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Abstract
Identification of biopolymer motifs represents a key step in the analysis of biological 
sequences. The MEME Suite is a widely used toolkit for comprehensive analysis of 
biopolymer motifs; however, these tools are poorly integrated within popular analysis 
frameworks like the R/Bioconductor project, creating barriers to their use. Here we 
present memes, an R package which provides a seamless R interface to the MEME Suite. 
memes provides a novel “data aware” interface to these tools, enabling rapid and complex 
discriminative motif analysis workflows. In addition to interfacing with popular MEME 
Suite tools, memes leverages existing R/Bioconductor data structures to store the complex, 
multidimensional data returned by MEME Suite tools for rapid data access and 
manipulation. Finally, memes provides data visualization capabilities to facilitate 
communication of results. memes is available as a Bioconductor package at 
https://bioconductor.org/packages/memes, and the source code can be found at 
github.com/snystrom/memes.

Introduction
Biopolymers, such as DNA and protein, perform varying functions based on their primary 
sequence. Short, repeated sequences, or “motifs” represent functional units within 
biopolymers that can act as interaction surfaces, create structure, or contribute to 
enzymatic activity. Identification of similar motifs across multiple sequences can provide 
evidence for shared function, such as identification of kinase substrates based on 
similarities in phosphorylation site sequence, or characterizing DNA elements based on 
shared transcription factor binding sequences [1]. Thus the ability to identify, classify, and 
compare motifs represents a key step in the analysis of biological sequences.

The MEME Suite is a widely utilized set of tools to interrogate motif content across a broad 
range of biological contexts [2]. With over 25,000 citations to date, and greater than 30,000 
unique users of the webserver implementation annually, the MEME Suite has emerged as a 
standard tool in the field [3,4]. However, several factors limit the full potential of these 
tools for use in data analysis. MEME Suite tools require carefully formatted inputs to 
achieve full functionality, yet few tools exist to simplify the process of data formatting, 
requiring instead that users write custom code to prepare their data, or prepare the inputs 
by hand, both of which have the potential to be error prone without rigorous testing. 
Furthermore, the output data from each MEME Suite tool often have complex structures 
that must be parsed to extract the full suite of information, again requiring users to write 
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custom code for this task. Finally, although the data-generation capabilities of the MEME 
Suite are excellent, the tools lack powerful ways to visualize the results. Collectively, these 
factors act as barriers to adoption, preclude deeper analysis of the data, and limit 
communication of results to the scientific community.

Here we present memes, a motif analysis package that provides a seamless interface to 
MEME Suite tools within R. memes uses base R and Bioconductor data types for data input 
and output, facilitating better integration with common analysis tools like the tidyverse 
and other Bioconductor packages. Unlike the commandline implementation, memes outputs 
also function as inputs to other MEME Suite tools, allowing simple construction of motif 
analysis pipelines without additional data processing steps. Additionally, R/Bioconductor 
data structures provide a full-featured representation of MEME Suite output data, 
providing users quick access to all relevant data structures with simple syntax.

memes is designed for maximum flexibility and ease of use to allow users to iterate rapidly 
during analysis. Here we present several examples of how memes allows novel analyses of 
transcription factor binding profile (ChIP-seq) and open chromatin profile (FAIRE-seq) 
data by facilitating seamless interoperability between MEME Suite tools and the broader R 
package landscape.

Design & Implementation

Core Utilities

MEME Suite tools are run on the commandline and use files stored on-disk as input while 
returning a series of output files containing varying data types. As a wrapper of MEME 
tools, memes functions similarly by assigning each supported MEME Suite tool to a run 
function (runDreme(), runMeme(), runAme(), runFimo(), runTomTom()), which internally 
writes input objects to files on disk, runs the tool, then imports the data as R objects. These 
functions accept sequence and motif inputs as required by the tool. Sequence inputs are 
accepted in BioStrings format, an R/Bioconductor package for storing biopolymer 
sequence data [5]. Motif inputs are passed as universalmotif objects, another 
R/Bioconductor package for representing motif matrices and their associated metadata [6]. 
memes run functions will also accept paths to files on disk, such as fasta files for sequence 
inputs, and meme format files for motif inputs, reducing the need to read large files into 
memory. Finally, each run function contains optional function parameters mirroring the 
commandline arguments provided by each MEME Suite tool. In this way, memes provides a 
feature-complete interface to the supported MEME Suite tools.

Output Data Structures

MEME tools return HTML reports for each tool that display data in a user-friendly way; 
however, these files are not ideal for downstream processing. Depending on the tool, data 
are also returned in tab-separated, or XML format, which are more amenable to 
computational processing. However, in the case that tab-separated data are returned, 
results are often incomplete. For example, the TomTom tool, which compares query motifs 
to a database of known motifs, returns tab-separated results that do not contain the 
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frequency matrix representations of the matched motifs. Instead, users must write custom 
code to parse these matrices back out from the input databases, creating additional 
barriers to analysis. In the case that data are returned in XML format, these files contain all 
relevant data; however, XML files are difficult to parse, again requiring users to write 
custom code to extract the necessary data. Finally, the data types contained in MEME Suite 
outputs are complex and multidimensional, and thus require special data structures to 
properly organize the data in memory.

memes provides custom-built data import functions for each supported MEME Suite tool, 
which import these data as modified R data.frames (described in detail below). These 
functions can be called directly by users to import data previously generated by the 
commandline or webserver versions of the MEME Suite for use in R. These import 
functions also underlie the import step internal to each of the run functions, ensuring 
consistent performance.

