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ABSTRACT 10 

 Certain infant eating behaviours are associated with adverse health outcomes such as 11 

obesity. While a diet consisting of infant formula has been linked to higher-risk eating 12 

behaviours and changes in the gut microbiome, little is known about what role the gut 13 

microbiome plays in mediating eating behaviours. Using 16S rRNA sequences extracted from 96 14 

fecal samples collected from 58 infants, we identified a subset of bacterial taxa that were more 15 

abundant in formula-fed infants, primarily composed of the phylum Firmicutes. The presence of 16 

these taxa correlated with a lower drive to eat (i.e., lower food responsiveness). Furthermore, 17 

short-chain fatty acid production pathways were significantly more abundant in formula-fed 18 

infants, negatively correlated with food responsiveness, and positively associated with relative 19 

abundance of the Firmicutes subset. Our results suggest that higher abundances of Firmicutes in 20 

formula-fed infants may decrease their food responsiveness through short-chain fatty acid 21 

production in the first four months of life. Taken together, these findings suggest a potential role 22 
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for the infant’s diet in impacting eating behaviour via changes to the gut microbiome, which may 23 

lead to the development of novel interventions for the prevention of childhood obesity.  24 

 25 

INTRODUCTION  26 

The human gut microbiome comprises trillions of different bacteria that interact to 27 

influence an individual’s physiology and mental health via immunologic, endocrine, and neural 28 

pathways (1). It can protect an individual by barricading pathogenic organisms from colonizing 29 

the body, aids in metabolism through processes that promote the breakdown of toxins or vitamin 30 

synthesis, and serves a trophic role by maintaining tolerance to antigens in food (1). For infants, 31 

their gut microbiota is similarly crucial for health and development, and is impacted by factors 32 

such as mode of delivery, exposure to antibiotics or probiotics, and diet (2).  33 

Regarding diet specifically, previous literature has suggested that breastfeeding shapes 34 

the gut microbiota in neonates through direct introduction of the mother’s milk microbiota and 35 

prebiotics such as human milk oligosaccharides (HMO) (3). The consensus is that breastfed 36 

infants have gut microbiota with lower diversity and lower levels of the phylum Firmicutes 37 

compared to formula-fed infants (1, 4). Despite the impact of infants’ diet on specific taxa in 38 

their gut microbiota being explored, research regarding the effects of breastfeeding or formula-39 

feeding on inter-microbial communities is lacking. As bacteria exist in complex networks rather 40 

than independently, this level of understanding is critical.   41 

Additionally, breastfeeding may be associated with lower rates of childhood obesity 42 

through the theorized mechanisms of developing healthier food preferences and eating 43 

behaviours (5, 6). In infants, eating behaviours can be evaluated through the Baby Eating 44 

Behaviour Questionnaire, which measures several different eating behavior profiles: food 45 
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responsiveness - the extent to which a child indicates an interest in and desires to spend time 46 

eating food; enjoyment of food - the extent to which a child finds eating pleasurable and desires 47 

to eat; satiety responsiveness - the extent to which a child becomes full easily and leaves food 48 

when finished eating; slowness of eating - the pace at which the child consumes their food; and 49 

general appetite, which correlates with the other metrics (7, 8).  50 

An growing body of research indicates that an adult’s gut microbial profile may play a 51 

key role in their eating behaviours (9). A recent clinical study conducted by Sanmiguel et al. 52 

showed that interventions shaping the microbiomes of obese patients led to a reduction in their 53 

cravings (9). Other studies have shown that taking probiotic supplements decreases food intake 54 

in mice (10), and leads to weight loss in humans (11, 12). This may be because gastrointestinal 55 

microbes are incentivized to manipulate their hosts’ eating behaviour in order to minimize 56 

selective pressures, either by inducing intake of foods that “suppress their competitors”, or that 57 

