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Abstract: 30 

There has long been a desire to understand, describe, and model gene regulatory networks 31 

controlling numerous biologically meaningful processes like differentiation. Despite many 32 

notable improvements to models over the years, many models do not accurately capture subtle 33 

biological and chemical characteristics of the cell such as high-order chromatin domains of the 34 

chromosomes. Topologically Associated Domains (TAD) are one of these genomic regions that 35 

are enriched for contacts within themselves. Here we present TAD-aware Regulatory Network 36 

Construction or TReNCo, a memory-lean method utilizing epigenetic marks of enhancer and 37 

promoter activity, and gene expression to create context-specific transcription factor-gene 38 

regulatory networks. TReNCo utilizes common assay’s, ChIP-seq, RNA-seq, and TAD boundaries 39 

as a hard cutoff, instead of distance based, to efficiently create context-specific TF-gene 40 

regulatory networks. We used TReNCo to define the enhancer landscape and identify 41 

transcription factors (TFs) that drive the cardiac development of the mouse. Our results show 42 

that we are able to build specialized adjacency regulatory network graphs containing 43 

biologically relevant connections and time dependent dynamics.  44 
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Introduction: 45 

It is of critical importance to understand, model, and describe gene regulatory networks 46 

(GRN) that control diverse cellular functions of interest like those that drive differentiation or 47 

transitions from one development stage to another (Lee et al. 2002; DeRisi et al. 1997; Goode 48 

et al. 2016). With the advent of next generation sequencing technologies, it is now 49 

commonplace to reconstruct these networks to connect transcription factors (TFs) to the genes 50 

they regulate (Karlebach and Shamir 2008). One classic method is integration of cis-regulatory 51 

elements, like enhancers, and gene expression via matrix factorization to form network graphs 52 

between genes and TFs (Marbach et al. 2016). Generally, this is done using Chromatin 53 

Immunoprecipitation (ChIP) for H3K27ac to identify enhancers and RNA-seq to identify 54 

controlled genes. In many cases connections are determined through perturbations in 55 

upstream components like TFs and observing resultant changes in downstream expression 56 

levels (Gasperini et al. 2019). This method works exceptionally well for certain classes of TF and 57 

for closely linked enhancer-gene interactions. However, it commonly uses arbitrary length cut 58 

offs to prevent enhancers from erroneously influencing genes in distant parts of the genome. 59 

This can lead to enhancers having shorter or broader ranges of influence than what occurs 60 

biologically. As many recent chromosome-confirmation-capture (e.g. 5C, Hi-C and ChIA-PET) 61 

experiments have shown, there can be very broad and dynamic interactions made between 62 

different parts of a chromosome (Branco and Pombo 2007; McCord et al. 2020). Thus, it is more 63 

relevant to dynamically limit enhancers range of influence to only the topologically linked 64 

portions of the genome an enhancer is confined to, also known as Topologically Associated 65 

Domains (TADs). These regions are highly conserved across cell types and are known to limit 66 
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the influence of cis-regulatory elements by physically separating them (Beagan and Phillips-67 

Cremins 2020). Thus, it is critical that these cutoffs are included in the model to fully represent 68 

and capture the true biological processes occurring. 69 

Here we present TAD-aware Regulatory Network Construction or TReNCo, a powerful, 70 

memory efficient tool for constructing regulatory networks from enhancer, promoter, and gene 71 

expression data without the need for perturbations. We designed TReNCo to construct a graph 72 

of interaction weights between TFs and the genes that they control using TAD boundaries to 73 

dynamically limit the range of enhancer influence. We utilize dynamic programming to factor 74 

matrices within TADs and combine network into a full adjacency matrix for a regulatory graph. 75 

With this method, we are able to capture biologically relevant interactions between known TFs 76 

and their gene targets. We show that this network contains many subtle interactions that could 77 

be a treasure trove of novel or uncharacterized interactions. We believe this method opens the 78 

possibility for understanding deeper mechanistic connections and new possibilities for 79 

identifying biological targets for drug discovery. 80 

  81 
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Results and Discussion: 82 

Model Design and Function 83 

 We designed TReNCo utilizing a previously reported core matrix factorization method 84 

with a distance-based scoring system broken down into subunits based on TAD boundaries 85 

(Marbach et al. 2016; Cuellar-Partida et al. 2012). In brief, our algorithm uses normalized gene 86 

expression count tables from RNA-seq (tsv files) and H3K27ac ChIP-seq read alignments (bam 87 

files), peaks (bed files), and TAD boundaries (a bed file) (Figure 1). Though the source of these 88 

data can vary, we designed TReNCo with ENCODE uniform processing pipelines in mind. We 89 

first generated initial expression matrices for gene expression (G) and enhancer expression (E) 90 

by sample. This was accomplished using the count tables from RNA-seq and building count 91 

tables for all enhancers merged into non-overlapping segments from the ChIP-seq data. These 92 

counts were used to calculate the Transcripts/Fragments per Kilobase Million (TPM) which are 93 

then log-scaled. A key file, provided by the user, is used to link related files to build a full 94 

expression matrix and, secondarily, serves to reduce memory usage by allowing batch 95 

processing of data. 96 

We next worked to establish TF-gene linkages by identifying TF binding sites in 97 

promoters and enhancers using a well-known program, FIMO (a part of the MEME software 98 

suite and report the log-odds score of TF binding) a major weight needed for establishing 99 

interaction (Grant et al. 2011). We designed a simple pipeline to generate promoter and 100 

enhancer master bed files and remove any potential overlaps between promoters and 101 

enhancers to ensure that TFs are not double counted to a gene. Furthermore, these files 102 

contained the union of all promoters and enhancers between the samples in order to 103 
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streamline the identification of TFs. This was a critical time saving step as FIMO cannot be 104 

multithreaded and can take upward of 24 hours to run. By using master files, we could run 105 

