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Abstract 

 Liver MRI images often suffer degraded quality from ghosting or blurring artifact caused by patient 

respiratory or bulk motion. In this study, we developed a two-stage deep learning model to reduce motion 

artifact on dynamic contrast enhanced (DCE) liver MRIs. The stage-I network utilized a deep residual 

network with a densely connected multi-resolution block (DRN-DCMB) network to remove the majority 

of motion artifacts. The stage-II network applied the perceptual loss to preserve image structural features 

by updating the parameters of the stage-I network via backpropagation. The stage-I network was trained 

using small image patches simulated with five types of motion, i.e., rotational, sinusoidal, random, elastic 

deformation and through-plane, to mimic actual liver motion patterns. The stage-II network training used 

full-size images with the same types of motion as the stage-I network. The motion reduction deep learning 

model was testing using simulated motion images and images with real motion artifacts. The resulted 

images after two-stage processing demonstrated substantially reduced motion artifacts while preserved 

anatomic details without image blurriness. This model outperformed existing methods of motion 

reduction artifact on liver DCE-MRI.  
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Abbreviations 

DCE-MRI - dynamic contrast enhanced magnetic resonance imaging 

DRN-DCMB - deep residual network with densely connected multi-resolution block 

CS - compressed sensing 

CNNs - convolutional neural networks 

DL - deep learning 

3D - three-dimensional 

FFT - Fast Fourier Transform 

BN - batch normalization 

LeakyReLU - Leaky rectified linear unit  

MSE - mean square error 

SSIM - structural similarity index 

TR - repetition time 

TE - echo time 

FA - flip angle 

MARC - motion artifact reduction with convolution 

1. Introduction 

Magnetic resonance imaging (MRI) is the most commonly used imaging modality for diagnosis of 

liver cancer and other liver diseases. Dynamic contrast enhanced (DCE) MRI is an essential sequence in 
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liver MRI protocol to evaluate liver tissue perfusion changes (1) for the assessment of liver fibrosis and 

cirrhosis (2,3), and the differentiation of benign from malignant tumors (4). The liver DCE-MRI sequence 

is continuously acquired before and after the intravenous administration of gadolinium-based contrast 

agent at several time points and requires patients to hold their breath for 15-25 seconds during each 

imaging acquisition. The critical timing required for this sequence allows for only a few seconds of patient 

breathing time between imaging acquisitions which causes patient fatigue and thus respiratory motion 

artifacts which degrade image quality through ghosting artifact or blurring of the images (5).  

In clinical MRI examinations, patients are given written and visual instructions to practice breath-

holding required for imaging which can help reduce the number of repeat imaging (6) acquisitions to 

correct artifacts. However, once the contrast agent is injected, it is not practical to stop and repeat the 

DCE image acquisition if patient respiratory motion occurs because of the timing requirements and 

gadolinium toxicity. Advanced image reconstruction techniques such as compressed sensing (CS) have 

been used to remove respiratory motion artifacts (7–10), where signals are reconstructed from the highly 

under-sampled signal acquisitions to produce an MR image within a shortened scan time. Radial K-space 

sampling combined with CS and parallel imaging enabled free breathing acquisitions of liver DCE-MRI (9). 

Although the CS has been proved to help motion reduction, it was limited by the acceleration rate and 

availability from different MRI manufacturers and platforms. Also, patients with irregular breathing 

patterns are not ideal for use with the CS technique. Therefore, the development of image-based post-

processing methods on the DCE images will be useful to retrospectively mitigate motion artifacts and 

improve image quality. 