“enhance their own fitness” (13). Furthermore, although previous studies support the gut-brain 58 

axis model where nervous stimulation by gut bacterial peptides results in activating the vagus 59 

nerve to regulate eating behaviours and body weight (14, 15), there remains a lack of research on 60 

how bacterial populations are associated with eating behaviours in infants.  61 

In this study, we explored relationships between the infant’s diet, gut microbiome, and 62 

eating behaviours using the “eating behaviour development in infants'' data repository by Rhee et 63 

al. Our aim was to examine how different diets influence the diversity and community 64 

composition of infants’ gut microbiomes, and explore how these microbiomes may relate to 65 

infant eating behaviors. Overall, we seek to propose a possible pathway for how the gut 66 

microbiota may influence eating behaviours, which could have implications for infants’ health. 67 

We hypothesize that the infant’s diet influences their gut microbial profiles, which, in turn, 68 
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affects their eating behaviours. More precisely, we predict that formula-feeding is associated 69 

with a higher abundance of the phylum Firmicutes and the exhibition of obesity-prone eating 70 

behaviours. 71 

 72 

METHODS 73 

Participant Recruitment 74 

Infant-mother dyads were recruited from the community.  Mothers provided written 75 

informed consent for themselves and their infants.  The University of Michigan Institutional 76 

Review Board approved this study.  Inclusion criteria were: (1) Child was born at 37.0 – 42.0 77 

weeks gestation, with weight appropriate for gestational age, and no significant perinatal or 78 

neonatal complications.  Exclusions were: (1) non-fluency in English in the parent; (2) foster 79 

child; (3) mother < 18 years old; (4) medical problems or known diagnosis affecting current or 80 

future eating, growth or development; (5) child protective services involvement in the neonatal 81 

period; (6) infant does not consume at least 2 ounces in one feeding from an artificial nipple and 82 

bottle at least once per week. The exclusion of infants who had not yet taken a feeding from an 83 

artificial nipple resulted in the exclusion of few infants, as most infants in the population from 84 

which this cohort was recruited had fed from a bottle with an artificial nipple at least 85 

occasionally by the age of recruitment.   86 

Data Collection 87 

 At each age point, mothers completed the Baby Eating Behavior Questionnaire, an 88 

adapted version of the Children’s Eating Behaviour Questionnaire. The BEBQ is an 18-item 89 

parent-report psychometric measure of infant appetite. All questions in each subscale were 90 

scored on a 5-point Likert scale as never (1), rarely (2), sometimes (3), often (4), or always (5), 91 
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and mean scores for each subscale were then calculated (range: 1–5). It generates 4 subscales (an 92 

example of a question is provided in brackets): Enjoyment of food (4 items; “My baby seemed 93 

contented while feeding”), Food responsiveness (6 items; Even when my baby had just eaten 94 

well s/he was happy to feed again if offered”), Slowness in eating (4 items; “My baby took more 95 

than 30 minutes to finish feeding”), Satiety responsiveness (3 items; “My baby got full before 96 

taking all the milk I thought s/he should have”), and General appetite (1 item). Internal reliability 97 

of the subscales by age based on Cronbach’s alpha were: Enjoyment of food (2 weeks: 0.62, 2 98 

months: 0.61, 4 months: 0.70), Food responsiveness (2 weeks: 0.75, 2 months: 0.75, 4 months: 99 

0.78), Slowness in eating (2 weeks: 0.63, 2 months: 0.62, 4 months: 0.57), Satiety responsiveness 100 

(2 weeks: 0.14, 2 months: 0.42, 4 months: 0.44). Given the poor internal reliability of the Satiety 101 

Responsiveness subscale in this sample, analyses of this subscale were omitted.  102 

To assess infant dietary intake, we used selected questions from age-appropriate 103 

questionnaires developed by the U.S. Center for Disease Control (CDC); at each age point, 104 

mothers reported, in the last 7 days, the number of feedings per day of formula or breastmilk. 105 

From these data, infants were classified as exclusively breastfed, exclusively formula fed, or 106 

mixed. Only infants from the first two groups were included in subsequent analyses. At each age 107 

point, the mother reported, from a list of possible signs and symptoms (e.g., diarrhea, fever, 108 

vomiting), whether the infant had any health issues in the preceding two weeks. Mothers also 109 

reported whether they or their infant had taken any probiotics or antibiotics in the last two weeks. 110 