FIMO only once per process leading to a huge performance boost.  106 

With these core datasets, for each sample we were able to select sample-specific genes, 107 

enhancers, and TF interactions. To ensure proper TAD boundaries were followed and to 108 

improve speeds through multithreading, we designed a dynamic programming algorithm to 109 

process these datasets by TADs and generate TAD-specific distance weight matrices (Dt) for 110 

each set. These matrix subsets were factored with the square-root of a TAD-specific interaction 111 

matrix produced via vector multiplication between the gene (gk,t) and enhancer (ek,t) expression 112 

profiles resulting in a TAD-weight matrix (Wk,t). To generate an enhancer-specific graph edges, 113 

the weight matrix was factored with the TAD-specific enhancer-TF by gene matrix (Mt) 114 

normalized to the maximum value of the matrix. This was done to set a standard scale of log-115 

odds that was comparable between enhancers and promoters. We designed this component 116 

with the assumption that enhancer-TF binding should be similar in promoters and should be 117 

weighted the as a log-odds scale in the network. A promoter-TF by gene specific subnetwork 118 

(Pt) was produced in a similar manner as the enhancer-specific network with weighing done 119 

using a TAD-specific gene expression vector since all distances between promoters and genes 120 

are 1. Arctangents were applied to both matrices due to the properties of the transformation 121 

where larger values approach an asymptote of π/2 while smaller values are approximately 122 

scaled linearly. This scaling draws larger value outliers into a tighter range without heavily 123 

influencing lower values and assumes a maximum impact a TF can have on a gene. The resulting 124 

matrices were added together and further weighted by normalized TF gene expression to lower 125 
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the influence of lowly expressed TFs while minimally changing the effects from highly expressed 126 

TFs. The resulting TAD subgraphs were concatenated together into a full network adjacency 127 

graph matrix. Since this was a sparse matrix, TReNCo represents it as an adjacency array 128 

allowing us to store the information in much less space than is needed for a matrix.  129 

Model Validation 130 

 To validate the model, we used the extensive cohort of matched gene expression and 131 

H3K27ac ChIP-seq analyses in ENCODE (Davis et al. 2018) (Table S1). We decided to use mouse 132 

heart data due to the abundance of well correlated time point data spanning embryonic day 133 

10.5 to 8 weeks after birth, highly characterized heart developmental processes, and the 134 

availability of previously documented TF-gene networks (Akerberg et al. 2019; Schlesinger et al. 135 

2011) (Figure 2). While the ChIP-seq data is not highly correlated across all the sample types, 136 

the gene expression data has an R-squared of at least 0.7 between different biological samples. 137 

One e14.5 experiment set had an average R-squared of approximately 0.6 with all other 138 

biological samples. To remove this potentially problematic dataset in this analysis before the 139 

larger more computationally expensive processes occur, we added an optional soft filter in 140 

TReNCo to automatically remove any samples with an average R-squared less than 0.7 across all 141 

samples, for gene expression data. We were left with a set of highly correlated data that led us 142 

to conclude that this dataset was sufficient to use to TReNCo. 143 

Previous studies of the mouse heart have identified Gata4, Mef2a, Nkx2-5, Tbx5, and Srf 144 

as important embryonic lethal TFs critical for development (Gittenberger-De Groot et al. 2005). 145 

When looking at the distribution of these TFs over time, we observed that there are many 146 

subtle dynamics in how the TFs’ weights shift. Gata4, Mef2a, Tbx5, and Nkx2-5 show a 147 
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multimodal distribution with three major peaks and varying differences between time points 148 

though mostly the distributions overlapped (Figure 3A, Figures S2, S3, S4). We found that the 149 

weight distribution followed a similar trend; the dominant population of edge weights appears 150 

less than 0.1, a second mid population is between 0.1 and 0.3, and a final population above 0.3 151 

that stretches up to 1. Another TF, Foxs1, demonstrated a more pronounced time point 152 

dependent change in addition to a tri-modal edge score (Figure 3B). Interestingly, Srf did not 153 

show this trend and tended to have lower weight edges throughout the distributions. To 154 

visualize the timepoint dynamics more clearly, we generated a heatmap of the distributions 155 

with inflection points added to determine changes in gene weights that may occur (Figure 3C 156 

and D). Inflection points, in this case, are simple differences in weights between each time point 157 

and the previous time point. These data are ideal for highlighting changes between each time 158 

point. An additional differential heatmap of all weight differences with respect to the 159 

embryonic day 10.5 point was generated to visualize change from a central time (Figure S1). It 160 

was clear that these TFs have time dependent dynamics in our model. Gata4, Nkx2-5, and Tbx5 161 

appear to interact with most of their targets constantly throughout early development as 162 

indicated by a mostly yellow (no change) inflection point heat map until adult heart. These TF’s 163 

have been shown to be important in normal cardiac development (Misra et al. 2014) and act as 164 

potential as cardiac reprogramming factors from embryonic fibroblast (Hashimoto et al. 2019).  165 

At this time, we observed a net decrease in the Gata4 network weights as observed by an 166 

increase in negative inflection points and a decrease in positive values. Mef2a showed a similar 167 

trend as Gata4 with a minor increase in network weights leading up to birth, which has been 168 

previously shown to be important in postnatal heart development and regulation (Desjardins 169 
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and Naya 2016). Srf shows a different trend with most of the weights being relatively low until 170 

P0 where there is a minor but noticeable uptick in the network weights. This observation 171 

matches the biological importance of Srf in early cardiac development and its critical role in 172 

maintaining adult heart function (Mokalled et al. 2015). Foxs1 demonstrates the most profound 173 

change over time with the initial weights being very low and increasing over time until 174 

embryonic day 16.5. After this time the weights begin to decrease into adulthood but never go 175 

away completely. This may be due to the role of Foxs1 as a key factor in vascular development 176 