Recently, deep learning (DL) approaches have been developed in medical imaging use cases 

including image reconstruction and artifact reduction (11,12), motion detection and correction (13), and 

image quality control (14,15). DL methods utilized convolutional neural networks (CNNs) to extract 

features of different types of artifacts and correct them in brain (16,17), abdominal (18–20) and cardiac 

imaging (13). Specifically for liver DCE-MRI, Tamada et al. proposed a denoising CNN on multi-phase 

magnitude-only image patches that learned the artifact patterns as residual feature maps and then 

subtracted them from the original images to obtain the motion reduced images (19). Kromrey et al. 

developed deep learning filters in CNNs for multi-arterial phase acquisitions and improved image quality 

on severely degraded images (20). However, the motion artifacts used for model training in both studies 

were simulated based on specific re-ordering of K-space lines, which cannot represent the full spectrum 

of motion artifact patterns. It is necessary to create a more generalized CNN model that is able to reduce 

various degrees and types of motion artifacts occurring on liver DCE-MRI.   

In this study, we developed a two-stage DL model to reduce motion artifacts on liver DCE-MRI. 

Stage-I utilized a deep residual network with densely connected multi-resolution blocks (DRN-DCMB) to 

remove the major artifacts of the image (16). Stage-II exploited the perceptual similarity in a high-

dimensional feature space exacted by a VGG-16 network to preserve imaging details (21). The 

combination of these two networks realized removal of motion artifacts while preventing the over-

smoothing effects. To increase the generalizability of this model in more complicated situations, motion 

artifact patterns induced by various types and degrees of motion were simulated during the training 

process. Finally, we tested whether this proposed DL method may effectively reduce the real motion 

artifacts occurring on liver DCE-MRI images.           
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2. Materials and Methods 

2.1 Liver MRI Dataset 

 This retrospective study was approved by the Rush University Medical Center institutional review 

board and written informed consent was waived. A dynamic multi-phase DCE imaging protocol covering 

the whole liver volume was acquired before and after intravenous (IV) contrast administration (0.1 mL/kg 

Eovist® Gadoxetate Disodium) with an injection rate of 2 mL/sec. Imaging parameters for each acquisition 

were: DCE imaging was acquired using the three-dimensional (3D) T1-weighted (T1W) spoiled gradient 

echo (SPGR) sequence on different 1.5T/3.0T MRI scanners (Signa Artist, MR450W, and Excite 

manufactured by GE Healthcare, Magnetom Espress and Verio manufactured by Siemens Healthineers) 

with breath-hold time range of 15-25 seconds. Axial stacks of DCE images were acquired before and after 

IV contrast injection at early arterial, late arterial, portal venous, and transitional phases, followed by the 

hepatobiliary phase 20 minutes after injection. Pre- and post-contrast DCE images were mixed for model 

training and testing purposes. 

2.2 Motion Artifact Simulation 

 For model training process, pairs of images without motion (i.e. clean images) and with simulated 

motion artifacts (i.e. simulated motion images) were generated by manipulating the K-space data of the 

clean images and/or transformed images. The signal phases or the order of a certain range of K-space data 

were altered to simulate different types and degrees of motion artifacts (22,23). The simulation steps 

were described in Fig. 1.  (i) A given image, which can be either a clean image or a transformed image, 

was converted to its K-space data by Fast Fourier Transform (FFT); (ii) K-space data of the clean image 

and/or transformed image was manipulated according to different rules described in section 2.2.1- 2.2.5 

to form a new K-space.  (iii) A simulated motion image was reconstructed from the new K-space using 

inversed FFT (iFFT). The simulation process can be generalized in Eq. 1,    

                                                         𝑌𝑚 =  𝐹−1( [𝐹(𝑌)]𝑠𝑖𝑚)                                                                 (1) 

where 𝐹 and 𝐹−1 denote FFT and iFFT, 𝑌 and 𝑌𝑚 represent the clean image and the image with simulated 

motion artifacts, and  [∙]𝑠𝑖𝑚 is the simulated K-space with motion.  

Five different types of motion were simulated to mimic realistic motion artifacts (section 2.2.1- 

2.2.5), and the corresponding residual artifact images between the clean images and simulated motion 

images were shown in Fig. 2. 

