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Abstract 

Background 

Phenome-wide association studies conducted in electronic health record (EHR)-linked 

biobanks have uncovered a large number of genomic loci associated with traits and 

diseases. However, interpretation of the complex relationships of associated genes and 

phenotypes is challenging.  

Results 

We constructed a tissue-level phenome-wide network map of colocalized genes and 

phenotypes. First, we generated colocalized expression quantitative trait loci from 48 

tissues of the Genotype-Tissue Expression project and from publicly available genome-

wide association study summary statistics from the UK Biobank. We identified 9,151 

colocalized genes for 1,411 phenotypes across 48 tissues. Then, we constructed a 

bipartite network using the colocalized signals to establish links between genes and 

phenotypes in each tissue. The majority of links are observed in a single tissue whereas 

only a few are present in all tissues. Finally, we applied the biLouvain clustering 

algorithm in each tissue-specific bipartite network to identify co-clusters of non-

overlapping genes and phenotypes. The majority of co-clusters contains a small number 

of genes and phenotypes, and 88.6% of co-clusters are found in only one tissue. To 

demonstrate functionality of the phenome-wide map, we tested if these co-clusters were 

enriched with known biological and functional gene classes and observed several 

significant enrichments. Furthermore, we observed that tissue-specific co-clusters are 

enriched with reported drug side effects for the corresponding drug target genes in 

clinical trial data. 

Conclusions 

The phenome-wide map provides links between genes, phenotypes and tissues across 

a wide spectrum of biological classes and can yield biological and clinical discoveries. 

The phenome-wide map is publicly available at https://rstudio-

connect.hpc.mssm.edu/biPheMap/. 
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Background 

Electronic health records (EHR)-linked biobanks coupled with genome-wide genotyping 

and sequencing data allows for the study of the impact of genetic variation on thousands 

of medical phenotypes simultaneously. Phenome-wide association analyses have been 

conducted in several EHR-linked biobanks and genome-wide association study (GWAS) 

summary statistics have been made publicly available for large biobanks such as the UK 

Biobank and FinnGen study [1–3]. For example, GWAS summary statistics from a 

phenome-wide scan of the UK Biobank (UKBB) - a prospective cohort with deep genetic 

and rich phenotypic data collected on approximately 500,000 middle-aged individuals 

(aged between 40 and 69 years old) recruited from across the United Kingdom [4] – now 

exists and is a rich resource in the human genetics community.  

 

The UKBB project permits the study of the relationship of tens of thousands of genes 

and phenotypes simultaneously. However, a major challenge is interpretation due in 

large part to the complexity and heterogeneity of this data. Furthermore, there is a 

general lack of statistical methods available for such high-throughput analysis. Hence,  

only a few efforts have systematically characterized disease relationships in EHR data 

[5,6]. 

 

In the present study, we sought to enhance our understanding of the complex 

relationship of genes and phenotypes in the medical phenome by constructing a tissue-

level phenome-wide network map (biPheMap) of colocalized genes and phenotypes. To 

construct the phenome-wide map, we first generated tens of thousands of colocalized 

expression quantitative trait loci (eQTL) from 48 tissues of the Genotype-Tissue 

Expression (GTEx) v7 project [7–9], and from ~3,800 GWAS of biological and medical 

phenotypes from the UKBB. We then applied a bipartite (or two-mode) network 

approach [10,11] followed by the biLouvain clustering method [12], to identify networks 

of genes and phenotypes that co-cluster together in different tissues, giving us broad 

insight into the biological structure of genes, phenotypes and tissues. Finally, we 

demonstrate functionality of the phenome-wide map by highlighting co-clusters that are 

biologically relevant, and by identifying enrichments of these co-clusters with both 

biological pathways and drug side effects in clinical trials. 
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Results 

We performed three steps to generate the phenome-wide network map of genes and 

phenotypes: 1) identification of colocalization signals of eQTLs and GWAS loci for 3,822 

(before quality control) phenotypes in 48 tissues from the GTEx project v7; 2) 

construction of a bipartite network using the colocalization signals to establish links 

between genes and phenotypes in each tissue; and 3) identification of co-clusters of  

colocalized genes and phenotypes in each bipartite network using the biLouvain 

clustering algorithm. A graphical flowchart of the study is shown in Figure 1. 