(De Val 2011) which in important in earlier development. 177 

 178 

Model Comparison 179 

 There have been a number of studies on mouse cardiac TF regulatory networks with one 180 

study looking at the regulatory networks of Gata4, Mef2a, Nkx2-5, and Srf and providing the 181 

interactions they identified (Schlesinger et al. 2011). We extracted the interactions of the 182 

aforementioned TFs from our network and compared it with the previously identified 183 

interactors (Figure 4A and S8). We found that our networks contain over 10,000 putative novel 184 

interactions (weight edge weight greater than 0) that were not reported previously. 185 

Interestingly, regardless of the timepoint, our networks captured only about 63% of Gata4 186 

targets, 61.5% of Mef2a targets, and 57% Nkx2-5 and Srf targets of the previous network’s 187 

interactions leaving a large portion of their networks unique to their analysis (Figure 4B). We 188 

speculate there are two likely explanations for the absence of a 100% overlap: 1) the previous 189 

network established interactions using the canonical distance-based cutoff leading to some 190 

genes being added or removed erroneously if cutoffs differed from our TAD boundaries or 2) 191 
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while our TAD boundaries are more accurate than distance-based cutoffs, the TADs we use are 192 

not fully representative of cardiac specific TADs leading to loss of some connections in our 193 

network. Regardless of the reason, we wanted to understand if the main overlap between our 194 

networks was due to the previous study finding the strongest interactors of the TFs. To test 195 

this, we performed the Kolmogorov–Smirnov test (KS-test) on the cumulative distribution 196 

between the overlap edge weights and the full edge weights (Figure 4C and Table S2). We 197 

found that in all time points the overlapping genes identified have higher mean edge weights 198 

than the total (Figure 4D). This implies that we are identifying true strongly interacting targets 199 

and a broad set of possible true but weakly interacting targets. 200 

 To further support the biological relevance of our networks, we selected the full TF 201 

network, the overlapping network, and the connections unique to our network, and performed 202 

GO-term enrichment analysis (Figure 5, S9). We see that in the case of Mef2a, there is a similar 203 

core of regulatory processes that are maintained from 10.5e and 8w (Figure 5). Of interest, we 204 

found that in younger 10.5e hearts there was significant enrichment for development related 205 

genes as opposed to older 8w hearts which had T cell activation terms enriched. This makes 206 

sense when considering recent studies showing Mef2a involvement in inflammation-related 207 

processes and the interaction of T cell activation and inflammation (Skapenko et al. 2005; Xiong 208 

et al. 2019). Furthermore, we found that overlapping targets between our data and previous 209 

data contained terms enriched for cardiac development while full and unique networks showed 210 

enrichment for cardiac related and general biological terms. Thus, it is reasonable to conclude 211 

that our network contains true biologically relevant interactions in cardiac tissue throughout 212 

development. 213 
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  214 
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Conclusions: 215 

Our results show that we were able to expand current methods for generating 216 

regulatory networks to take advantage of Topologically Associated Domains (TADs) to limit the 217 

predicted influence of enhancers. In this way, we were able to produce highly similar results as 218 

reported previously with the added benefit of the networks containing an expanded set of 219 

potentially relevant biological connections that can be explored. Additionally, we have 220 

developed a framework that can be exploited for a diverse array of species and cell types 221 

requiring only two experimental assays, H3K27ac ChIP-seq and RNA-seq. We believe this 222 

method opens the possibility for understanding deeper connections and new possibilities for 223 

biological discovery.  224 
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Materials and Methods  225 

Data Preprocessing 226 

TReNCo begins by generating distinct transcription start sites (TSSs), using a parsing 227 

tool, MakeGencodeTSS, for protein-coding genes from Gencode annotation files: Mouse 228 

Gencode version 4 by default. Promoters are then constructed using bedtools slot to extend 229 

1000 nucleotides upstream and 200 nucleotides downstream of the TSS in a strand specific 230 

extension. Enhancer boundaries are then generated by using bedops merge to merge the user 231 

defined H3K27ac ChIP peak bed files and excluding overlaps with promoter regions.  232 

A transcript expression matrix with normalized log2 TPM is generated from the provided 233 

RNA-seq expression tables with each row corresponding to a gene and the columns 234 

corresponding to a sample. The same is done for enhancers with bedtools coverage being used 235 

to calculate the coverage for each enhancer for each sample using the enhancer regions 236 

defined previously. 237 

Log-Odds ratio for TF (TF) binding to promoters and enhancers is calculated with MEME-238 

suite software, FIMO, using cis-bp motif database on promoter and enhancer sequences 239 

extracted from the genome, default mm10 (GRCm38), using bedtools getfasta and the bed files 240 

generated previously. TF matrices are constructed by reformatting the native output of FIMO 241 

and converting TF names to gene symbols 242 

Model Algorithm and Matrix Factorization 243 

We use the following annotations: M for a matrix, mj for a matrix column, and mi,j for a 244 

matrix element. TReNCo will, for each sample k, extract gene expression (gk) and enhancer 245 

expression (ek) vectors from the previously built gene (G) and enhancer (E) TPM matrices. From 246 
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the gene expression vector, TF genes will be extracted from the gene matrix (G) and scaled 247 

from 0 to 1 to form a network weighting score (G’k). 248 

Then for each TAD t genome interval defined in a bed file, default is provided for mice 249 

from a previous publication (Gittenberger-De Groot et al. 2005). Genes, promoters, and 250 

enhancers are isolated along with TF scores for promoters and enhancers. A distance weight 251 

matrix for the TAD (Dt) is built between all genes and enhancers and used to build a TAD 252 

specific enhancer by gene weight (Wk,t). 253 

Calculate Dt
 distance weights using genomic positions epi and gpj for the corresponding 254 

enhancer start peak position and gene start position. 255 

y!,# =
1

log$'(ep!−gp#(,
 256 

y%&' = max(Y), 	y%!( = min(Y) 257 

d!,#) =
y!,# − y%!(
y%&' − y%!(

 258 

Calculate wk,t
i,j enhancer by gene weight 259 

w!,#
*,) = d!,#9log$'e!,*g#,*, 260 

 TAD specific TF by enhancer score (Mt) and TF by gene score (Pt) are extracted from the 261 

