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Abstract 

Omics data identifies biological characteristics from genetic to phenotypic levels during 

the life span. Molecular interaction networks have a fundamental impact on life activities. 

Integrating omics data and molecular interaction networks will help researchers delve into 

comprehensive information underlying the data. Here, we proposed a new multimodal method 

called AutoGGN to aggregate multi-omics data and molecular interaction networks based on 

graph convolutional neural networks. We evaluated AutoGGN using two different tasks: 

cancer type classification and single-cell stage classification. On both tasks, AutoGGN 

showed better performance compared to other methods, the trend is relevant to the ability of 

utilizing much more information from biological data. The phenomenon indicated AutoGGN 

has the potential to incorporate valuable information from molecular interaction networks and 

multi-omics data effectively. Furthermore, in order to provide a better understanding of the 

mechanism of prediction results, we assessed the explanation using SHAP module and 

identified the key genes contributing to the prediction of classification, which will provide 

insights for the downstream design of biological experiments. 

Keywords: Multiple-omics Data, Molecular Interaction Network, Graph Convolution 

Network, Deep Learning, Cancer Type Classification, Single-Cell Stage Classification.   

Introduction 

In recent years, high-throughput biomedical technologies such as whole genome 

sequencing, transcriptome sequencing, Hi-C sequencing and LC-MS-based sequencing, have 

been widely used in biological research, drug development, and precision medicine1,2. 

Integrating multi-omics data generated from those omics assays, especially comprehensive 

genomic and transcriptomic data, boosts research and innovation in personalized drug design 

and precision medication across various research institutions, hospitals and companies3. In 
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pharmaceutical companies, multi-omics data are particularly useful in mining potential drug 

targets and identifying cancer-related genes4, which making it indispensable for Research and 

Development (R&D) process5. In the area of precision medicine, integrating gene mutation 

and expression profiles to identify molecular subtypes of breast cancer will deliver 

personalized treatment and improve patient care6. The integration of multi-omics features can 

help researchers obtain a comprehensive picture of life development, and establish a deeper 

understanding of the pathogenesis, development process and molecular mechanisms of 

diseases.  

Deep learning (DL) has demonstrated potential in mining complex and heterogeneous 

biological data7. DL networks such as feedforward fully-connected neural network (FFNN) 

and randomly-wired residual fully-connected neural network (RRFCN) have already been 

proven as efficient approaches on omics data analysis8–10. These algorithms are powerful for 

interpreting omics data through fully-connected neural networks, which can form a 

classification decision from samples with omics features9,10.  

Meanwhile, molecular networks are also important in understanding the growth of 

complexity from simplicity in molecular and biomolecular systems11. For example, the 

synthesis of proteases instructed by corresponding genes can catalyze metabolic reactions like 

lipid degradation12. All types of inter and intra-omics interactions form a large and complex 

biological regulatory network. Therefore, integrating molecular networks and omics data will 

provide deeper and comprehensive insights into the biological mechanisms associated with 

the interesting biological problem.  

Recently, the rise of graph deep learning provides new insights in analyzing graph data, 

such as social networks13 and consumer-product graphs14. Graph-based deep learning (GDL) 

has been proven to be efficient in inference tasks including node, edge or graph classification, 

making it one of the hottest topics in machine learning. However, the application of GDL in 

the biological network and omics data is far less, more researches are needed to dig into the 

power of GDL15,16. 

In this paper, we proposed a multimodal method, called AutoGGN, to integrate 

biological networks and omics data using graph convolutional neural networks. AutoGGN 

tends to explore the hidden biological patterns behind omics data and biological networks, 

improving the performance in downstream biological tasks. Specifically, we demonstrated the 

effectiveness of AutoGGN in but not limited to predicting the cancer subtypes in patients and 

the development stage of single cells through two example datasets that integrate 

single/multi-omics data with protein-protein interaction networks, respectively. The 

contribution of this study is manifested not only in its innovation of integrating omics data 
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with biological networks but also in its effect on enhancing the application of graph-based 

deep learning in life science fields. 