 

Identification of colocalization signals of eQTL and GWAS loci in multiple tissues 

 

We used coloc2 [13], along with GWAS summary association statistics for 3,822 

phenotypes in UKBB [1,2] and eQTL data to identify colocalization signals in 48 tissues 

from the GTEx project. In total, after applying quality control (see Methods), we 

identified 9,151 unique colocalized genes for 1,411 unique phenotypes across the 48 

selected tissues. Colocalization results for each tissue are reported in Table S1, 

Additional file 1. Unsurprisingly, the number of colocalized genes and phenotypes 

increases with respect to the GTEx tissue sample size (from n=80 for “Brain - Substantia 

nigra” to n=491 for “Muscle - Skeletal”), reflecting enhanced statistical power of the 

method to uncover colocalized genes (see Figure S1, Additional file 2). 

 

Construction of tissue-level bipartite networks 

 
Using the colocalized data of 9,151 genes and 1,411 phenotypes, we next created a 

bipartite network for each tissue. In brief, a bipartite network - also called a two-mode 

network - is a network in which nodes of one mode (i.e. type) are only connected to 

nodes of the other mode, as opposed to a unipartite (or one-mode) network commonly 

found in the network literature. In our colocalization results, phenotypes are not directly 

connected to other phenotypes, but could only be indirectly connected to each other 

through genes they share, while genes are indirectly connected to other genes if they 

appear in the same phenotype. In Figure S2 Panel A, Additional file 2, a typical 

graphical representation of a bipartite network is displayed, comprised of seven 

phenotypes and six genes. Associations between genes and phenotypes are indicated 

by links (or edges) between them. 
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For each tissue, Table S2, additional file 1 displays the number of unique colocalized 

genes and phenotypes, along with the number of links between the two sets. When all 

48 tissues are aggregated, there are 9,151 unique colocalized genes and 1,411 unique 

phenotypes, with 25,710 unique links between the two sets. We aggregated the tissues 

using an “unweighted” approach which means that if a link between a gene and a 

phenotype was found in more than one tissue, we counted this link only once. In fact, we 

observed that the majority of links between a given gene and a given phenotype are 

observed in one single tissue, but a few links are present in all 48 tissues (see Figure 

S3, Additional file 2; Table S3, Additional file 1). 

 

To characterize and compare colocalization results across tissues, we computed the 

average degree of colocalized genes and phenotypes in each tissue. The degree of a 

given gene (respectively, phenotype) is simply the number of unique phenotypes 

(respectively, genes) connected to it in the network, the average being taken over the 

total number of genes (respectively, phenotypes) [14]. The average degree for both 

genes and phenotypes does not vary much across tissues (see Table S2, Additional 

file 1), although it increases with larger tissue sample size. When aggregating all 48 

tissues, each gene is connected to an average of ~2.8 phenotypes while each 

phenotype is connected to an average of ~18.2 genes. The fact that the majority of gene 

and phenotype links are observed in a single tissue and not across all tissues, but the 

average degree of genes and phenotypes does not vary across tissues, suggests an 

architecture where tissue-specific gene regulatory mechanisms drive GWAS loci and the 

size and structure of these mechanisms are largely similar across different tissues. 

 

Identification of co-clusters in tissue-level bipartite networks 

 
To identify structure within the phenome-wide map, we applied a newly proposed 

clustering algorithm, called biLouvain, which extends the well-known unipartite Louvain 

clustering algorithm [12]. This new algorithm efficiently identifies co-clusters of non-

overlapping genes and phenotypes by maximizing a bipartite modularity measure (see 

Methods for details). Figure S2 Panel B, Additional file 2 illustrates co-clusters 

identified by the biLouvain algorithm in the bipartite network of Figure S2 Panel A, 

Additional file 2. 
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We applied the biLouvain algorithm to identify co-clusters in each of the tissue-level 

bipartite networks. We identified a large number of co-clusters, ranging from 218 co-

clusters for tissue “Brain - Anterior cingulate cortex (BA24)” to 314 co-clusters for 