2.2.1 Type 1: Rotational Motion  

 One of the major motion artifacts is bulk body movement, which causes incoherent ghosting and 

blurring on images (23). The clean image was rotated to create a rotated image with a random rotational 

angle between -20˚ and 20˚, which then went through FFT to form the rotated K-space 𝐹(𝑌𝑟). A new K-

space [𝐹(𝑌)]𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (i.e.,  [𝐹(𝑌)]𝑠𝑖𝑚 in Eq.1) was generated as follows: 

                                   [𝐹(𝑌)]𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  {
𝐹(𝑌𝑟)      ( 𝑘𝑚 ≤ |𝑘|  ≤  𝑘𝑚+𝑛)

𝐹(𝑌)                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          (2) 
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, where 𝐹(𝑌𝑟) represents the K-space domain of the rotated image, 𝑘 is the K-space coordinate in the 

phase-encoding direction (−𝜋 < 𝑘 < 𝜋), 𝑛 is the number of continuous K-space lines (0< 𝑛 < 128) in 

𝐹(𝑌𝑟), and 𝑚 is an index of K-space location (0 < 𝑚 < 384). In each simulated scenario, a random number 

of 𝑛 K-space lines from 𝐹(𝑌𝑟), starting at a randomly chosen K-space index 𝑚, were filled into the new K-

space  [𝐹(𝑌)]𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, and the rest of the original K-space 𝐹(𝑌) lines were kept in [𝐹(𝑌)]𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛. 

2.2.2 Type 2: Sinusoidal Motion 

 To simulate periodic human respiratory cycles, sinusoidal motion patterns were generated by 

changing the duration, frequency and phase of the simulated sinusoidal wave (16,19,24). The new k-

space [𝐹(𝑌)]𝑠𝑖𝑛 (i.e.,  [𝐹(𝑌)]𝑠𝑖𝑚 in Eq.1) was generated by altering the signal phase of the original K-space 

𝐹(𝑌), defined as follows: 

[𝐹(𝑌)]𝑠𝑖𝑛 = 𝐹(𝑌)𝑒−𝑗∅(𝑘)   (3) 

, where ∅(𝑘) denotes the phase shift error added to a given K-space line 𝑘 along the phase-encoding 

direction, and ∅(𝑘) is defined as: 

∅(𝑘) =  {
             0                            (|𝑘| ≤  𝑘𝑚𝑎𝑥)

2𝜋𝑘∆ sin(𝛼𝑘 + 𝛽)           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   (4) 

, where 𝑘𝑚𝑎𝑥 is the range of center K-space lines that were preserved without adding phase shift errors, 

and 𝑘𝑚𝑎𝑥 was randomly chosen from 𝜋/10 to 𝜋/2. ∆ is the number of pixels (0 < ∆ < 20), depicting the 

severity of motion, 𝛼 is the frequency of the respiratory cycle (0.1< 𝛼 <5 Hz), and 𝛽 is the phase of the 

respiratory wave (0 < 𝛽 < 𝜋/4). Phase shift defined by ∅(𝑘) was added to each K-space line 𝑘 that was 

located outside the center range of (−𝑘𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥). 

2.2.3 Type 3: Random Motion  

 To simulate the irregular non-periodic respiratory motion, a new K-space with random motion 

[𝐹(𝑌)]𝑟𝑎𝑛𝑑 (i.e.,  [𝐹(𝑌)]𝑠𝑖𝑚 in Eq.1) was generated by adding signal phase shifts ∅(𝑘)𝑟𝑎𝑛𝑑 to 10%-50% 

randomly selected peripheral K-space lines, whereas the center 4% - 10% of the original K-space 𝐹(𝑌) 

lines were kept intact (25). Different percentage of the preserved center K-space lines represented 

different levels of motion severity (24).  