Results 

Integrating Biological Networks with Omics Data Based on Graph 
Convolutional Neural Network 

Fully-connected neural network showed powerful ability in analyzing omics data and 

achieved better performance in some tasks9,10, but its ability of handle biological networks is 

limited. AutoGGN, a multimodal method using graph convolutional neural network proposed 

by us, could integrate molecular interaction networks with omics data (Figure 1) efficiently. 

To get a better representation of omics features, each omics data was mapped to higher 

dimensions by embedding in AutoGGN. Then different omics channels were concatenated to 

form a high dimensional multi-channel matrix. For the molecular interactions of omics 

features obtained from STRING17, AutoGGN transformed all the feature interaction pairs to 

an adjacency matrix. Afterward, graph convolution neural networks18 was adopted to 

convolve the molecular interaction network with the high-dimensional omics data matrix, 

with the purpose of fusing relation of features and expression of features deeply. After the 

step, both features of omics data and information of molecular interaction networks were 

incorporated into the new fusion matrix. Then a traditional convolution operation was 

performed on the fused matrix and the embedded omics feature matrix separately. The kernel 

size of the convolution layer was set to 1, intending to merge each feature from different 

omics separately. Then AutoGGN combined the convolution results from the fused matrix 

and embedded omics data matrix by channels. It covered the maximum amount of 

information from omics data and molecular interaction networks. The combined convolution 

data would be helpful for extracting biological features as well as linking to other operators 

such as attention layer, gating layer, drop out, and fully connected layer, depending on the 

type of tasks applied (Figure 1A). 

AutoGGN illustrated an innovative approach to integrate molecular interaction networks 

and multi-omics data through graph convolution neural network. It could also be implemented 

to solve various biological and medical problems (Figure 1B), including patient stratification, 

patient survival prediction, biomarker identification and drug sensitivity prediction. In this 

study, we evaluated AutoGGN on two classification tasks in biology and compared the model 

performance with other published methods, such as MLP in AutoKeras19, RFCN in 

AutoGenome9, AutoOmics10. The first case is a cancer type classification task, which involves 

9,000 patient samples covering 24 cancer types and two types of omics data (gene mutation 

and gene expression). The other task is aimed to classify the embryonic developmental stages 
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of mouse single cells. The datasets consist of the gene expression profiles of 1000 single-cell 

samples covering 10 embryonic stages. 

Validation of AutoGGN on Two Tasks 

Case 1 – Cancer Type Classification.  

In the cancer type classification task, 5’780 out of 9’000 patient samples from TCGA20 

database (https://www.cancer.gov/tcga) had both gene expression and gene mutation data. 

The patient samples covered 24 cancer types, 5’769 gene features were identified in both gene 

mutation and gene expression profiles. Based on the protein interaction network obtained 

from STRING17, 260’104 interactions were gotten, including co-expression, co�occurrence, 

gene fusion.  

 We first applied AutoGGN on the cancer type classification by integrating the protein 

interaction network and gene expression data of cancer patient samples. A classification 

model were gotten for 24 cancer type prediction after model training and parameter 

auto-searching. The performance were evaluated and compare between AutoGGN, 

XGBoost21, AutroKeras19 and AutoGenome9 by an independent test data, AutoGGN achieved 

the best accuracy – 0.968, which outperformed XGBoost21 (0.911) and AutoKeras19 (0.910) 

by 5 percentage point and AutoGenome9 (0.963) by 0.5 percentage point (Figure 2A).  

Continually, multiple omics data (both the gene mutation and gene expression data) of 

patient samples and interaction network were further integrated by AutoGGN. The 

classification accuracy was 0.982, which was higher than the accuracy 0.968 achieved using 

single-omics and interaction network. Therefore, AutoGGN outperformed AutoOmics10 by 

one percentage point (Figure 2A), which used multi-omics data as input solely. The detail 

accuracy for each cancer type was showed in a confusion matrix of AutoGGN (Figure 2B). In 

general, the classification accuracy was nearly to 1.00, illustrating AutoGGN was able to 

distinguish the cancer types for most samples with higher resolution. 

Case 2 – Single-cell stage classification.  