“Adipose - Subcutaneous”. Across all bipartite networks, we observed that the majority 

of co-clusters had a small number of genes and phenotypes, on one hand, whereas a 

few co-clusters had a large number of genes and phenotypes, on the other hand (Figure 

2, Panels A-B). Across the 48 tissues, the vast majority of co-clusters (8,389 / 9,472 = 

88.6%) were found in only one tissue (Figure 2, Panel C). Hence, the structure of the 

phenome-wide map involves hundreds of isolated tissue-specific subnetworks 

comprised of a small number of interrelated genes and phenotypes. Large co-clusters 

were also identified, although these are the exception rather than the norm. The 

complete list of genes and phenotypes per co-cluster in each tissue is provided in Table 

S4, Additional file 1. 

 

Enrichment analysis of co-clusters with biological and functional gene classes 

 

To demonstrate functionality of the phenome-wide map, we tested if the identified 

biLouvain co-clusters were enriched with known biological and functional gene classes. 

We selected 183 co-clusters consisting of 10 genes or more, and performed enrichment 

analysis using PANTHER [15,16] on four different annotation types: Biological process 

(2,064 gene ontology (GO) terms), Cellular component (520 GO terms), Molecular 

function (532 GO terms), and 164 different Pathways. For each co-cluster and each 

annotation type, we selected the minimal p-value of all Fisher “overrepresentation” tests, 

and plotted it against the expected minimal p-value under the null hypothesis of no 

enrichment (see Methods for details). All four annotation types demonstrated significant 

enrichment. We observed enrichment in GO terms related to i) antibody-mediated 

immune response, upregulation response to biotic stimulus, glutathione metabolism, 

zymogen activation, downregulation of blood pressure, and cellular nitrogen compound 

metabolism in seven co-clusters in the Biological process annotation; ii) outer surface of 

cytoplasmic membrane, and obsolete intracellular part in two co-clusters in the Cellular 

component annotation; iii) signaling receptor binding, metallopeptidase activity, zinc ion 

binding, NADH-dependent glyoxylate reductase, and phosphatase activity in five co-

clusters in the Molecular function annotation; and iv) toll-like receptor signaling pathway, 

muscarinic acetylcholine receptor 2 and 4 signaling pathway, serine and glycine 
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biosynthesis, and heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha 

mediated pathway in six co-clusters in the Pathway annotation. 

 

As an example, the most significant pathway detected by PANTHER is a toll like 

receptor signaling pathway for co-cluster 111 comprised of hypothyroidism/myxoedema 

and levothyroxine sodium medication, and genes TLR1, TLR6 and TLR10 in the “Cells -  

EBV-transformed lymphocytes” tissue (Figure 3; Table 1; Figure S4 Panel A, 

Additional file 2). Toll like receptor 1 (TLR1), 6 (TLR6) and 10 (TLR10) genes are 

located in the same gene cluster on chromosome 4p14, and they play a fundamental 

role in pathogen recognition and activation of innate immunity [17]. Previous studies 

have shown that TLR1 and TLR10 are linked to Graves’ disease [18] and Hashimoto’s 

disease [19], which are clinical subtypes of autoimmune thyroid diseases. Furthermore, 

variants in CD226 [20], and RASGRP1 [21] were found to be associated with 

autoimmune thyroid diseases and with thyroid preparations (H03A medication class, 

which comprises levothyroxine sodium) [22].   

 

In addition to the PANTHER gene set enrichment analysis, we identified seven co-

clusters comprised of known relationships between genes and phenotypes in relevant 

tissues (Table 1), providing strong biological relevance. For example, the same gene 

GGCX appears in two co-clusters in related tissues, co-cluster 161 in “Heart - Left 

Ventricle” and co-cluster 11 in “Whole Blood” (Table 1; Figure S4 Panels B-C, 

Additional file 2). Gamma-glutamyl carboxylase (GGCX) encodes an integral 

membrane protein of the rough endoplasmic reticulum that carboxylates glutamate 

residues of vitamin K-dependent proteins to gamma carboxyl glutamate. Vitamin K-

dependent proteins affect a number of physiologic processes including blood 

coagulation, inflammation, and prevention of vascular calcification [23]. Furthermore, a 

meta-analysis including the UKBB data identified an intronic variant in GGCX associated 

with coronary artery disease (CAD), with inclusion or exclusion of angina [24]. Taken 

together, these results suggest that our newly identified co-clusters contain relevant 

biological information and provide both novel and known functional links between genes 

and phenotypes. 
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Co-cluster/Tissue 
Nb of 
phenos 