[𝐹(𝑌)]𝑟𝑎𝑛𝑑 = 𝐹(𝑌)𝑒−𝑗∅(𝑘)𝑟𝑎𝑛𝑑    (5) 

2.2.4 Type 4: Elastic Deformation 

 Elastic deformation is often observed in abdominal MRI images and typically consists of stretching 

and shearing along different directions (23). Three types of motion (translation, rotation, and resizing) 

were combined to mimic image deformation. A clean image was shifted up or down by 10 pixels to form 

a translated image 𝑌𝑡𝑟𝑎𝑛𝑠 . A clean image was rotated by [-20˚, 20˚] to form a rotated image  𝑌𝑟𝑜𝑡. A clean 

image was resized and interpolated along x and y directions to form a stretched image 𝑌𝑟𝑒𝑠𝑖𝑧𝑒. After that, 

three corresponding K-space 𝐹(𝑌𝑡𝑟𝑎𝑛𝑠), 𝐹(𝑌𝑟𝑜𝑡) and 𝐹(𝑌𝑟𝑒𝑠𝑖𝑧𝑒) were obtained through FFT.  Finally, a 

new K-space [𝐹(𝑌)]𝑑𝑒𝑓𝑜𝑟𝑚  (i.e.,  [𝐹(𝑌)]𝑠𝑖𝑚  in Eq.1) was created by interleaving randomly-selected K-

space lines from 𝐹(𝑌𝑡𝑟𝑎𝑛𝑠), 𝐹(𝑌𝑟𝑜𝑡) and 𝐹(𝑌𝑟𝑒𝑠𝑖𝑧𝑒), while keeping the center 4% - 10% of the original K-

space 𝐹(𝑌) lines of the clean image.  

2.2.5 Type 5: Through-plane motion 
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 Sudden patient body position changes including movement from insufficient breath hold, lead to 

motion along the head-to-foot direction (23). For example, suppose slice 𝑌𝑠 is the target axial slice, slice 

𝑌𝑠+2 and slice 𝑌𝑠−2 are two axial slices above the below 𝑌𝑠. These three clean images were converted to 

the corresponding K-space 𝐹(𝑌𝑠+2), 𝐹(𝑌𝑠) and 𝐹(𝑌𝑠−2), respectively. A new K-space with through-plane 

motion [𝐹(𝑌)]𝑡ℎ𝑟𝑢 (i.e.,  [𝐹(𝑌)]𝑠𝑖𝑚 in Eq.1) was created by interleaving peripheral K-space lines randomly 

selected from 𝐹(𝑌𝑠+2), 𝐹(𝑌𝑠) and 𝐹(𝑌𝑠−2), while keeping the center 4% - 10% of the original K-space 

𝐹(𝑌𝑠) lines.  

 

2.3 Model Architecture 

 In this study, a two-stage deep CNN model was developed to reduce motion artifacts of the liver 

DCE-MRI images. The stage-I model was adapted from the DRN-DCMB network originally proposed by Liu 

et al. to reduce the major patterns of motion artifacts (16) (Fig. 3). It has three major components: multi-

resolution block with U-net as inner structure, dense connection among multi-resolution blocks, and 

residual learning. Stage-I model was trained independently with the pairs of clean and simulated motion 

image patches. Next, Stage-II model utilized a “J”-shaped architecture (J-net) to optimize Stage-I model 

by comparing the perceptual similarity between the ground truth clean image and the output “artifact-

reduced” image from the stage-I model. The perceptual loss was used to update the parameters in the 

stage-I model to restore more image details (26) (Fig. 4). The purpose of the two-stage model was to 

reduce the motion artifact while preserving the sharpness and resolution of the image. 

2.3.1 Stage-I: DRN-DCMB Network    

  As shown in Fig 3, the architecture of the deep residual network with densely connected multi-

resolution blocks (DRN-DCMB) was composed of 3 multi-resolution blocks, followed by a basic 

convolutional block, which included a 3×3 convolutional layer, a batch normalization (BN) layer and a 

Leaky rectified linear unit (LeakyReLU) activation function. The BN layers were used to promote faster 

training and make the nonlinear activation functions viable (27). LeakyReLU was chosen due to its small 

slope for negative values in order to fix the “dying ReLU” problem and speed up the training (28). The U-

net inner structure of each multi-resolution block consisted of a down-sampling path and an up-sampling 

path. Four 2×2 max-pooling layers were used in the down-sampling path to generate deeper levels of 

feature maps for extraction of local image details, such as vessels and tumors in the liver. Likewise, four 