In single-cell stage classification experiment, a gene expression dataset of mouse single 

cells covering 10 different cell developmental stages22 was used to evaluate performance of 

AutoGGN. After data preprocessing (Details in Methods), expression profiles of 18’379 

genes for 10’000 single cell samples were gotten. Based on the interaction data from 

STRING17, 167,188 protein-protein interaction pairs of high combination score among these 

genes were collected.  

AutoGGN were used to integrate gene expression data and molecular interaction 

networks of the single-cell samples by graph convolution network. And the performance was 

assessed by accuracy of classification for single cell stages. Best performance was also 
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achieved by AutoGGN with the accuracy 0.964, which outperformed XGBoost21 and 

AutoKeras19 by 5 and 6 percentage point respectively, and was slightly higher than the 

accuracy of 0.963 achieved by AutoGenome9. Confusion matrix (Figure 2D) showed the 

detailed accuracy for each cell developmental stages predicted by AutoGGN.  

Taken together, AutoGGN achieved highest accuracy on both cancer type classification 

and single-cell stage classification tasks. Model performance is relevant to the degree to 

which models were able to utilize and analyze biological data effectively. Furthermore, 

AutoGGN demonstrates the potential of graph convolution neural network on integrating the 

information from different types of omics data and molecular interaction networks, and 

achieved a better performance than other models using merely single-omics data or 

multi-omics data. 

Explain Prediction for AutoGGN using SHAP 
Many researchers argued that neural networks has the “black-box” nature23–25, which 

cause poor interpretation of the models despite the high performance they achieve. Explaining 

and understanding model predictions is equally important besides improving model 

performance26. To alleviated the “black-box” problem brought by deep learning models, we 

introduced SHapley Additive exPlanations (SHAP)27 module into AutoGGN. Given a deep 

learning model, SHAP would calculate the marginal contribution for each feature to the 

overall predictions, which was referred as SHAP value. By incorporating SHAP into the 

model, AutoOmics was able to visualize the SHAP value distributions of each gene to the 

predicted classes (Figure 2E), and the feature importance of each gene to the predicted classes 

(Figure 2F). These visualizations could provide meaningful insights towards the deep learning 

models. 

For the single cell embryonic developmental stage classification task, AutoGGN 

outputted  and visualized the top important genes for the classification of developmental 

stages based on SHAP value (Figure 2E, Figure 2F). We did extensive literature review and 

found most genes in the top gene list ranked by SHAP value (Figure 2E) were key factors 

during embryonic development. For example, the protein encoded by Tdgf1, the top 1 ranked 

gene in the list, is an extracellular, membrane-bound signaling protein that plays an essential 

role in embryonic development and tumor growth28. The top 2 ranked gene – Pou5f1, encodes 

a transcription factor containing a POU homeodomain that plays a key role in embryonic 

development and stem cell pluripotency29. Another example was the top 4 ranked gene – Fgf5, 

encodes a protein possessing broad mitogenic and cell survival activities, which is involved in 

embryonic development30. Most of the other genes in the gene list were closely related to 

embryonic development, proving the predictions of AutoGGN could be clearly interpreted 

from a biological perspective. 
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From the SHAP value distributions for each developmental stage, we could also explore 

how genes contribute to each developmental stage. For example, Pou5f1, Fgf5, Fgf8 and 

Tdgf1, which were the top ranked genes in developmental stage E8.5 (Figure 2F), were 

marked in blue for positive SHAP values. It means low expression level of these genes would 

increase the probability of the E8.5 class. In contrast, high expression level of these genes 

would increase the probability of an earlier stage E6.75 (Figure 2F). It had been reported that 

these genes could regulate early embryonic development28–31. They were likely to express and 

regulate activities in early stages of embryonic development like E6.75 and then were 

controlled under a low expression level in later stages. 

Discussion 

In this paper, we proposed AutoGGN, a graph convolutional neural network-based 

multimodal method, to integrate molecular interaction networks with different types of omics 

data. This innovative approach is able to utilize and analyze the information from multi-omics 

profiles and biological network data effectively and comprehensively.  