Nb of 
genes Phenotype ‡ Gene Biological function summary 

Co-cluster 111 † / 
Cells - EBV -  
transformed 
lymphocytes 

4 13 Hypothyroidism / myxoedema | 
Med: levothyroxine sodium 

RP11-102L12.2, CD226, SYNGR1, FAM98B, 
RASGRP1, FAM114A1, MDGA1, TLR6, RRP15, 
PRKXP1, RP11-526I2.5, TLR10, TLR1 

CD226, RASGRP1, TLR1, TLR6, TLR10: immune function and 
response, including lymphocyte activity; associated with 
autoimmune thyroid disease. 

Co-cluster 161 / 
Heart - Left 
Ventricle 

6 12 Angina pectoris | Ischemic heart 
disease (chronic, other) | Coronary 
atherosclerosis | Acute pain 

VPS11, MRPL9, GGCX, RP11-114H24.5, 
RP11-110I1.14, HMBS, DHX36, STAG1, 
ZNF334, ZNF663P, MKRN7P, EHBP1L1 

GGCX: activates coagulation factors.  
DHX36, STAG1: cardiac development. 
Abnormal clotting and cardiac defect are associated with 
ischemic heart disease.  

Co-cluster 27 / 
Adipose - 
Subcutaneous 

11 18 High cholesterol | Hayfever / allergic 
rhinitis | Breast cancer | Diabetes 
(Type 1, Type 2) | Diabetic retinopathy 
| Illness mother: diabetes |Med: 
metformin 

JAZF1, ANK1, WFS1, GINS4, IRS1, FARSA, 
CALR, RP11-395N3.1, RP11-395N3.2, PRRT1, 
RP11-686O6.2, AC010883.5, ZNF703, RP11-
419C23.1, ITGB6, EYA1, RP11-863K10.7, 
RP11-379H18.1 

JAZF1: lipid and glucose metabolism.  
WFS1: Wolfram syndrome (monogenic diabetes).  
IRS1: insulin response.  
ZNF703: oncogene in mammary epithelial proliferation.  
 

Co-cluster 128 / 
Thyroid 

4 12 Nontoxic goiter (uninodular, 
multinodular, other) 

FOXA2, RP4-788L20.3, LINC00261, PRDM11, 
TGFB2, CPE, SYT13, MINOS1, LINC00887, 
RP11-224O19.2, CTD-2560E9.3, RP11-
555G19.1 

FOXA2: regulates type 1 iodothyronine deodinase in thyroid 
hormone homeostasis  
CPE: synthesizes thyrotropin releasing hormone; deficiency and 
hypothyroidism cause goiter formation. 

Co-cluster 39 / 
Artery - Tibial 

15 10 Angina (unstable) | Myocardial 
infarction | Ischemic heart disease 
(chronic) | Illness father: heart disease 
| Migraine / Headache | Med: 
ibuprofen, paracetamol 

PHACTR1, RP1-257A7.5, RP11-378J18.8, 
LRP1, C7orf10, UFL1, GJA1, EHBP1, C12orf4, 
MEF2D 

PHACTR1: vascular endothelial maintenance. 
LRP1: macrophage/vascular lipid homeostasis. 
UFL1: immune and ER-stress response.  
GJA1: cardiac gap junctions, arrhythmia, malformation. 
EHBP1: cardiomyocyte protein trafficking and excitability.  
MEF2D: cardiogenesis and cardiac remodeling.  
Migraine medications associated with increased risk of heart 
attack. 

Co-cluster 43 
Cells - Transformed 
fibroblasts 

13 11 Asthma | Hayfever / allergic rhinitis | 
Eczema / dermatitis | Wheezing / 
whistling | Med: ventolin, seretide | 
Nasal polyps 

GATA3, GATA3-AS1, HHEX, RP1-102E24.8, 
LINC01063, SERPINB7, STAT6, ARFRP1, 
CRYAB, TNK2-AS1, RBM26-AS1 

GATA3, GATA3-AS1, STAT6, CRYAB: regulate Th2 cells, cytokines; 
associated with asthmatic and fibrotic airways.  
HHEX: fibroblast expression with increased asthma risk. 
SERPINB7 stratified squamous epithelia expression with increased 
allergies risk.  