Mothers reported mode of delivery (Caesarean versus vaginal). 111 

Fecal samples were collected from mothers and infants at each age point. Fecal samples 112 

from the initial cohort were collected using BD SwubeTM dual headed. DNA was extracted and 113 

the 16S rRNA region was sequenced on an Illumina MiSeq platform using the 515F/806R primer 114 
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set. Sequencing data was deposited in the European Nucleotide Archive (ENA) at EMBL-EBI 115 

under the accession number PRJEB39437 by the University of California San Diego Microbiome 116 

Initiative, with all other data recorded in the metadata.  117 

Identification of Confounding Variables 118 

Potential factors that could influence the infant gut microbiome independent of diet were 119 

assessed based on prior knowledge and included maternal and infant intake of probiotics and/or 120 

antibiotics in the 2 weeks prior to sample collection, and mode of delivery (vaginal vs 121 

Caesarean-section). Associations between these factors, and diet and eating behaviours were 122 

evaluated using Fisher’s test and Mann-Whitney U test. Their impact on the gut microbiome was 123 

assessed based on weighted UniFrac distance and permutational analysis of variance 124 

(PERMANOVA) using the vegan package (16). 125 

Microbiome Sequences Analysis 126 

Unless stated otherwise, the following analyses were performed using QIIME2 127 

(v2020.11) and its plugins (17). Exact commands can be found in the supplementary command 128 

line script. After demultiplexing, 16S rRNA sequences underwent quality control using DADA2 129 

(18). Next, a phylogenetic tree was generated and used to plot an alpha-rarefaction curve to 130 

identify the sampling depth at which richness has been fully observed. Taxonomy was assigned 131 

using the Greengenes 99% OTU database (19). 132 

Alpha and Beta Diversity Calculations 133 

Metadata, along with the phylogenetic tree and taxonomy-annotated feature table 134 

exported from QIIME2, were imported into R. Ape (20) was used to convert QIIME2’s 135 

multichotomous tree into a dichotomous one for downstream analyses. Phyloseq (21) and btools 136 

were used to calculate alpha and beta diversity metrics for comparing breastfed and formula-fed 137 
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infants. Phyloseq was used to calculate observed OTUs, Chao1, ACE, Shannon, Simpson, 138 

Inverse Simpson, and Fisher alpha diversity metrics, and Bray-Curtis, Jaccard, weighted 139 

UniFrac, and unweighted UniFrac distances for beta diversity. Btools was used to calculate 140 

Faith’s phylogenetic diversity. Statistical significance was evaluated using the Mann-Whitney U 141 

test for alpha diversity and PERMANOVA for beta diversity. 142 

Random Forest Classifier 143 

Using caret (22) and randomForest (23), a random forest classifier was optimized, 144 

trained, and used to predict diet based on genus-level relative abundance. Receiver operating 145 

characteristic curves and feature importance were also calculated using these two packages. 146 

Co-abundant Clusters Identification 147 

Microbial co-abundance at the genus level was calculated for genera that were present in 148 

at least twenty percent of the infants. Spearman correlation distance and Ward’s linkage were 149 

calculated for the centre log ratio-transformed relative abundance values and used to cluster 150 

microbes, as previously described by Cirstea et. al (24). The Mann-Whitney U test was used to 151 

compare relative cluster abundance between breastfed and formula-fed infants. Spearman 152 

correlation was calculated to assess the correlation between cluster relative abundance and eating 153 

behaviours. 154 

Metabolic Pathways Analysis 155 

Inferred functional microbiota profiling was done using PICRUSt2 (v2.3.0b) (25). 156 

Differences in the relative abundance of metabolic pathways present in at least five percent of 157 

the infants were assessed using ALDeX2 (26). Pathways were deemed to be statistically 158 

significantly differentially present when the Benjamini-Hochberg corrected P values for Welch’s 159 

t-test and the Wilcoxon test were both less than 0.05. 160 
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 161 