The robustness of AutoGGN was proved in the two classification tasks. In the cancer 

type classification task, AutoGGN showed its effectiveness in incorporating both 

single-omics data and multi-omics data with the molecular interaction network. When using 

gene expression data and interaction network data as input for the model, AutoGGN achieved 

an accuracy of 0.968, which was much higher than XGBoost21 and AutoKeras19. When using 

multi-omics profiles (gene mutation and gene expression) and network data as input, 

AutoGGN also reached a high accuracy of 0.982 and outperformed AutoOmics10 by one 

percentage point, which was designed to take multi-omics data as input. In single-cell stage 

classification task, our method demonstrated highest performance among other published 

models, proving AutoGGN’s capability to make full use of the information from omics 

features and their interactions during training. 

To deal with the black-box challenge of neural networks, we brought SHAP module into 

AutoGGN. SHAP will function as an explainer for the model output. With an explainer 

module, AutoGGN is able to visualize the SHAP value distributions as well as the feature 

importance of each gene to the predicted classes, thus improving researchers’ understandings 

towards the deep learning models. In single-cell stage classification task, most of the 

important genes given by the model were closely related to embryonic development. It shows 

that AutoGGN not only realizes a high performance, but also provide a clear and precise 

explanation for the model predictions  

Besides classification tasks, AutoGGN can also be applied to a wide range of biomedical 

tasks. For example, our algorithm can be integrated with the Cox proportional hazards 
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model32 to predict patient survival. Other applications include bio-marker identification and 

drug sensitivity prediction. Further work will be continually conducted to extend the 

AutoGGN model with more applications. 

Methods 

Datasets 
In this study, we performed two classification tasks on different datasets to evaluate 

AutoGGN. Each tasks utilized both single/multi-omics datasets and network datasets. All the 

datasets involved in our study were downloaded from public websites, and the descriptions of 

the datasets are detailed below. 

Pan-cancer dataset (multi-omics). We downloaded both gene expression profiles and 

somatic mutation profiles of patients’ tumor samples covering 28 cancer types from The 

Cancer Genome Atlas (TCGA [https://gdac.broadinstitute.org/]) database20. 

Mouse single-cell transcriptomics dataset (single-omics) . This dataset is the 

single-cell RNA sequencing data from a timecourse of mouse gastrulation and early 

organogenesis, which covers 10 different embryonic developmental stages. It was obtained 

following the instructions provided in 

https://github.com/MarioniLab/EmbryoTimecourse2018. 

Protein-protein interaction network. The protein-protein interaction network data were 

obtained from STRING17 database. We used interaction data (protein.links.txt) provided by 

the database to gather scored links between proteins and accessory data (protein.info) to get 

the corresponding gene names. Protein-protein interaction networks within Homo sapiens and 

Mus musculus species were processed separately. 

Data Preprocessing 
For both classification tasks, we first applied normalization to the omics data and then 

selected common gene features between omics dataset and interaction networks. The detailed 

preprocessing procedures for each case are described as following.  

Case 1 - Pan-cancer classification. Since several patient samples of 4 cancer types 

(KIPAN, STAD, GBMLGG and COADREAD) were overlapped with other types, we simply 

removed these cancer types and used the rest 24 types without overlapping samples to avoid 

misleading classification. Log2-transformed Transcripts Per Million (TPM) was used to 

represent gene expression values. We then applied zero-one scaling in a gene-wise manner 

among the 24 cancer types. Somatic mutation profiles were extracted from TCGA mutation 

annotation files and represented using 0 for not mutated genes and 1 for mutated genes. After 
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that, the samples were removed if missing either gene expression or mutation profiles. The 

genes features with missing expression values or mutation information were also removed.  

For protein-protein interaction network, we extracted the interactions between genes 

measured in gene expression and mutation profiles and transformed them into an adjacency 

matrix utilizing the NetworkX33 module in python. The nodes in the adjacency matrix should 

be consistent with the genes in expression and mutation profiles. 

Case 2 - Mouse single cell classification. Due to the large sample size of the original 

dataset (more than 100,000 single cells), we used a subset randomly selected from the original 

dataset, which consists of 10,000 single cell samples. The expression matrix we utilized 

contains 22018 genes for 10,000 single cells. These single cells belong to predefined 10 cell 

types, representing 10 different embryonic developmental stages. Each stage comprises 1,000 

cells. The expression matrix was normalized by 0-1 scaling within features before input for 

model building.  