Co-cluster 11 
Whole Blood 

32 14 Angina (pectoris, unstable) | Ischemic 
HD (chronic, other) | MI | Coronary 
atherosclerosis | Illness father: HD, 
high BP | Illness mother: high BP | 
Father's age at death | Hyperlipidemia 
/ hypercholesterolemia |  
Med: simvastatin, atenolol, aspirin, 
lipitor, atorvastatin, ezetimibe 

DDAH2, FES, PSRC1, MIA3, FAM177B, 
OPRL1, RPS12P26, FNBP4, CELF1, GGCX, 
LIPA, COA6, MCL1, GRK4 

DDAH2: regulates nitric oxide formation; cardiac dysfunction in 
animal models. 
OPRL1, PSRC1, MIA3: LDL-C levels and CAD.  
CELF1, COA6: implicated in cardiomyopathy.  
GGCX: activates coagulation factors. 
LIPA: lipid metabolism. 
MCL1: deficiency causes atherosclerosis.  
GRK4: hypertension and cardiomyocyte injury during MI. 
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Table 1: Selection of interesting co-clusters in relevant tissues. Nb: Number; HD: 

Heart disease; MI: Myocardial infarction; BP: Blood pressure; Med: Medication; 

LDL-C: low-density lipoprotein cholesterol; CAD: coronary artery disease. 

† Co-cluster most significant in PANTHER Pathway annotation. 

‡ For the sake of simplification, we grouped phenotypes with similar names in UKBB 

and/or matching ICD-10 codes and PheCodes. 

 

Drug side effect enrichment in co-clusters 

 

To further demonstrate functionality of the phenome-wide map, we tested for enrichment 

of colocalized genes and phenotypes in the phenome-wide map with drug side effects in 

corresponding drug target genes in an adapted integrated clinical trial dataset of 1,780 

drugs [25] (see Methods) in each of the 48 GTEx tissues, adjusting for co-cluster 

grouping. In almost all tissues, we observed marked enrichments of reported drug side 

effects with colocalized target genes and phenotypes (Figure 4; Table S5, Additional 

file 1), with the strongest associated odds ratio (OR) observed in “Minor Salivary Gland” 

(OR = 86.43, 95% confidence interval (CI) = (11.596 – 11,078.85), p-value = 6.12 ´ 10-

11), in “Breast - Mammary Tissue” (OR = 10.98, 95% CI = (3.514 – 54.897), p-value = 

2.19 ´ 10-6) and in “Cells - EBV-transformed lymphocytes” (OR = 7.03, 95% CI = (2.070 - 

28.367), p-value = 1.43 ´ 10-3). Nearly half of the tissues (20 out of 48) show very 

significant enrichment with p-value < 2.2 ´ 10-16 (Table S5, Additional file 1). These 

results suggest that the phenome-wide map can inform the drug safety profiles of 

candidate drug therapeutics. 

 
Discussion 

In the present study, we have constructed a tissue-level phenome-wide network map, 

called biPheMap, of colocalized genes and phenotypes using a bipartite network and 

biLouvain clustering approach on 1,411 phenotypes and eQTL data from 48 tissues from 

the GTEx project. In the phenome-wide map, we observed the following: 1) the majority 

of colocalized gene and phenotype links are observed in a single tissue, implying that 

tissue-specific gene regulatory mechanisms drives phenotypic variation; 2) the majority 

of co-clusters are comprised of a small number of gene and phenotype links; 3) specific 

co-clusters are enriched with functional gene set annotations; 4) specific co-clusters are 

identified with biologically relevant gene, phenotype and tissue functions; 5) tissue-level 
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co-clusters are enriched with reported drug side effects for the corresponding drug target 

genes.  