RESULTS AND DISCUSSION 162 

Participant Characteristics 163 

This study uses data collected from 58 infants at ages 2 weeks, 2 months, and 4 months 164 

for a total of 96 samples. These infants were exclusively breastfed or formula-fed in at least the 7 165 

days leading up to data collection, and had no vomiting, diarrhea, or fever. Sample 166 

characteristics are shown in Table 1. Because the sample size did not provide sufficient power 167 

for a linear mixed effects (LME) model with infant ID as a random effect and age as a nested 168 

random effect, all samples were treated as independent even if they came from the same infant at 169 

different timepoints. Some infants provided only one sample, making a random-slope and 170 

random-intercept LME model infeasible. An LME model with only infant ID as the random 171 

effect indicated no significant associations between the gut microbiome and eating behaviours.  172 

 173 

Table 1. Sample Characteristics (n = 58). BEBQ scores are on a scale of 1 to 5, with higher 174 

scores indicating greater demonstration of the behaviour.  175 

 Breastfed Formula-fed 

Age 2 weeks (n = 29)   

Number of Infants 28 1 

BEBQ Scores (mean 

(standard deviation)) 

  

General Appetite 4.08 (0.91) 5.00 

Slowness in Eating  2.72 (0.79) 1.25 

Food Responsiveness 2.48 (0.68) 1.00 

Enjoyment of Food 4.54 (0.41) 5.00 
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Age 2 months (n = 41)   

Number of Infants 34 7 

BEBQ Scores (mean 

(standard deviation)) 

  

General Appetite 4.07 (0.69) 3.43 (1.40) 

Slowness in Eating 2.56 (0.69) 2.18 (0.59) 

Food Responsiveness 2.08 (0.53) 1.92 (0.54) 

Enjoyment of Food 4.35 (0.50) 4.68 (0.37) 

Age 4 months (n = 26)   

Number of Infants 20 6 

BEBQ Scores (mean 

(standard deviation)) 

  

General Appetite 3.67 (0.91) 3.83 (0.75) 

Slowness in Eating 2.53 (0.66) 2.00 (0.52) 

Food Responsiveness 1.94 (0.62) 1.75 (0.67) 

Enjoyment of Food 4.29 (0.57) 4.58 (0.34) 

 176 

No confounding variables were identified. 177 

In addition to diet, our main variable of interest, the mode of delivery (19), antibiotic use 178 

(20), and probiotic use (21) have been reported to impact the infant gut microbiome. 179 

Consequently, we assessed the effect of each factor within our study cohort. As the PCoA plot 180 

for weighted UniFrac distance accounted for the most variance compared to those based on 181 

Jaccard, Bray-Curtis, and unweighted UniFrac distances (Fig. 1a, Supplementary Fig. 1), we 182 

used weighted UniFrac as our metric for evaluating the impact of confounders on the gut 183 

microbiome. Additionally, we also ensured that no other confounding variable was associated 184 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.24.438478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.438478
http://creativecommons.org/licenses/by/4.0/


with the infant’s diet. We found that infant gut microbiomes did not cluster differently based on 185 

weighted UniFrac distance by probiotic usage (PERMANOVA: F95 = 0.55, P = 0.67, R2 = 186 

0.0059), antibiotic usage (PERMANOVA: F95 = 1.41, P = 0.22, R2 = 0.015), or mode of delivery 187 

(PERMANOVA: F95 = 1.67, P = 0.122, R2 = 0.035).  188 

 189 

Breastfed and formula-fed infants host distinct microbiomes. 190 

 191 
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 192 

FIG. 1 Breastfed and formula-fed infants host distinct microbiomes. (A) Weighted UniFrac 193 

beta diversity PCoA plot for infant samples, coloured by diet (breastfed or formula-fed). 194 

Statistical significance was assessed using PERMANOVA (F95 = 3.69, P = 0.02, R2 = 0.038). (B) 195 