FIMO matrices and scaled to the max value of the original matrices. We then factor the vectors 262 

and matrices, scale values with an arctan to condense higher values to a similar score 263 

approaching +
$
. The resulting matrix is weighted by the network weighting score G’k to form TAD 264 

specific TF gene regulatory network (Rk,t). 265 

R*,) =
G′*

max	(G′*)
=arctan(

P)

max(P)) × 𝐝𝐢𝐚𝐠(𝐠*)) + arctan(
M)

max	(M)) ×W
*,))J 266 
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 267 

 All Rk,t matrices are concatenated together to form a full sample specific gene 268 

regulatory network Rk. Gene expression vectors for each sample are converted to gene symbols 269 

and output as node weights. The edge matrix is sparse and thus is converted to a vector with 270 

TF-gene links being preserved in a string key and zero values being removed. This edge vector is 271 

output to a file as the nodes are. 272 

ENCODE Data 273 

 Gene expression and H3K27ac ChIP data was selected from ENCODE. Data was chosen 274 

using a script to select mouse heart data corresponding to embryonic day 10.5, 11.5, 12.5, 13.5, 275 

14.5, 15.5, 16.5, postnatal day 0 and 8 weeks old and had a matched set of Gene expression 276 

and ChIP-seq. In total every sample had at least technical duplicates with embryonic day 14.5, 277 

postnatal day 0, and 8 weeks old time points having 4 replicates of gene expression and 278 

embryonic day 14.5 having 4 ChIP-seq replicates. Two of the embryonic day 14.5 gene 279 

expression data were dropped due to poor correlation (average R2 less than 0.7) with the rest 280 

of the data set. (Table S2 for accession numbers) 281 

Statistical Analysis and Data Visualization 282 

 Plots and graphs were built using seaborn for python and ggplot2 for R scripts. All 283 

heatmaps were built in python and analyzed with scikit-learn. Gene networks from previous 284 

studies were downloaded from the corresponding journals and converted to a list. Genes 285 

networks for Gata4, Srf, Mef2a, and Nfx2-5 were subset from our networks and targets for 286 

these TFs were converted to lists. Venn-diagrams of gene list overlaps were built in python 287 

using venn2 package. Analysis of GO-terms was performed in R using enrichGO in clusterProfiler 288 
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with org.Mm.eg.db database. Plots for GO-terms were built using the built in dotplot function 289 

in clusterProfiler. 290 

  291 
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Figure 1:

A B

TReNCo model. A) Diagram with required inputs, gene 
expression, enhancers, and TAD boundaries input into a model 
using the basic equations shown leading to a gene interaction 
graph result. ‘+’ and ‘x’ indicate standard matrix additions and 
multiplications, respectively. The other operations such as ⊙, 
log, square root, and arctan are all element-wise. B) Pseudo-
code for constructing a Gene Interaction Graph.
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Figure 2:

ENCODE Datasets. A) Timeline of basic mouse cardiovascular 
development with life stage on top and developmental stages on 
the bottom B) Number of samples for each timepoint and data 
type C) Correlation heatmap between samples and replicates at 
each time point
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Figure 3:

TF-Gene Edge Weights. A) Histograms of TF-gene interaction weights 
for 5 different genes, separated by developmental time points B) 
Histogram as in A, for Foxs1 TF separated into individual developmental 
time point plots C) Heatmap of TF-gene interaction weights sorted by 
time points D) Heatmap as in C, showing gene inflection points 
calculated by log2 the ratio of gene weights. Green indicates increase 
gene weight from the last time point while Red indicates a decrease.
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Figure 4:

Model Comparison. A) TF-gene interaction Venn Diagram overlap 
between TReNCo model and previous study B) Line plot showing 
percent TF-gene interactions captured from a previous study with the 
TReNCo model C) CDF plot with weight of overlapping interactions vs 
background in TReNCo model D) Bar plot of mean TF-gene weights for 
Specific/overlapping interactions (red), all other background 
interactons (green) and all interactions (blue)
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Figure 5:

GO-term Enrichment. Enrichment for gene terms between 
embryonic day 10.5 and 8 week old adult heart. Highlighted 
terms show first difference in term list

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441672


Supplement 1: Differential 
weights
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Supplement 2: All Distributions
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Supplement 3: Promoter 
Distributions
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Supplement 4: Enhancer 
Distributions
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Supplemental 5: CDF Plots All 
Genes
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Supplement 6: CDF Plots 
Promoters
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Supplement 7: CDF Plots 
Enhancer
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Supplement 8: All overlaps
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Supplement 9: More GO-terms
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Table 1: Encode Data for 
validation