 

While most network analyses have focused on unipartite networks, the present study 

used the less familiar bipartite approach. Many such bipartite networks have been 

studied in different contexts: actor-movie network in cinema industry, author-scientific 

paper networks in academia, pollinator-plant in ecological networks, etc., but their 

topological features and related metrics are unique and different from their more 

classical unipartite counterpart. A simpler analysis could have been proposed by 

“projecting” the bipartite network into two unipartite networks to produce a gene-gene 

network and a phenotype-phenotype network. However, this projection method entails a 

loss of information since the original links between genes and phenotypes are no longer 

available. Such a projection approach was employed in Verma et al. [26] to create a 

“disease-disease” network where more than 500 diagnosis codes were linked on the 

basis of shared variant associations. 

 

An important feature of the phenome-wide map is the exploration and discovery of co-

clusters of related genes and phenotypes. So far, few community detection algorithms in 

bipartite networks could be run in a reasonable amount of time. One fast and precise 

algorithm is the biLouvain algorithm [12] which maximizes bipartite modularity, an 

extension of the modularity measure found in unipartite network clustering algorithms. 

Table 1 displays various examples of gene-phenotype co-clusters confirming known 

genetic associations and also suggesting unsuspected etiological links between 

phenotypes. For example, many epidemiological and genetic studies have suggested 

shared loci between migraine and CAD, and one study identified gene PHACTR1 as the 

strongest shared locus between the two disorders [27]. However, some co-clusters 

might also consist of phenotypes being observed as a consequence of another 

phenotype. For example, we observed lipid-lowering medications in the same co-cluster 

as lipid disorders. 

 

There are some limitations to our study that deserve mention. First, some phenotypes 

are highly correlated in UKBB, and therefore, colocalized signals were sometimes 

redundant in our phenome-wide map. Second, we applied stringent quality control in our 

phenotype selection to avoid reporting false colocalized loci. This came at the expense 
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of missing some loci, especially if the leading associated variant in a locus is rare (minor 

allele frequency < 0.1%). Third, the literature cited to support the links between genes 

and phenotypes of co-clusters displayed in Table 1 relies heavily on genetic 

associations found in the GWAS summary statistics in UKBB, which is comprised solely 

of British white individuals. Incorporation of findings from diverse ancestry populations 

will be necessary to yield more genetic association phenotypes. Finally, we used the 

bipartite network approach over the more common unipartite approach, which limited the 

set of tools to analyze our results. Fortunately, the bipartite network and its 

characteristics is gaining more attention in the network literature, and future 

methodological developments will expand the range of tools and analyses that could be 

performed in this type of networks. 

 

Conclusions 

In conclusion, we showed that the phenome-wide map can be a useful resource to 

understand gene, phenotype and tissue links across a wide spectrum of biological 

classes and diseases. We expect that further interrogation of the phenome-wide map will 

yield more biological and clinical discoveries. 

 

Methods 

 

Datasets 

 

The present study uses two resources: a) the UK Biobank (UKBB) project; and b) the 

Genotype-Tissue Expression (GTEx) project. The UKBB project is a prospective EHR-

linked cohort with deep genetic and rich phenotypic data collected on approximately 

500,000 middle-aged individuals (aged between 40 and 69 years old) recruited from 

across the United Kingdom [4]. The GTEx project is a resource database and associated 

multi-tissue bank aimed at studying the relationship between genetic variation and gene 

expression in different human tissues [7–9]. 

 

Colocalization method 

 

We integrated multiple association datasets to assess whether two association signals, 

one from a genome-wide association study (GWAS) on a phenotype, and the other from 
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expression quantitative trait locus (eQTL) analysis in a tissue, overlap in such a matter 

that they are consistent with a shared causal gene. This approach, referred to as 

colocalization, was conducted using coloc2 [28], an enhancement of the previously 

published method coloc [13]. The coloc2 method is a Bayesian approach which 

computes the posterior probability that a genetic variant is both associated with the 

phenotype and the gene expression level in the tissue (denoted PPH4 in [13]). We 

defined a colocalized signal using PPH4 ³ 0.80, as described previously [13].  