2×2 up-pooling layers were used to restore the features maps back to same size of the input image at 

each level. In particular, the feature maps from the down-sampling layers were concatenated to their 

corresponding up-sampling layers. By doing so, the global information such as organs and motion artifacts 

extracted by the down-sampling levels were combined with the local information exacted on the same 

levels along the up-sampling path. The 3 multi-resolution blocks were densely connected, in which the 

output from one previous multi-resolution block was concatenated to the inputs of all subsequent multi-

resolution blocks. Dense connection between multi-resolution blocks preserved important learning 

features and therefore accelerated training speed without relearning redundant features. In addition, 

residual learning (29) was used during the training process to learn the residual differences (i.e. artifacts) 

between the simulated motion image and the clean image. The model output image was generated by 

subtracting the residual map from the input image. Lastly, the fully convolutional layers in the DRN-DCMB 

model allowed the input image size to vary, for example, small image patches (64×64) randomly sampled 

from the full-size image were used as the input for training purpose, and the full-size images (512×512) 
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were used as the input during the testing process. All trainable parameters were updated by minimizing 

the pixel-by-pixel mean square error (MSE) loss between the clean image and the DRN-DCMB model 

output image. However, using the pixel-to-pixel MSE loss may cause blurring and over-smoothness 

problem (26,30), also observed in this study. Therefore, a stage-II model was developed to further 

optimize the parameters (i.e. weights) in the stage-I model to mitigate image blurriness and restore image 

details. 

2.3.2 Stage-II: J-net Network 

 At stage-II, the J-net exploited the perceptual similarity measurement as the loss function (31) to 

update the weights of the stage-I model. The perceptual loss aimed to minimize the differences in high-

dimensional features between the ground truth clean image and the output image of the stage-I model. 

Let 𝑀𝑖(∙)  be the feature map generated from a given layer 𝑖 , and the feature map has the size of  

ℎ × 𝑤 × 𝑐, where ℎ and 𝑤 represents the height and width of the feature map, and 𝑐 represents the 

number of channels. Then, the perceptual loss 𝓛𝑀𝑖
 was defined as:  

𝓛𝑀𝑖
(𝑋, 𝑌) =  

1

ℎ𝑤𝑐
‖𝑀𝑖(𝑌̂) −  𝑀𝑖(𝑌)‖

2
     (6) 

where 𝑌̂ denotes the output image from the stage-I model on the long end of the J-net and 𝑌 denotes the 

ground truth clean image on the short end of the J-net (Fig. 4).  

 The initialized weights of the J-net consisted of two parts: weights trained from the stage-I model 

and weights of the original VGG-16 net. The VGG-16 network (32) used in J-net (21) was pre-trained on 

the ImageNet (33) to extract meaningful features more easily recognized by human eyes. The VGG-16 

network extracted feature maps from stage-I model output image and the ground truth clean image 

separately, and then the perceptual loss was calculated from these two features maps, which was then 

back-propagated to update the weights in the stage-I DRN-DCMB network. Note all weights of the VGG-

16 net itself was not trained or updated. More specifically, the stage-II model training process included 

the following steps. 1) The input simulated motion images to the DRN-DCMB network was a full-size image 

instead of small-patch images; 2) The output image from the DRN-DCMB network was fed into the pre-

trained VGG-16 network for feature extraction from the layer of “block5_conv3” (feature map size: 

32×32×512); 3) The ground true clean image was also fed into another pre-trained VGG-16 network for 

feature extraction from the layer of “block5_conv3” (feature map size: 32×32×512); 4) The perceptual loss 

was calculated by comparing the two feature maps, as illustrated in Eq. 5; 5) The perceptual loss was back-

propagated to update the weights in the DRN-DCMB model.  

2.4 Model Training, Validation and Testing 

 The liver DCE-MRI image volumes that had no obvious motion artifacts (i.e. “clean image”) in 10 

patients were selected in the training process, of which 8 was used for training and 2 for validation. Five 

different types of the simulated motion artifacts were added to these clean images (see section 2.2).  