Time Point RNA-seq Data H3K27ac Data

heart_10.5e

heart_10.5d-
embryonic_rep1_RNA-

seq_ENCFF127FPD_ENCSR049
UJU

heart_10.5d-
embryonic_rep2_RNA-

seq_ENCFF721XZC_ENCSR049
UJU

heart_10.5d-
embryonic_rep1_H3K27ac_EN
CFF847FKM_ENCSR582SPN

heart_10.5d-
embryonic_rep2_H3K27ac_EN
CFF601EJB_ENCSR582SPN

heart_11.5e

heart_11.5d-
embryonic_rep1_RNA-

seq_ENCFF226IWR_ENCSR691
OPQ

heart_11.5d-
embryonic_rep2_RNA-

seq_ENCFF540EJL_ENCSR691O
PQ

heart_11.5d-
embryonic_rep1_H3K27ac_EN
CFF635BLS_ENCSR222IHX

heart_11.5d-
embryonic_rep2_H3K27ac_EN

CFF472ZSL_ENCSR222IHX

heart_12.5e

heart_12.5d-
embryonic_rep1_RNA-

seq_ENCFF125TAY_ENCSR150
CUE

heart_12.5d-
embryonic_rep2_RNA-

seq_ENCFF824DCQ_ENCSR150
CUE

heart_12.5d-
embryonic_rep1_H3K27ac_EN
CFF218WWW_ENCSR123MLY

heart_12.5d-
embryonic_rep2_H3K27ac_EN
CFF778SLY_ENCSR123MLY

heart_13.5e

heart_13.5d-
embryonic_rep1_RNA-

seq_ENCFF242GMD_ENCSR28
4YKY

heart_13.5d-
embryonic_rep2_RNA-

seq_ENCFF976CYB_ENCSR284
YKY

heart_13.5d-
embryonic_rep1_H3K27ac_EN
CFF982HXU_ENCSR699XHY

heart_13.5d-
embryonic_rep2_H3K27ac_EN
CFF695YAS_ENCSR699XHY

heart_14.5e

heart_14.5d-
embryonic_rep1_RNA-

seq_ENCFF111IGW_ENCSR727
FHP

heart_14.5d-
embryonic_rep1_RNA-

seq_ENCFF662WLV_ENCSR000
CHF

heart_14.5d-
embryonic_rep2_RNA-

seq_ENCFF540BJT_ENCSR727F
HP

heart_14.5d-
embryonic_rep2_RNA-

seq_ENCFF705YYN_ENCSR000
CHF

heart_14.5d-
embryonic_rep1_H3K27ac_EN
CFF098HOY_ENCSR360ANE

heart_14.5d-
embryonic_rep1_H3K27ac_EN
CFF176BPZ_ENCSR000CDK

heart_14.5d-
embryonic_rep2_H3K27ac_EN
CFF100LKR_ENCSR000CDK

heart_14.5d-
embryonic_rep2_H3K27ac_EN
CFF549PWG_ENCSR360ANE

heart_15.5e

heart_15.5d-
embryonic_rep1_RNA-

seq_ENCFF440PWB_ENCSR597
UZW

heart_15.5d-
embryonic_rep2_RNA-

seq_ENCFF219PVC_ENCSR597
UZW

heart_15.5d-
embryonic_rep1_H3K27ac_EN
CFF576RBC_ENCSR574VME

heart_15.5d-
embryonic_rep2_H3K27ac_EN
CFF261KJB_ENCSR574VME

heart_16.5e

heart_16.5d-
embryonic_rep1_RNA-

seq_ENCFF415JBI_ENCSR020D
GG

heart_16.5d-
embryonic_rep2_RNA-

seq_ENCFF871IGQ_ENCSR020
DGG

heart_16.5d-
embryonic_rep1_H3K27ac_EN
CFF716BZP_ENCSR846PJO

heart_16.5d-
embryonic_rep2_H3K27ac_EN
CFF095YRX_ENCSR846PJO

heart_0p

heart_0d-
postnatal_rep1_RNA-

seq_ENCFF799NMY_ENCSR035
DLJ

heart_0d-
postnatal_rep1_RNA-

seq_ENCFF817KPY_ENCSR526S
EX

heart_0d-
postnatal_rep2_RNA-

seq_ENCFF155GNG_ENCSR526
SEX

heart_0d-
postnatal_rep2_RNA-

seq_ENCFF259NEX_ENCSR035
DLJ

heart_0d-
postnatal_rep1_H3K27ac_ENC
FF441FKM_ENCSR675HDX

heart_0d-
postnatal_rep2_H3K27ac_ENC
FF659KMV_ENCSR675HDX

heart_8w_adult
heart_8w-adult_rep1_RNA-

seq_ENCFF929JPM_ENCSR000
BYQ

heart_8w-adult_rep1_RNA-
seq_ENCFF948VMD_ENCSR000

CGZ

heart_8w-adult_rep2_RNA-
seq_ENCFF204IFN_ENCSR000B

YQ

heart_8w-adult_rep2_RNA-
seq_ENCFF653TZM_ENCSR000

CGZ

heart_8w-
adult_rep1_H3K27ac_ENCFF44

3VMQ_ENCSR000CDF

heart_8w-
adult_rep2_H3K27ac_ENCFF44

2VUL_ENCSR000CDF
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Table 2: KS-test for all CDFs

