. We showed that the use of a prior 198 

host network adds useful information to a model for it to make predictions of gene dysregulation 199 

for unseen combinations of induction conditions.  200 

 201 

A natural next question one would have is how our predictions would impact analyses 202 

downstream of DEA, like enrichment analyses. These analyses help researchers gain mechanistic 203 

insight into gene lists generated from DEA 30. The goal here is to see how different the 204 

mechanistic insights would be if a researcher uses the HRM’s predictions from what they would 205 

have observed if they executed the experiments. To answer this question, we added annotations 206 

to the B. subtilis genes using SubtiWiki 31 to conduct enrichment analysis of predicted versus 207 

observed DEGs. No gene cluster file was publicly available to use standard enrichment tools. We 208 

created a gene cluster file using data from SubtiWiki (Supplementary Data 2) and used gene set 209 

enrichment analysis 32,33 to identify up and down regulated pathways for each condition (Figure 210 

4A). We evaluate the predictions by measuring the number of False Negatives (pathways that are 211 

down regulated, but we predict it is not down regulated), False Positives (pathways that are not 212 

down regulated, but we predict are down regulated), True Negatives (pathways that are not down 213 

regulated and we do not predict them to be down regulated), and, finally, True Positives 214 

(pathways that are downregulated and we predict them to be down regulated) (Figure 4B). The 215 

same assessment is made for each test condition on the upregulated pathways (Figure 4C). As 216 

one would expect, the inducers do not regulate many pathways and the model correctly identifies 217 
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most of those pathways (gray boxes). Every row is a level 2 category in SubtiWiki that is 218 

composed of multiple pathways. The number in each box represents the number of pathways in 219 

the category. 220 

 221 

222 

Figure 4: (A) Pathway analysis comparison of actual versus predicted set of DEGs using a gene 223 

cluster file derived from SubtiWiki. (B-C) Level 2 categories of annotations in the database 224 

composed of multiple down and up regulated pathways. The numbers inside each colored box 225 

indicates the number of pathways that were FP, FN, TP, TN. As expected, the inducers do not 226 

impact a majority of the pathways and the model accurately identifies those pathways.  227 

15 
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 228 

Each pathway consists of a set of genes. Pathway analysis uses a statistical test (like a Fisher’s 229 

exact test) to identify dysregulated pathways by comparing the list of DEGs to each pathway's 230 

gene set. Thus, we should also check the precision of identifying the regulation of a pathway. 231 

This amounts to seeing how the predicted DEGs compare to the observed DEGs to identify if a 232 

pathway is up or down regulated. We picked a False Positive (FP), False Negative (FN), and 233 

True Positive (TP) sporulation pathway to assess the precision of the predictions (Figure 5).   234 

The FP was selected from the CA+xylose condition, while the FN and TP were selected from the 235 

IPTG+CA+VA+xylose condition, all at 18 hours. The genes that are in the bottom left quadrant 236 

of each plot are the ones that contribute to the pathway’s down-regulation status in both 237 

predicted and actual settings. The genes in the top left quadrant contribute to the down-regulation 238 

status of the pathway for predicted models but not in the observations. Finally, the genes in the 239 

bottom right quadrant contribute to the pathway’s down-regulation from the observations but not 240 

from the predicted model. The vertical set of orange genes are ones that are not present in the 241 

network and so the model predicts a constant for those expression values. The horizontal set of 242 

green genes are genes that did not pass QC and thus could not be validated. As indicated in the 243 

results section, these genes make up the majority of the genes that can be attributed to the 244 

enrichment errors. It is clear from this analysis that future work should consider jointly 245 

optimizing for differential expression as well as pathway inclusion. 246 

 247 
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248 

Figure 5: Predicted versus actual Log2(Fold change) of three pathways within the sporulation 249 

category that is a FP, TP, and FN. The genes in the top left quadrant contribute to the down-250 

regulation status of the pathway for predicted models but not in the observations. Finally, the 251 

genes in the bottom right quadrant contribute to the pathway’s down-regulation from the 252 

observations but not from the predicted model. The set of orange genes are ones that are not 253 

present in the network and so the model predicts a constant for those expression values. The 254 

horizontal set of green genes are genes that did not pass QC and thus could not be validated. 255 