The protein-protein interaction network for mouse single-cell transcriptomics was 

obtained likewise. 

Model training and evaluation 
For the above two tasks, each omics dataset was divided into training, validation and test 

set with a proportion of 8:1:1. The omics datasets together with the adjacency matrix were 

input into the model for training. To optimize the model, we applied hyperparameter tuning 

using random search 34 and MBNAS (developed by Huawei) algorithm on the GCN layer 

number, channel numbers and the embedding size etc. The model achieving highest accuracy 

for the classification tasks was identified and then evaluated on an independent test set. 

Feature importance estimation.  
We used the SHapley Additive exPlanations (SHAP) package27 to estimate the 

importance of gene features. The best model identified and the training set were used as input 

for the SHAP module. Specifically, we used GradientExplainer, an implementation of 

expected gradients to approximate SHAP values for deep learning models, to conduct the 

feature importance estimation. After getting the SHAP value of each feature for each sample, 

we summed the SHAP values of all samples within each class and obtained the importance 

score of all the features for each class.  

Data Availability. 
All the data sets utilized in our study are public data. Pan-cancer classification is from 

TCGA. Single-cell classification data is from accessions: Atlas: E-MTAB-6967 and the 

processed data is downloaded following the instructions at 

https://github.com/MarioniLab/EmbryoTimecourse2018. 10X PBMC single-cell RNA-seq 
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was provided by 10X platform and we downloaded the processed expression matrix and cell 

labels from (https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data). 

Software Availability 
We will open the utilization of AutoGGN package to the public upon the acceptance of 

manuscript. 
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Figure legends 

Figure 1. Illustration of algorithm and application for the multimodal method of 

integrating biological networks and omics Data 

(A)  Schema of algorithm for the multimodal method of integrating biological networks and 

omics data based on graph convolutional neural network. The input data includes omics 

data matrix and molecular interaction network data. Omics data were transformed to high 

dimension data feature by embedding, then molecular interaction network and omics data 

would be integrated to fuse the information from biological network into omics data using 

GCNs. Traditional convolution operator would be performed for both fused matrix and 

omics feature matrix. Then the results would be concatenated and sent to a fully connected 

layer. 

(B) Illustration of application for the algorithm: After researchers get 

genome/transcriptome/proteomics data from their experimental samples, they can use our 

innovative model to combine omics data with molecular interaction network. The model 

can be applied in cancer patient stratification, patient survive prediction, bio-marker 

identification and drug sensitivity etc. 

Figure 2. Experimental results for pan-cancer classification and single-cell embryonic 

developmental stages classification 
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(A) Accuracy comparison of AutoGGN with XGBoost, AutoKeras, AutoGenome and 

AutoOmics (Omics) based on cancer type classification. The y-axis indicates the average 

accuracy score among 24 cancer classification. Single Omic: only gene expression data 

was used. Omics: both gene expression and gene mutation profiles were used. 

(B) Confusion matrix for the cancer type classification task. The y-axis indicates the true label, 

and the x-axis indicates the predicted label. The value in each box was normalized by 

sample number, indicating the percentage of the samples that had their class correct 

predicted. The darker purple indicates higher accuracy and the light purple indicates low 

accuracy.  

(C) Accuracy comparison of AutoGGN with XGBoost, AutoKeras, AutoGenome based on 

single cell embryonic developmental stages classification. The y-axis indicates the average 

accuracy score among 10 different embryonic developmental stages. Single Omic: only 

gene expression data was used. 

(D) Confusion matrix for single cell embryonic developmental stage classification. 

(E) Top-20 genes ranked by feature importance values from gene expression for the 10 single 

cell embryonic development stage. Colors represents each embryonic development stage. 

The x-axis indicates the absolute SHAP value. 

(F) The contribution of the TOP 20 genes expression ranked by SHAP values in E8.5 stage 

and E6.75 stage. It indicates how gene expression will influence single cell development in 

different stages. Red represents positive SHAP values that increase the probability of the 

class, while blue represents negative SHAP values that reduce the probability of the class.  
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