process\heart_10.5e_tf_gene_full_matrix.txt Specific Gene Weight Mean Background Gene Weight Mean Total Gene Weight Mean KS test results
Gene:Gata4 0.3317 0.2503 0.2519 KStest:Ks_2sampResult(statistic=0.3078981251250014, pvalue=7.403426548003055e-23)
Gene:Mef2a 0.2734 0.2084 0.2111 KStest:Ks_2sampResult(statistic=0.3032108993879151, pvalue=6.557259117991856e-45)
Gene:Nkx2-5 0.3571 0.311 0.3117 KStest:Ks_2sampResult(statistic=0.1912522354390591, pvalue=1.4795201259462122e-07)
Gene:Srf 0.0591 0.0406 0.0418 KStest:Ks_2sampResult(statistic=0.2174528615875645, pvalue=2.0040813392914285e-31)
process\heart_11.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.3464 0.2613 0.263 KStest:Ks_2sampResult(statistic=0.31229445015416235, pvalue=1.1729016651585068e-23)
Gene:Mef2a 0.2929 0.2224 0.2253 KStest:Ks_2sampResult(statistic=0.3065966041158062, pvalue=7.039980439722548e-46)
Gene:Nkx2-5 0.3612 0.3094 0.3102 KStest:Ks_2sampResult(statistic=0.21612900810325442, pvalue=1.8849227084862186e-09)
Gene:Srf 0.0602 0.041 0.0423 KStest:Ks_2sampResult(statistic=0.21724430406750767, pvalue=2.262095680946739e-31)
process\heart_12.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.3626 0.2724 0.2742 KStest:Ks_2sampResult(statistic=0.3104851951904232, pvalue=2.151439936202865e-23)
Gene:Mef2a 0.3177 0.2398 0.243 KStest:Ks_2sampResult(statistic=0.31483793462056675, pvalue=2.6750155057844394e-48)
Gene:Nkx2-5 0.3777 0.3242 0.325 KStest:Ks_2sampResult(statistic=0.22039925041096425, pvalue=6.788699903970641e-10)
Gene:Srf 0.0683 0.0464 0.0478 KStest:Ks_2sampResult(statistic=0.2220897500769176, pvalue=8.609119747893107e-33)
process\heart_13.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.3446 0.2546 0.2564 KStest:Ks_2sampResult(statistic=0.3161653587560625, pvalue=2.9932767960954617e-24)
Gene:Mef2a 0.3251 0.2418 0.2452 KStest:Ks_2sampResult(statistic=0.32692869666861485, pvalue=4.410559183108018e-52)
Gene:Nkx2-5 0.3737 0.3159 0.3168 KStest:Ks_2sampResult(statistic=0.2328631227612959, pvalue=5.341838936494918e-11)
Gene:Srf 0.0596 0.0401 0.0413 KStest:Ks_2sampResult(statistic=0.22378402572348355, pvalue=2.12528241890542e-33)
process\heart_14.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.35 0.2625 0.2643 KStest:Ks_2sampResult(statistic=0.3089140849585923, pvalue=3.10164313918002e-23)
Gene:Mef2a 0.3483 0.2625 0.2661 KStest:Ks_2sampResult(statistic=0.321602781450757, pvalue=1.9658774759912377e-50)
Gene:Nkx2-5 0.3704 0.3151 0.316 KStest:Ks_2sampResult(statistic=0.22561563643485805, pvalue=2.647659700329096e-10)
Gene:Srf 0.0699 0.0475 0.049 KStest:Ks_2sampResult(statistic=0.22289917588782365, pvalue=7.570965268524116e-33)
process\heart_15.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.3433 0.254 0.2558 KStest:Ks_2sampResult(statistic=0.33195082172171014, pvalue=8.678724417386656e-27)
Gene:Mef2a 0.3471 0.2586 0.2622 KStest:Ks_2sampResult(statistic=0.3327213120605745, pvalue=4.763951832770398e-54)
Gene:Nkx2-5 0.3725 0.3148 0.3157 KStest:Ks_2sampResult(statistic=0.2352521707352379, pvalue=3.216033385360389e-11)
Gene:Srf 0.0628 0.0421 0.0434 KStest:Ks_2sampResult(statistic=0.23549920511246475, pvalue=6.240308637218019e-37)
process\heart_16.5e_tf_gene_full_matrix.txt
Gene:Gata4 0.3354 0.2474 0.2491 KStest:Ks_2sampResult(statistic=0.3410844067073955, pvalue=2.9044448389252187e-28)
Gene:Mef2a 0.3629 0.2691 0.2728 KStest:Ks_2sampResult(statistic=0.33504088163195184, pvalue=8.057506167548412e-55)
Gene:Nkx2-5 0.3721 0.3143 0.3152 KStest:Ks_2sampResult(statistic=0.23732472904248147, pvalue=2.0648004612399954e-11)
Gene:Srf 0.0623 0.0417 0.043 KStest:Ks_2sampResult(statistic=0.23566189917355046, pvalue=5.866042733797058e-37)
process\heart_0p_tf_gene_full_matrix.txt
Gene:Gata4 0.3515 0.2479 0.2499 KStest:Ks_2sampResult(statistic=0.3501332463905747, pvalue=9.628119830019224e-30)
Gene:Mef2a 0.3616 0.2562 0.2605 KStest:Ks_2sampResult(statistic=0.3476302128856224, pvalue=8.107628704135622e-59)
Gene:Nkx2-5 0.4125 0.3327 0.3339 KStest:Ks_2sampResult(statistic=0.2556762290846173, pvalue=4.08093067429961e-13)
Gene:Srf 0.0922 0.059 0.0612 KStest:Ks_2sampResult(statistic=0.2434811016316083, pvalue=3.92835117129982e-39)
process\heart_8w_adult_tf_gene_full_matrix.txt
Gene:Gata4 0.2918 0.1963 0.1982 KStest:Ks_2sampResult(statistic=0.36914645804036206, pvalue=8.374446086295591e-33)
Gene:Mef2a 0.2773 0.1903 0.1938 KStest:Ks_2sampResult(statistic=0.3497158217181099, pvalue=1.3691126693409823e-59)
Gene:Nkx2-5 0.2622 0.2045 0.2054 KStest:Ks_2sampResult(statistic=0.26752352621695596, pvalue=2.5216974990928624e-14)
Gene:Srf 0.096 0.0599 0.0622 KStest:Ks_2sampResult(statistic=0.2390483239398245, pvalue=6.857589495631153e-38)