Methods 256 

Two Stage Learning Model to Predict Differential Expression 257 

The goal to predict transcriptional response in a combinatorically large condition space from 258 

single conditions makes an end-to-end learning model with many free parameters underspecified 259 

and prone to generalizability errors25. To address this issue, we instead used a two stage learning 260 

process:  261 

1. Node embedding of Prior Knowledge: We applied the node2vec algorithm to derive 262 

vector features from the network that could be used in the downstream learning task26. 263 

17 
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node2vec was selected because it is an unsupervised learning technique that balances depth 264 

and breadth first searches using a random walk to preserve both local and global 265 

connectivity structures of the genes in the network27–29. It can be parameterized by the 266 

length of the walks and the number of walks one takes from each node. A skip-gram model 267 

is then used to generate the vector embeddings in RN, in our case N was 32. We chose N=32 268 

after an assessment of model predictions on the train/validation set sweeping N between 8, 269 

16, 32, and 64. The performance was not statistically different and so we chose a parameter 270 

that was large enough to provide the model with degrees of freedom to generalize but small 271 

enough to ensure the model does not overfit. We should note that the network need not be 272 

for the exact strain being used, but should have significant genomic overlap. In our case, the 273 

overlap of EColiNet vs the genes in the MG1655 strains was 3818/4111 genes, and for B. 274 

subtilis was 2608/4266, which is >50% for each organism. Genes that were not present in 275 

the network were mapped to the origin in R32.  276 

2. Machine Learning Models: We trained three machine learning models, a gradient boosted 277 

regressor, a linear regressor, and a random forest regressor, for their ability to predict the 278 

differential expression of a gene given the conditions of measurement and the derived 279 

network features. The models were trained on a regression task to minimize the error 280 

between predicted differential expression and the observed differential expression for a 281 

host’s response to single inducers. The induction conditions were one hot encoded to enable 282 

the representation of multiple induction conditions. Since there were so few timepoints for 283 

E. coli and B. subtilis, it was not treated as a continuous variable and was also one hot 284 

encoded.  285 

 286 
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The output predictions were evaluated using an R2 metric comparing predicted to actual 287 

differential expression in log2(Fold Change). We should note that only genes that were 288 

differentially expressed were used to measure R2 as those are the ones most significant in 289 

differential expression analysis. For E. coli, we defined a gene to be differentially expressed if it 290 

had an absolute magnitude of log2(Fold Change) >1.1 and FDR of <0.05, while for B. subtilis 291 

We defined a gene to be differentially expressed if it had an absolute magnitude of log2(Fold 292 

Change) >2.1 and FDR of <0.05. 293 

Sample Preparation and Processing 294 

Wild type strains for B. subtilis (Bacillus Subtilis 168 Marburg) and E coli (E. coli K-12 295 

MG1655) were cultured in M9 media consisting of 1X M9 media salts, 0.1mM CaCl2, 1X Trace 296 

Salts, 1mM MgSO4, 0.05mM FeCl3/0.1mM C6H8O7, 0.2% Casamino Acids, and 0.4% 297 

Glucose.  The inducers used in this study were isopropyl β-D-1-thiogalactopyranoside (0.001 298 

M), arabinose (25mM), vanillic acid (0.001 M), cuminic acid (0.0001 M), and xylose (1%). 299 

 300 

Glycerol stocks were inoculated into M9 media in shake flasks, and the culture was grown 301 

overnight for 18h at 30�°C and 1000rpm. The following day, cultures were diluted to OD 0.1 in 302 

fresh M9 media and grown in 96-well plates under the same conditions for 3 h. For induction, 303 

cells were diluted a second time to OD 0.05 in the presence of inducers. Plates were incubated at 304 

30�°C and 1000 rpm for 5 h and 18 h and cultured cells were harvested and fixed with either 305 