 

GWAS and eQTL summary statistics 

 

coloc2 requires both GWAS summary data and eQTL association summary data. For 

GWAS data, we used two sets from the UKBB project. The first set of results are GWAS 

association test statistics publicly available from the Neale lab (Round 1 in 2,419 

phenotypes). We selected variants with minor allele frequency (MAF) > 0.1% and with 

association p-value < 5x10-5. More details on the data quality control and the full list of 

phenotypes can be found at [1]. We further used a second set of UKBB GWAS 

association statistics computed by the SAIGE testing method [29]. In total, 1,403 case-

control phenotypes (PheCodes) were available. We selected variants with MAF > 0.1% 

and with association p-value < 5x10-3. Full datasets and list of PheCodes can be 

downloaded at [2]. For eQTL association signals, we used data from Analysis V7 of the 

GTEx project [30]. We restricted our study to the list of 48 tissues (from 620 donors) 

having a sample size of at least 80. eQTLs with MAF > 1% were considered as input for 

coloc2. Statistically significant cis-eQTLs were selected as detailed in [31] and available 

on the GTEx Portal. 

 

After running coloc2 on the Neale GWAS data, we performed stringent quality control. 

First, we removed results from phenotypes related to cause of death (since these 

phenotypes generally had very low number of cases), and we also removed case-control 

phenotypes with less than 1,250 cases (or controls), except phenotypes showing prior 

gene/locus association as reported in the NHGRI-EBI GWAS catalog [32,33]. The 

rationale for excluding phenotypes with less than 1,250 cases (or controls) is based on 

the recommendation by Neale to keep only variants with at least 25 minor alleles in the 

sample of cases (or controls), in order to avoid inflation in association test statistics due 

to extreme case-control ratio imbalance and ensuring reliable p-value computation [34]. 
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With the Neale GWAS data, we retained coloc2 results for 496 continuous and binary 

phenotypes. In the same vein, after running coloc2 with SAIGE association data, we 

excluded case-control phenotypes with less than 200 cases, as recommended by the 

authors [29]. With SAIGE data, we generated coloc2 results for 915 case-control 

(PheCode) phenotypes. 

 

Construction and descriptive statistics of bipartite networks 

 

To construct the phenome-wide map of genes and phenotypes using the colocalized 

data of 9,151 genes and 1,411 phenotypes, we created a bipartite network for each 

tissue. In brief, a bipartite network, also called a two-mode network, is a network in 

which nodes of one mode (i.e. type) are only connected to nodes of the other mode (for 

a review, see [10,11]). Associations between phenotypes and genes are indicated by 

links or edges between them.  

 

To characterize and compare colocalization results across tissues, we computed 

descriptive statistics adapted to bipartite networks. We computed the average degree of 

colocalized genes and phenotypes in each tissue. The degree of a given gene 

(respectively, phenotype) is simply the number of unique phenotypes (respectively, 

genes) connected to it in the network, the average being taken over the total number of 

genes (respectively, phenotypes) [14].  

 

biLouvain clustering algorithm 

 

For each tissue, it is expected that the bipartite network of coloc2 results will tend to 

“cluster” in small groups of related phenotypes with their causally associated genes. To 

uncover clustering within each network, we applied a newly proposed clustering 

algorithm, called biLouvain, which extends the well-known unipartite Louvain clustering 

algorithm. This new algorithm efficiently identifies co-clusters, also called communities, 

of non-overlapping genes and phenotypes by maximizing a bipartite modularity measure 

(see [12] for details). 

 

PANTHER enrichment analysis 
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To test if biLouvain co-clusters were enriched with some functional gene classes, we 

selected 183 co-clusters consisting of 10 genes or more, and input them into the online 

PANTHER enrichment analysis tools [15,16,35]. We applied Fisher “overrepresentation” 

tests on four different annotation types: Biological process (2,064 Gene Ontology (GO)  

terms), Cellular component (520 GO terms), Molecular function (532 GO terms), and 

164 different Pathways. For each co-cluster and each annotation type, we took the 

minimal p-value of all Fisher tests, and plotted it against the expected minimal p-value 

under the null hypothesis of no enrichment. We assumed that p-values within each 

annotation type are independently distributed uniformly over the interval (0,1), which 

represents a conservative approach. Note that the minimal p-value of n independent p-

values from a Uniform(0,1) is not uniformly distributed under the null: its cumulative 

density function is instead given by Prob(& ≤ () = 1 − (1 − ()-, 0 < ( < 1. In each 

panel of Figure 3, we plotted a straight line with slope equal to 1, which crosses the y-

axis at x = (observed 1st quartile – expected 1st quartile) using the above expected 

cumulative density function. Gene enrichment was deemed significant if the minimal p-

value was less than 0.05/(183 ´ 4) = 6.8 ´ 10-5. 