Comparison of Faith’s phylogenetic diversity between diet. Whiskers represent 1.5 times the 196 

interquartile range; points beyond them represent outliers. Statistical significance was assessed 197 

using the Mann-Whitney U test. (C) Receiver operating characteristic (ROC) curve for 198 
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evaluating the performance of a random forest classifier trained to separate breastfed and 199 

formula-fed infants. 200 

 201 

We compared alpha and beta diversity metrics for breastfed and formula-fed infants, 202 

expecting the two groups to host distinct microbial communities and for breastfed infants to have 203 

lower alpha diversity (27). For these analyses, we started by determining the sampling depth at 204 

which an increase in depth led to no change in alpha diversity. Based on the alpha-rarefaction 205 

curve (Supplementary Fig. 2a) and reads frequency histogram (Supplementary Fig. 2c) generated 206 

using QIIME2, the sampling depth was set at 14,000 reads. This sampling depth led to 17 infants 207 

being excluded from diversity analyses.  208 

Next, weighted UniFrac was again used as the beta diversity metric for how infants 209 

clustered based on diet (Fig. 1a). Although our PCoA displayed no obvious visible clustering, the 210 

gut microbiomes of breastfed and formula-fed infants were significantly different 211 

(PERMANOVA: F95 = 3.69, P = 0.02, R2 = 0.038). For alpha-diversity, formula-fed infants had 212 

higher levels of alpha diversity than breastfed infants across most metrics (Observed: P < 0.001, 213 

Chao1: P = 0.0011, ACE: P = 0.001, Shannon: P = 0.012, Simpson: P = 0.1, Inverse Simpson: P 214 

= 0.1, Fisher: P < 0.001); Supplementary Fig. 3). Breastfed infants also had significantly lower 215 

Faith’s phylogenetic diversity than formula-fed infants (P = 0.046; Fig. 1b).  216 

The fact that breastfed and formula-fed infants differed in terms of weighted UniFrac and 217 

multiple alpha diversity metrics suggests differences in taxonomic composition between the two 218 

diets. However, instead of merely identifying differentially abundant taxa, we attempted to 219 

distinguish between breastfed and formula-fed infants based on relative abundance at the genus 220 

level using a random forest classifier. This strategy has been used previously to successfully 221 
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separate healthy dogs from those with irritable bowel syndrome (28). With our model, we 222 

achieved an area under the curve (AUC) of 0.87 (Figure 1c). These data demonstrate that 223 

breastfed and formula-fed infants’ gut microbiomes are distinct in genus-level composition, 224 

particularly for a phylum reported to be more abundant in formula-fed infants (29). 225 

 226 

Two communities of bacteria are differentially abundant between breastfed and formula-227 

fed infants. 228 

 229 
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 230 

FIG. 2 Breastfed and formula-fed infants host two microbial communities that are 231 

differentially abundant. (A) Heatmap based on the covariance of bacterial genera coloured by 232 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.24.438478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.438478
http://creativecommons.org/licenses/by/4.0/


Spearman correlation coefficient. Axes are arranged based on Spearman correlation distance and 233 

Ward linkage. (B, C) Two covariant bacterial clusters are differentially abundant between 234 

breastfed and formula-fed infants based on the Mann-Whitney U test.  235 

 236 

Since most of the genera that best distinguish between infants with different diets 237 

belonged to the phylum Firmicutes, we tested if those genera are related functionally. Within the 238 

gut, microbes are part of networks that cooperate and compete (30). We inferred the presence 239 

and composition of these types of communities based on genus-level coabundance. Spearman’s 240 

correlations between genera present in at least twenty percent of the infants were calculated and 241 

used for clustering into a dendrogram. Covariance was then visualized using a heatmap, and 242 

three clusters of high covariance composed of at least three genera were identified 243 

(Supplementary Figure 4a). Out of these, only two were found to be differentially abundant 244 

between breastfed and formula-fed infants (Supplementary Figure 4b; Figure 2a).  245 

The first, Cluster I, is composed of the genera Dorea, Eubacterium, Blautia, and 246 

Oscillospira, and is significantly more abundant in formula-fed infants (P < 0.001; Figure 2b). 247 