RNA protect (for E. coli) or methanol (B. subtilis).  306 

 307 
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Total RNA was extracted using Magjet RNA extraction kit (Thermo) according to 308 

manufacturer's instructions. RNA quality was assessed using Tapestation (Agilent). KAPA RNA 309 

Hyperprep kit (Roche) was used for ribosomal RNA depletion and Illumina compatible library 310 

preparation. Prepared library was loaded on a Illumina sequencer to generate 150bp paired end 311 

reads. 312 

 313 

Raw RNA-seq data was trimmed and quality filtered with trimmomatic (v0.36), reads were 314 

aligned with bwa (v0.7.17). After alignment with bwa, the resulting sam files were sorted by 315 

PICARD tools (v2.18.15) function SortSam, and then AddOrReplaceGroups is run on the sorted 316 

sam. Gene-level quantification of counts was performed using the featureCounts function of 317 

Rsubread (v1.34.4).  318 

Samples and Transcript Quality Control for B. subtilis 319 

A measure most often used to qualitatively and quantitatively assess a transcript’s response is its 320 

dysregulation as compared to a control. Differential expression analysis (DEA) is a standard 321 

bioinformatics technique that measures this response to perturbations as compared to a control 322 

condition 19. DEA conducts custom normalization, dispersion modeling, and Bayesian 323 

optimization to account for biological and experimental variability that is present in 324 

transcriptional counts data to quantify the transcriptional response to a perturbation and measure 325 

its statistical significance. While this method overcomes generalization errors that can arise from 326 

artifacts of normalization of counts data across experiments, it performs strict quality control 327 

(QC) at both the sample and gene level. These are listed below: 328 
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1. Sample QC = The significance tests to reject the null hypothesis of the differentially 329 

expressed genes require > 2 samples per condition. If this criterion is not met then DEA 330 

cannot be conducted. 331 

2. Gene QC = DEA tools fits the Cox-Reid profile-adjusted dispersion to a set of 332 

normalized expressions across conditions. Genes that do not fit this profile are labeled as 333 

outliers and removed from DEA.  334 

Three Boolean metrics were used to measure sample quality:  335 

1. Number of mapped reads ≥ 500K  336 

2. Count of all annotated genes ≥500K 337 

3. Replicate correlation of a condition >0.9 338 

 339 

If any of these metrics did not pass, the sample would be flagged as a low quality sample and not 340 

used for downstream analysis. For the B. subtilis experiments, we also collected OD600 341 

measurements from a plate reader to correlate population with potential sample dropouts. We did 342 

not find a clear, discriminative correlation between this measurement and sample dropout for a 343 

condition, but the log phase measurements (timepoint 5.0) did have a lower OD on average and 344 

had twice as many samples that did not pass QC than stationary phase samples (timepoint 18.0). 345 

In conditions where only two replicates were available, differential expression analysis was not 346 

conducted and so those conditions could not be validated (Supplementary Table 2). All single 347 

inducer conditions for B. subtilis that passed QC were used to train the model. It should be noted, 348 

though, that if a sample passed QC, that did not mean all genes in that sample passed edgeR’s 349 

outlier detection method. edgeR fits normalized counts to a Cox-Ried dispersion model with a 350 

Bayseian optimization algorithm. A gene is removed by edgeR if it does not fit this dispersion 351 
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model. While one can pass in a custom dispersion model per condition, we chose to use edgeR’s 352 

default, as development of custom noise models across the condition space was out of scope of 353 

this effort (Supplementary Table 3).  354 
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Data and Code Availability 362 

The manuscript is accompanied with three code repositories that are fully documented with 363 

example python notebooks. The data for the publication is placed with the tutorials to ensure 364 

reproducibility of results.  365 

1. A repository that includes the capability to train, validate, and test a machine learning 366 

model in a combinatorically large condition space.  https://github.com/sd2e/CDM 367 

2. A repository that includes a scaled, configurable differential expression analysis pipeline: 368 

https://github.com/SD2E/omics_tools. 369 

3. A test-harness for machine learning models to make apples-to-apples comparisons of 370 

training and testing models: https://github.com/SD2E/test-harness 371 
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