process\heart_10.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.0041 3.31 3.3643 KStest:Ks_2sampResult(statistic=0.3103460096360705, pvalue=4.582034303246003e-22)
Gene:Mef2a 6.3262 3.3753 3.4959 KStest:Ks_2sampResult(statistic=0.3520745547934672, pvalue=1.8213155988496062e-55)
Gene:Nkx2-5 8.1453 5.3617 5.4051 KStest:Ks_2sampResult(statistic=0.2412095931690722, pvalue=1.2668584506472342e-10)
Gene:Srf 0.7893 0.4981 0.5172 KStest:Ks_2sampResult(statistic=0.21349571888770952, pvalue=3.0486849004944067e-29)
process\heart_11.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.0453 3.2838 3.3408 KStest:Ks_2sampResult(statistic=0.3173376715437778, pvalue=3.268195389111931e-23)
Gene:Mef2a 6.4379 3.3792 3.5062 KStest:Ks_2sampResult(statistic=0.36099185539008344, pvalue=2.9799138510375514e-58)
Gene:Nkx2-5 8.3 5.212 5.2607 KStest:Ks_2sampResult(statistic=0.2587385790200234, pvalue=4.2239901600919255e-12)
Gene:Srf 0.7908 0.4914 0.5114 KStest:Ks_2sampResult(statistic=0.21264944555400794, pvalue=4.6856246022684737e-29)
process\heart_12.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.2722 3.3678 3.4272 KStest:Ks_2sampResult(statistic=0.32114057796881, pvalue=9.123661778902185e-24)
Gene:Mef2a 6.7297 3.4771 3.6105 KStest:Ks_2sampResult(statistic=0.3756690544594463, pvalue=5.785466035773634e-63)
Gene:Nkx2-5 8.5965 5.3677 5.4184 KStest:Ks_2sampResult(statistic=0.26388303597144114, pvalue=1.2481773560564599e-12)
Gene:Srf 0.8201 0.5058 0.5265 KStest:Ks_2sampResult(statistic=0.21627187700846195, pvalue=5.025805723396589e-30)
process\heart_13.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.0889 3.2119 3.2697 KStest:Ks_2sampResult(statistic=0.3265193511067215, pvalue=1.4561048727583042e-24)
Gene:Mef2a 6.6017 3.3445 3.4758 KStest:Ks_2sampResult(statistic=0.3863588600399538, pvalue=1.270946991723429e-66)
Gene:Nkx2-5 8.3325 5.1068 5.1566 KStest:Ks_2sampResult(statistic=0.2766171508632816, pvalue=7.698668862493522e-14)
Gene:Srf 0.7992 0.4871 0.5074 KStest:Ks_2sampResult(statistic=0.21967195808365925, pvalue=4.527245133410699e-31)
process\heart_14.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.1175 3.2669 3.3261 KStest:Ks_2sampResult(statistic=0.3248744543222616, pvalue=2.150514625229933e-24)
Gene:Mef2a 6.6969 3.44 3.5755 KStest:Ks_2sampResult(statistic=0.3745033368611531, pvalue=1.17858282839793e-62)
Gene:Nkx2-5 8.4931 5.1887 5.2409 KStest:Ks_2sampResult(statistic=0.2816475031939122, pvalue=2.9327723972270516e-14)
Gene:Srf 0.8084 0.4985 0.5191 KStest:Ks_2sampResult(statistic=0.21686668331895187, pvalue=5.109790183744581e-30)
process\heart_15.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.1475 3.2352 3.2932 KStest:Ks_2sampResult(statistic=0.33913943187454043, pvalue=1.4407983012022382e-26)
Gene:Mef2a 6.735 3.3952 3.5284 KStest:Ks_2sampResult(statistic=0.3882829079344596, pvalue=1.940785425993913e-67)
Gene:Nkx2-5 8.5237 5.1911 5.2418 KStest:Ks_2sampResult(statistic=0.2876043094644451, pvalue=6.263763800908282e-15)
Gene:Srf 0.8133 0.4936 0.5142 KStest:Ks_2sampResult(statistic=0.22884285121058712, pvalue=1.1369393990184256e-33)
process\heart_16.5e_tf_gene_enhancer_matrix.txt
Gene:Gata4 6.173 3.2243 3.2826 KStest:Ks_2sampResult(statistic=0.3436747573351122, pvalue=2.8230712086397466e-27)
Gene:Mef2a 6.7717 3.3942 3.5279 KStest:Ks_2sampResult(statistic=0.38796307084085935, pvalue=2.3838279505854432e-67)
Gene:Nkx2-5 8.5281 5.1679 5.2187 KStest:Ks_2sampResult(statistic=0.29148349642179056, pvalue=2.518547013487967e-15)
Gene:Srf 0.8134 0.4937 0.5141 KStest:Ks_2sampResult(statistic=0.22623684876665334, pvalue=6.236650189329188e-33)
process\heart_0p_tf_gene_enhancer_matrix.txt
Gene:Gata4 5.6621 2.8062 2.8641 KStest:Ks_2sampResult(statistic=0.35339138097838063, pvalue=8.425653002079567e-29)
Gene:Mef2a 6.2074 2.9601 3.0917 KStest:Ks_2sampResult(statistic=0.3954938250603885, pvalue=8.952186996708385e-70)
Gene:Nkx2-5 7.8701 4.5188 4.5704 KStest:Ks_2sampResult(statistic=0.3057638026419781, pvalue=9.784257034492261e-17)
Gene:Srf 0.7422 0.4322 0.4523 KStest:Ks_2sampResult(statistic=0.23681743492173307, pvalue=9.86362193599152e-36)
process\heart_8w_adult_tf_gene_enhancer_matrix.txt
Gene:Gata4 4.9757 2.3587 2.41 KStest:Ks_2sampResult(statistic=0.36843215988683814, pvalue=4.6759168620907115e-31)
Gene:Mef2a 5.3533 2.5017 2.6144 KStest:Ks_2sampResult(statistic=0.3936533003687007, pvalue=3.3412421394248354e-69)
Gene:Nkx2-5 6.8358 3.8547 3.8995 KStest:Ks_2sampResult(statistic=0.328906963294376, pvalue=2.6348461614984416e-19)
Gene:Srf 0.6411 0.3689 0.3861 KStest:Ks_2sampResult(statistic=0.23206210428577817, pvalue=1.8193115722884064e-34)