This is in concordance with previous studies reporting decreases in levels of the phylum 248 

Firmicutes and order Clostridiales in breastfed infants (31). Blautia regulates G-protein coupled 249 

receptors through butyric and acetic acid production, decreasing obesity and visceral fat 250 

accumulation (32). Oscillospira is also associated with leanness as it degrades animal-derived 251 

glycans from the host (33). Eubacterium is a prolific butyrate producer, breaking down complex 252 

carbohydrates from dietary fibers (34). 253 

Cluster II, composed of the genera Bifidobacterium, Lactobacillus, Haemophilus, Rothia, 254 

Streptococcus, and Veillonella, is significantly more abundant in breastfed infants (P = 0.014; 255 
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Figure 2c). Bifidobacterium is well-known to dominate the microbiota of breastfed infants, with 256 

some studies reporting as much as double the relative abundance in breastfed infants compared 257 

to formula-fed infants (35). The same study also noted higher levels of Lactobacillus and 258 

Streptococcus. Bifidobacterium and Lactobacillus digest dietary fibers and produce acetate (36), 259 

while Streptococcus and Veillonella induce cytokine production to modulate the gut immune 260 

system (37). Rothia degrades gluten (38). Additionally, research has shown that genera in Cluster 261 

II make up a large proportion of the breast milk microbiota (39).  262 

 263 

Diet is a driver of the relationships between food responsiveness and relative cluster 264 

abundance. 265 

 266 

 267 

 268 

FIG. 3 Diet is a driver of the relationships between food responsiveness and relative cluster 269 

abundance. (A) Heatmap of correlation matrix between cluster abundance and BEBQ behaviour 270 
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metrics coloured by Spearman correlation coefficient. Significance (p < 0.05) is marked with a 271 

star (*). (B, C) Spearman correlation coefficient and significance for cluster I and food 272 

responsiveness for breastfed and formula-fed infants combined and separately. 273 

 274 

The composition of the gut microbiome has been found to impact eating behaviours, but 275 

most research has involved adult rather than infant cohorts, and focused on individual taxa rather 276 

than microbial communities (13). Therefore, we sought to uncover relationships between the two 277 

identified clusters and eating behaviours assessed using the BEBQ. Spearman correlations were 278 

calculated between the relative abundances of Clusters I and II, and the five eating behaviours, 279 

and then visualized with a heatmap. Cluster I relative abundance was significantly correlated 280 

with food responsiveness (R = -0.23, P = 0.03; Figure 3c), and both clusters were significantly 281 

correlated with enjoyment of food (Cluster I: R = 0.22, P =0.04; Cluster II: R = -0.23, P = 0.03; 282 

Figure 3a, Supplementary Figure 5). Food responsiveness is significantly higher in breastfed 283 

infants compared to formula-fed infants (P = 0.039, Figure 3b), aligning with literature (6). 284 

These findings lead us to postulate that Cluster I relative abundance, which is regulated by diet, 285 

is inversely associated with food responsiveness.  286 

 287 

Fermentation of succinate to butanoate is significantly negatively correlated with food 288 

responsiveness. 289 
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 290 

 291 

FIG. 4 Fermentation of succinate to butanoate is significantly negatively correlated with 292 

food responsiveness. (A) Metabolic pathways within breastfed and formula-fed infants inferred 293 

using PICRUSt2. Differentially abundant pathways (p < 0.05 for Benjamini-Hochberg corrected 294 

P values for Welch’s t-test and Wilcoxon test) are coloured in red. Two differentially abundant 295 

pathways relevant to SCFA synthesis (acetyl-CoA fermentation to butanoate II, and succinate 296 

fermentation to butanoate) are labelled. (B) Succinate fermentation to butanoate is significantly 297 

more highly expressed in formula-fed infants according to the Mann-Whitney U test. (C, D) 298 
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Succinate fermentation to butanoate is significantly positively correlated with cluster I 299 

abundance and negatively correlated with food responsiveness based on Spearman correlation 300 

coefficient and p-values. 301 

 302 

Finally, we sought to identify metabolic pathways that link Cluster I with food 303 

responsiveness. Using ALDeX2 to analyse metabolic pathways inferred by PICRUSt2, six 304 

pathways were found to be significantly differentially expressed between breastfed and formula-305 

fed infants (Supplementary Table 2, Figure 4a). Two involve fermentation to short-chain fatty 306 

acids (SCFAs): acetyl-CoA fermentation to butanoate II and succinate fermentation to butanoate. 307 