During the stage-I training, 20 small image patches (size: 64×64) were randomly generated from each full-

size image, leading to a total of 200,000 patches (20 patches × 25 slices × 5 motion types × 10 randomized 

parameters × 8 patients) for the training dataset, and 50,000 patches (20 patches × 25 slices ×5 motion 

types × 10 randomized parameters × 2 patients) for the validation dataset. Other training parameters 

included: batch size = 64, early stopping at the 34th epoch, and a learning rate initialized from 0.0001 using 

the Adam optimization algorithm (34). The training time was 3.7 hours for the stage-I model. 
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During the stage-II training process, the full-size simulated motion images (size: 512×512) were 

used as the input, with 10,000 images (25 slices ×5 motion types x 10 randomized parameters ×8 patients) 

used for training and 2500 images (25 slices ×5 motion types × 10 randomized parameters × 2 patients) 

used for validation. Other training parameters included: batch size = 8, early stopping at the 9th epoch, 

and a learning rate initialized from 0.00005 using the Adam optimization algorithm. The training time was 

2.6 hours for the stage-II model. 

Two testing datasets were used to evaluate the model performance. Testing dataset-I consisted 

of 6250 clean images with simulated motion acquired from 5 patients (25 slices ×5 motion types × 10 

randomized parameters ×5 patients). Testing dataset-II consisted of 28 images that demonstrated 

obvious motion artifacts acquired from another 12 patients. 

All training and testing processes were performed using Tensorflow2.0 in Python3.7 on a single 

GPU (NVIDIA GeForce RTX 2070 Super) workstation.       

2.5 Model Performance Evaluation 

 MSE and structural similarity index (SSIM) (35) were measured in the training dataset and the 

testing dataset-I with simulated motion. The mean squared difference between the clean image and the 

model output motion-reduced image was measured by MSE. SSIM is a widely used perceptual metric that 

addresses the differences in the structural, luminance, and contrast between two images (Eq. 7).  

𝑆𝑆𝐼𝑀(𝑌,  𝑌̂) =  
(2𝜇𝑌𝜇𝑌̂  + 𝑐1)(2𝛿𝑌,𝑌̂+ 𝑐2)

(𝑐𝑌
2 + 𝜇𝑌̂  2 + 𝑐1)(𝛿𝑌

2
 + 𝛿𝑌̂  2 + 𝑐2)

                     (7) 

, where 𝑌 and  𝑌̂ denotes the clean and model output motion-reduced image, respectively; 𝜇 is the mean 

intensity and 𝛿  is the standard deviation of an image; 𝑐1 = 0.01 and 𝑐2 = 0.03 are the constants.  

2.6 Statistical Analysis 

MSE and SSIM values were calculated for each type and across all types of the simulated motion 

artifacts in training dataset and testing dataset-I. The SSIM and MSE values were compared between the 

output images generated by stage-I and stage-II models using the pair t-test. A p value < 0.05 indicated 

significant differences in comparison. All statistical analyses were performed using the SciPy library in 

Python 3.7.    

3. Results 

 Among the 6250 testing images with simulated motion artifacts, the performance of artifact 

reduction by using the stage-I DRN-DCMB model alone and using the combined stage-I and stage-II (J-net) 

models was compared, as shown in Table 1. The overall SSIM of using the stage-I model was 0.947 ± 0.016 

and MSE was 5.8 ± 4.0 × 10-4. The stage-I model achieved the best performance for the random motion 

simulation (SSIM: 0.956 ± 0.005, MSE: 5.2 ± 2.0 × 10-4). The J-net model improved the overall performance 

(SSIM: 0.974 ± 0.016, MSE: 4.7 ± 3.8 × 10-4) compared with the stage-I model alone with statistical 

significance (p < 0.05). The J-net model also achieved the best performance for random motion simulation 

(SSIM: 0.981 ± 0.004, MSE: 4.6 ± 1.8 × e-4). The relatively large standard deviation of MSE was due to the 

large inter-subject variations of motion artifact simulation added on the image. The performances of all 

types of motion were significantly improved by using the J-net model compared with the stage-I model 

alone (p < 0.05).  
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 Four representative images with simulated motion artifacts and their corresponding artifact-

reduced images processed by the stage-I model alone and by the J-net model were shown in Fig. 5. Motion 

artifacts were dramatically reduced in the output images generated by the stage-I model alone, however, 

image blurriness was also observed (Fig. 5, column ii). In contrast, the J-net model (Fig. 5, column iii) not 

only mitigated the motion artifacts but also preserve the image sharpness of the original clean images 

(Fig. 5, column iv).   