 

Drug side effects enrichment 

 

To test if the identified co-clusters were enriched with target genes with reported drug 

side effects for relevant phenotypes, we used our integrated clinical-genetic drug side 

effect dataset described and published in [25]. This consists of 1,780 drugs and their 

gene targets with side effect and coloc2 results mapped to 48 GTEx terms (see [25] for 

mapping approach). To combine this dataset with our biLouvain co-clusters, we 

recorded the side effect, colocalized phenotype and tissue for each drug-gene pair 

(rather than collapse all gene targets per drug as in [25]). We restricted the dataset to 

drug genes present in each tissue-level network by mapping these genes to their 

corresponding co-cluster for that tissue. To evaluate the association between colocalized 

phenotype and drug side effect for each tissue-level network, we selected genes that 

were also colocalized in the same tissue as in our integrated clinical-genetic drug side 

effect dataset. For each tissue, we used a Firth logistic regression model (R package 

logistf) with side effect as the outcome variable and phenotype as the predictor, 

adjusting for the co-cluster grouping. 
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Supplementary information 

 

Additional file 1 (XLSX) - Tables S1-S5 

 

Table S1. Colocalization results across the 48 selected tissues in GTEx (9,151 

unique colocalized genes for 1,411 unique phenotypes). 

Each row represents a colocalized signal between the gene and the phenotype in the 

corresponding tissue. In the Phenotype column, the prefix “N_” stands for Neale’s 

GWAS association statistics, while “S_” stands for SAIGE GWAS association statistics.  

 

Table S2. Descriptive statistics of tissue-level bipartite networks. For each bipartite 

network, the number of phenotypes, genes and links are reported, along with the 

average degree across all phenotypes and all genes, respectively. 

 

Table S3. Colocalization results aggregated over tissues. 

Each row represents a unique colocalized signal between the gene and the phenotype, 

and reports in how many tissues this signal is found, along with the list of these tissues. 

In the Phenotype column, the prefix “N_” stands for Neale’s GWAS association statistics, 

while “S_” stands for SAIGE GWAS association statistics.   

 

Table S4. List of all co-clusters found by the biLouvain algorithm for each tissue-

level bipartite network. 

The number of phenotypes and genes in each co-cluster are provided in the last two 

columns (number of phenotypes and number of genes). In the Phenotype column, the 

prefix “N_” stands for Neale’s GWAS association statistics, while “S_” stands for SAIGE 

GWAS association statistics.  
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Table S5. Drug side effect enrichment with colocalized target genes and 

phenotypes in each tissue, adjusted for co-cluster grouping.  

The odds ratio (OR) and its corresponding 95% confidence interval (CI) of drug side 

effect enrichment is displayed for each tissue, along with the p-value for enrichment. 

 

Additional file 2 (DOCX) - Figures S1-S4 
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Figure 1: Flowchart of the study. 
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Figure 2: Characteristics of biLouvain co-clusters across tissues. A) Violin plot of co-cluster size (number of genes + number of 

phenotypes) for each tissue. Y-axis is displayed in log scale; B) Number of genes and phenotypes per co-cluster identified by the 

biLouvain algorithm. Diamonds are proportional to frequency of co-cluster size across all 48 tissues. Both axes are displayed in log 

scale; C) Number of unique co-clusters and how many times they appear in a given number of tissues. Y-axis is displayed in log 

scale.  
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Figure 3: PANTHER enrichment analysis of selected biLouvain co-clusters across 
tissues. In each annotation type, the minimum p-value across all GO terms is displayed 

for all 183 co-clusters selected. Some plots show a breakdown in the y-axis to help 

display very small p-values. 

 

  

   
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.04.30.441974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.441974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Figure 4: Drug side effect enrichment with colocalized target genes and 
phenotypes in each tissue. The odds ratio (OR) and its corresponding 95% confidence 

interval (CI) of drug side effect enrichment is depicted for each tissue. X-axis is 

displayed in log-scale. 
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