SCFAs are important in the context of gut microbiota and eating behaviours because they 308 

regulate food intake and are associated with alterations in body weight (40). Both are 309 

significantly more abundant in formula-fed infants than breastfed infants (P < 0.001 for all three; 310 

Supplementary Figure 6a, Figure 4b).  311 

While the relative abundances of both are significantly positively correlated with Cluster 312 

I relative abundance (R = 0.54 and 0.67, respectively and P < 0.001 for both), none are 313 

significantly correlated with Cluster II relative abundance (R = -0.19 and -0.08 and P = 0.07 and 314 

0.41, respectively; Supplementary Figure 6b, Figure 4c). These data align with how the phylum 315 

Firmicutes is commonly responsible for SCFA production (41). Only one, succinate fermentation 316 

to butanoate, is significantly negatively correlated with food responsiveness (R = -0.23, P = 0.04; 317 

Figure 4d). Due to the role of SCFAs in appetite suppression, this result is expected (42). The 318 

production of SCFAs results in appetite suppression through increasing anorectic gut hormones 319 

like glucagon-like peptide 1 (GLP-1) (43). GLP-1 induces satiety and reduces weight gain by 320 

increasing insulin secretion following food intake (44). As such, our results seem to suggest that 321 
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higher abundances of Cluster I in formula-fed infants may decrease the food responsiveness of 322 

these infants through SCFA production. 323 

One study suggests that breastfeeding protects against childhood obesity (45), which 324 

contradicts our suggested model. An explanation for this contradiction is that high abundances of 325 

SCFA-producers, such as Firmicutes, in the stool of formula-fed infants do not always indicate 326 

proper SCFA absorption by the infant. SCFA and metabolites may be excreted instead of 327 

absorbed, reducing satiety and increasing the risk of obesity (43).  Furthermore, prior studies are 328 

discrepant with regard to whether breastfed or formula-fed infants show greater SCFA 329 

production and absorption, and report that SCFA distributions in infants vary by infant age (43). 330 

There is also no literature regarding how SCFA correlates with infant weight and whether 331 

breastfeeding protects against childhood obesity remains contested. Therefore, our proposed 332 

model, rather than being a dogma, should be treated as a call to further research regarding the 333 

relationship between the infant’s diet, gut microbiome, and eating behaviours. 334 

 335 

CONCLUSION 336 

Our study investigated how the infant’s diet impacts their gut microbiota and eating 337 

behaviours during the first 4 months of life. We initially hypothesized that formula-feeding 338 

would be associated with a higher abundance of the phylum Firmicutes and exhibition of 339 

obesity-prone eating behaviours. While we did find that formula-fed infants hosted greater levels 340 

of a cluster rich in Firmicutes, these microbes were associated with lower levels of food 341 

responsiveness, which would theoretically correspond to a lower obesity risk. Furthermore, we 342 

identified the production of SCFAs by the Firmicutes-rich cluster as a mechanism for decreasing 343 

food responsiveness. Our model postulates that formula impacts eating behaviours by altering 344 
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SCFA-producers in the gut microbiome. How these microbes change over time, prime the gut for 345 

future microbial colonization, and affect longer-term eating behaviors and growth trajectories 346 

remain to be seen. However, these results provide a new understanding of the 347 

psychophysiological impacts of gut microbial communities in the first 4 months of life, and calls 348 

for additional research to be done to better understand how infant diet impacts the development 349 

of adult microbial communities and subseqnet growth and development of eating behaviors. 350 

Greater understanding of these factors can potentially inform strategies for childhood obesity 351 

prevention. 352 
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