 Three representative images with real motion artifacts with their corresponding artifact-reduced 

images processed by the J-net model, and the residual artifact images were shown in Fig. 6. Obvious 

motion artifact reduction, especially in regions with severe ghosting artifacts, was observed on these 

images. 

4. Discussion 

 In this study, we developed a two-stage deep convolutional neural network, so called J-net model, 

to reduce motion artifacts on DCE-MRI of liver. The stage-I model was first trained to reduce the major 

artifacts of the images, followed by the stage-II model to restore the image details and prevent the over-

smoothing problem. Our preliminary results demonstrated that this two-stage J-net model effectively 

improved DCE-MRI image quality with less motion artifacts.  

 It is more realistic to train the supervised DL model using simulated motion artifact images (16,18–

20,24,25,36) because it is difficult to obtain image pairs of motion-corrupted images and corresponding 

repeated motion-free image. This is especially not possible for contrast enhanced acquisitions. Kromrey 

et al. added periodic phase errors to K-space lines to simulate periodic respiratory motion artifacts in 

abdomen MRI (20). Tamada et al. used random phase error patterns to simulate more-severe, non-

periodic motion (19). Zaitsev et al. separated motion into three types: bulk motion, elastic motion, and 

respiratory motion (23). However, all previous studies only simulated one or two types of motion which 

may cause poor generalization of their motion correction models. Our study first simulated five different 

types of motion artifact mimicking real-life motion scenarios. We compared the model performance for 

these five types of motions. It showed relatively lower performance on sinusoidal motion compared with 

the other four types, indicating that the unpredictable nature (duration, frequency and phase) of the 

respiratory wave was more challenging for the model to correct, and this finding was in line with a 

previous study (37).  

 Only a few studies were focused on motion artifact reduction in DCE-MRI of the liver (19,20) and 

used the motion artifact reduction with convolutional (MARC) network with the pixel-by-pixel MSE as the 

loss function in their models. Although these methods achieved relatively good denoising effect on the 

liver MRIs, Yang et al. mentioned that using the pixel-by-pixel MSE as the loss function would lead to over-

smoothing problems  so that perceptually-important details were likely to be overlooked (30). Our unique 

two-stage network model aimed to solve this problem by reducing major motion artifact in stage-I and 

then recovering structural details in stage-II.  The stage-I model adopted the architecture of DRN-DCMB 

network, which was previously used in brain MRI and led to the best performance of motion reduction 

among other state-of-the-art models (16). The DRN-DCMB network utilized multi-resolution blocks to 

extract motion details and meanwhile maintain desirable image contrast. The dense connections between 

the multi-resolution blocks compensated for information loss. In this study, using DRN-DCMB in the liver 

DCE-MRI cannot completely resolve the image over-smoothing issue. The same over-smoothing problem 

was observed in CT images and was believed due to the use of pixel-by-pixel MSE construction loss 
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function (21). In order to solve this problem, the J-net model used the perceptual loss function that was 

computed from the feature maps with larger receptive fields, in a way similar to human visual perception 

for identifying objects (38, 39). Feature maps extracted from a deeper CNN layer (i.e., “block5_conv3” of 

the VGG-16 network in this study) that contained the most number of channels and higher resolution 

features can better preserve image details and structural information (26). Similar findings were reported 

to apply perceptual loss in deep CNN model to achieve artifact-free photon image reconstruction (40).   