process\heart_10.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.8245 1.1351 1.1528 KStest:Ks_2sampResult(statistic=0.360466842626196, pvalue=1.4294890826604956e-09)
Gene:Mef2a 1.8732 1.1759 1.2066 KStest:Ks_2sampResult(statistic=0.3218657628797375, pvalue=3.1086244689504383e-15)
Gene:Nkx2-5 1.5991 1.1685 1.1743 KStest:Ks_2sampResult(statistic=0.21043185086023106, pvalue=0.0011660993130366837)
Gene:Srf 0.9207 0.5837 0.6087 KStest:Ks_2sampResult(statistic=0.28984005966686005, pvalue=1.4967422105049977e-06)
process\heart_11.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.804 1.0846 1.1036 KStest:Ks_2sampResult(statistic=0.38465832205683353, pvalue=7.153955206007367e-11)
Gene:Mef2a 1.8349 1.1221 1.154 KStest:Ks_2sampResult(statistic=0.33305311774335583, pvalue=2.9976021664879227e-15)
Gene:Nkx2-5 1.6079 1.1091 1.1158 KStest:Ks_2sampResult(statistic=0.2342123324485459, pvalue=0.00024387948018045336)
Gene:Srf 0.8831 0.5616 0.5859 KStest:Ks_2sampResult(statistic=0.3105287569573284, pvalue=1.8636472309818686e-07)
process\heart_12.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.9088 1.1345 1.1547 KStest:Ks_2sampResult(statistic=0.38299866131191435, pvalue=8.795153494389751e-11)
Gene:Mef2a 1.9473 1.164 1.1983 KStest:Ks_2sampResult(statistic=0.3745995423340961, pvalue=4.440892098500626e-15)
Gene:Nkx2-5 1.6905 1.1607 1.1679 KStest:Ks_2sampResult(statistic=0.2311846856923716, pvalue=0.00024892414031196797)
Gene:Srf 0.9121 0.5845 0.6092 KStest:Ks_2sampResult(statistic=0.31076205063889717, pvalue=1.4961004468627692e-07)
process\heart_13.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.7948 1.0429 1.0618 KStest:Ks_2sampResult(statistic=0.38357882809970867, pvalue=7.997391637815099e-11)
Gene:Mef2a 1.8563 1.0966 1.1296 KStest:Ks_2sampResult(statistic=0.36666666666666664, pvalue=4.3298697960381105e-15)
Gene:Nkx2-5 1.5839 1.0896 1.0963 KStest:Ks_2sampResult(statistic=0.23094010563338677, pvalue=0.000253392393242291)
Gene:Srf 0.8735 0.5458 0.5697 KStest:Ks_2sampResult(statistic=0.287668726622215, pvalue=1.8153566078149552e-06)
process\heart_14.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.8564 1.1011 1.1212 KStest:Ks_2sampResult(statistic=0.4028869149299624, pvalue=6.450950884584472e-12)
Gene:Mef2a 1.9134 1.1383 1.1729 KStest:Ks_2sampResult(statistic=0.35663611250627825, pvalue=2.886579864025407e-15)
Gene:Nkx2-5 1.6401 1.1262 1.1332 KStest:Ks_2sampResult(statistic=0.23069316541088827, pvalue=0.00025912072962253063)
Gene:Srf 0.8829 0.5731 0.5968 KStest:Ks_2sampResult(statistic=0.2916535894377838, pvalue=1.1037729129581564e-06)
process\heart_15.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.8261 1.0579 1.077 KStest:Ks_2sampResult(statistic=0.40246815286624205, pvalue=6.526224005654058e-12)
Gene:Mef2a 1.9071 1.1098 1.1441 KStest:Ks_2sampResult(statistic=0.3665719834445884, pvalue=2.3314683517128287e-15)
Gene:Nkx2-5 1.6302 1.1056 1.1125 KStest:Ks_2sampResult(statistic=0.24486709077439958, pvalue=8.245182705757248e-05)
Gene:Srf 0.8819 0.5601 0.5837 KStest:Ks_2sampResult(statistic=0.3188937519316471, pvalue=5.994355978256038e-08)
process\heart_16.5e_tf_gene_promoter_matrix.txt
Gene:Gata4 1.8356 1.0536 1.0727 KStest:Ks_2sampResult(statistic=0.4003325508607199, pvalue=8.60012061565385e-12)
Gene:Mef2a 1.9318 1.1055 1.1404 KStest:Ks_2sampResult(statistic=0.37210731328212293, pvalue=2.6645352591003757e-15)
Gene:Nkx2-5 1.6377 1.1091 1.116 KStest:Ks_2sampResult(statistic=0.236684986451524, pvalue=0.00016047105192573685)
Gene:Srf 0.8881 0.5547 0.5786 KStest:Ks_2sampResult(statistic=0.32323556593219516, pvalue=3.6131436509379e-08)
process\heart_0p_tf_gene_promoter_matrix.txt
Gene:Gata4 1.5781 0.8268 0.8461 KStest:Ks_2sampResult(statistic=0.4409584980237154, pvalue=2.7200464103316335e-14)
Gene:Mef2a 1.6498 0.8774 0.9111 KStest:Ks_2sampResult(statistic=0.3770296164792741, pvalue=4.218847493575595e-15)
Gene:Nkx2-5 1.3959 0.8651 0.8723 KStest:Ks_2sampResult(statistic=0.2693486142896986, pvalue=9.763410536933748e-06)
Gene:Srf 0.7528 0.435 0.4584 KStest:Ks_2sampResult(statistic=0.34308336068263867, pvalue=4.632722983011206e-09)
process\heart_8w_adult_tf_gene_promoter_matrix.txt
Gene:Gata4 1.4461 0.6739 0.6925 KStest:Ks_2sampResult(statistic=0.45267489711934156, pvalue=1.2434497875801753e-14)
Gene:Mef2a 1.4115 0.7116 0.741 KStest:Ks_2sampResult(statistic=0.3838348106584262, pvalue=4.440892098500626e-15)
Gene:Nkx2-5 1.2308 0.7158 0.7225 KStest:Ks_2sampResult(statistic=0.3343277385226932, pvalue=1.1557440005027786e-08)
Gene:Srf 0.6513 0.3491 0.3704 KStest:Ks_2sampResult(statistic=0.31840643260825763, pvalue=5.977018502356657e-08)
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