The performance of the J-net model (SSIM: 0.974 ± 0.016) outperformed the models reported in 

other studies of liver MRI motion reduction ( SSIM: 0.91 ± 0.07) (19), even though different datasets were 

used. The unique design of the J-net model may also apply to retrospectively correct image artifacts on 

images of other body parts. The computational time of this model was fast for clinical use, taking 0.2 

second to process and transform a motion-bearing image into a motion-reduced image.  

 There are several limitations of this study. First, clinical assessment of the model output images 

for interpretation of diseases and subtle anatomical structures was not performed. Second, the degree of 

motion reduction and image quality improvement was not evaluated by radiologists. Third, the 

effectiveness of motion reduction in real motion scenarios was inferior to that achieved in simulated 

motion scenarios. Future work includes increasing the size of training dataset with more comprehensive 

motion artifact simulations. Finally, other advanced networks such as generative adversarial network 

(GAN) (41) with its unique generator and discriminator can be exploited to generate super-resolution 

image to reduce image blurriness (42) and correct motion artifacts in MRI (43).            

5. Conclusion 

 A two-stage convolutional neural network J-net model effectively reduced motion artifacts on 

liver DCE-MRI and overcame the image over-smoothing problem by integrating the perceptual loss 

function in the stage-II model. Once trained, this model offers the potential of improving the quality of 

abdominal MR images that are susceptible to motion in a real-time manner. 
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Figure Captions 
Figure 1. MRI motion artifact simulation process. The K-space data of a clean image and/or the 

corresponding transformed image was manipulated to generate a new K-space with simulated motion, 

which went through iFFT to form a new image with simulated motion artifacts. The pairs of the clean 

image and new images with different types of simulated motion artifacts were used for model training. 

Figure 2. Examples of a clean image (i) and corresponding images bearing five different types of simulated 

motion artifacts (ii-vi) (row A). The residual images represented the motion patterns of each simulated 

image by subtracting the reference clean image (row B). 

Figure 3. The architecture of the DRN-DCMB network (Stage-I model). Each multi-resolution block was 

built upon the U-net architecture.  

Figure 4. The architecture of the J-net model (Stage-II model). Perceptual loss was calculated between the 

feature maps extracted from the output image of the stage-I model on the long end and those extracted 

from the ground truth clean image on the short end of the J-net. Perceptual loss was used to further 

update the weights of the stage-I model. 

Figure 5. Comparisons of artifact reduction after the stage-I model (column ii) and stage-II model (column  

iii) on four testing motion images (column i) generated by adding motion artifacts to the reference clean 

images (column iv). The residual images (column v) were generated by subtracting the final motion-

reduced images (column  iii) from the testing motion image (column i) .    

Figure 6. Motion-reduced images (column ii) generated by the J-net model from three testing patient 

images with real motion artifacts (column i). The residual images (column iii) were generated by 

subtracting the motion-reduced images (column ii) from the original images with real motion (column i). 
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Table 1. Model performance comparisons between the stage-I and stage-II models using the metrics of 

structural similarity index (SSIM) and mean square error (MSE) for each type and over all types of 

simulated motion artifacts. *indicated statistical significance (p< 0.05).  

           Metrics    
Type  
of Artifact      

Stage-II Stage-I 

SSIM MSE SSIM MSE 

Rotational 0.978 ± 0.022* 0.00047 ± 0.00020* 0.951 ± 0.024 0.00054 ± 0.00028 

Sinusoidal 0.965 ± 0.016* 0.00053 ± 0.00020* 0.937 ± 0.019 0.00060 ± 0.00035 

Random  0.981 ± 0.004* 0.00046 ± 0.00018* 0.956 ± 0.005 0.00052 ± 0.00020 

Elastic 0.971 ± 0.014* 0.00046 ± 0.00018* 0.943 ± 0.015 0.00052 ± 0.00018 
Through-plane 0.971 ± 0.006* 0.00027 ± 0.00009* 0.938 ± 0.017 0.00041 ± 0.00019 

Overall  0.974 ± 0.016* 0.00047 ± 0.00038* 0.947 ± 0.016 0.00058 ± 0.00041 

 * Statistically significant (p< 0.05) 
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