Structured data.frames hold multidimensional output data

Data returned from MEME Suite tools are complex and multidimensional, making them 
difficult to represent in a simple data structure. For example, MEME and DREME return de-
novo discovered motifs from query sequences along with statistical information about their 
enrichment [7,8]. In this instance, a position frequency matrix (PFM) of the discovered 
motif can be represented as a matrix, while the properties of that matrix (e.g. the name of 
the motif, the E-value from the enrichment test, background nucleotide frequency, etc.) 
must be encoded outside of the matrix, while maintaining their relationship to the 
corresponding PFM. However, other MEME Suite tools, such as TOMTOM, which compares 
one motif to a series of several motifs to identify possible matches, produce an additional 
layer of complexity such that input matrices (which contain metadata as previously 
described) can have a one-to-many relationship with other motif matrices (again with their 
own metadata) [9]. Thus an ideal representation for these data is one that can hold an 
unlimited number of motif matrices and their metadata, contain complex hierarchies, and 
be easily manipulated using standard analysis tools.

The universalmotif_df data structure is a powerful R/Bioconductor representation for 
motif matrices and their associated metadata [6]. universalmotif_df format is an 
alternative representation of universalmotif objects where motifs are stored along rows 
of a data.frame, and columns store metadata associated with each motif. Adding one-to-
many relationships within this structure is trivial, as additional unviersalmotif_dfs can 
be nested within eachother. These universalmotif_dfs form the basis for a majority of 
memes data outputs. These structures are also valid input types to memes functions, and 
when used as such, output data are appended as new columns to the input data, ensuring 
data provenance. Finally, because universalmotif_dfs are extensions of base R 
data.frames, they can be manipulated using base R and tidyverse workflows. Therefore, 
memes data integrate seamlessly with common R workflows.
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Support for genomic range-based data

Motif analysis is often employed in ChIP-seq analysis, in which data are stored as genomic 
coordinates rather than sequence. However, MEME Suite tools are designed to work with 
sequences. While existing tools such as bedtools can extract DNA sequence from genomic 
coordinates, some MEME tools require fasta headers to be specifically formatted. As a 
result, users must write custom code to extract the DNA sequence for their genomic ranges 
of interest.

The memes function get_sequence() automates extraction of DNA sequence from genomic 
coordinates while simultaneously producing MEME Suite formatted fasta headers. 
get_sequence() accepts genomic-range based inputs in GenomicRanges format, the de-
facto standard for genomic coordinate representation in R [10]. Other common genomic 
coordinate representations, such as bed format, are easily imported as GenomicRanges 
objects into R using preexisting import functions, meaning memes users do not have to write 
any custom import functions to work with range-based data using memes. Sequences are 
returned in Biostrings format and can therefore be used as inputs to all memes commands 
or as inputs to other R/Bioconductor functions for sequence analysis.

Data-aware motif analysis

Discriminative (or “differential”) motif analysis, in which motifs are discovered in one set 
of sequences relative to another set, can uncover biologically relevant motifs associated 
with membership to distinct categories. For example, during analysis of multiomic data, 
users can identify different functional categories of genomic regions through integration 
with orthogonal datasets, such as categorizing transcription factor binding sites by the 
presence or absence of another factor [11]. Although the MEME Suite allows differential 
enrichment testing, it does not inherently provide a mechanism for analyzing groups of 
sequences in parallel, or for performing motif analysis with an understanding of data 
categories. The memes framework enables “data-aware” motif analysis workflows by 
allowing named lists of Biostrings objects as input to each function. If using 
GenomicRanges, users can split peak data on a metadata column using the base R split() 
function, and then use this result as input to get_sequence(), which will produce a list of 
BioStrings objects where each entry is named after the data categories from the split 
column. When a list is used as input to a memes function, it runs the corresponding MEME 
Suite tool for each object in the list. Users can also pass the name(s) of a category to the 
control argument to enable differential analysis of the remaining list members against the 
control category sequences. In this manner, memes enables complex data-aware differential 
motif analysis workflows using simple syntax to extend the capabilities of the MEME Suite.

Data visualization

The MEME Suite provides a small set of data visualizations that have limited 
customizability. memes leverages the advantages of the R graphics environment to provide a 
wide range of data visualization options that are highly customizable. We describe two 
scenarios below.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.23.441089doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441089
http://creativecommons.org/licenses/by/4.0/


The TomTom tool allows users to compare unknown motifs to a set of known motifs to 
identify the best match. Visual inspection of motif comparison data is a key step in 
assessing the quality and accuracy of a match [9]. The view_tomtom_hits() function allows 
users to compare query motifs with the list of potential matches as assigned by TomTom, 
similar to the commandline behavior. The force_best_match() function allows users to 
reassign the TomTom best match to a lower-ranked (but still statistically significant) match 
in order to highlight motifs with greater biological relevance (e.g. to skip over a 
transcription factor that is not expressed in the experimental sample, or when two motifs 
are matched equally well).

The AME tool searches for enrichment of motifs within a set of experimental sequences 
relative to a control set [12]. The meaningful result from this tool is the statistical 
parameter (for example, a p-value) associated with the significance of motif enrichment. 
However, AME does not provide a mechanism for visualizing these results.

The plot_ame_heatmap() function in memes returns a ggplot2 formatted heatmap of 
statistical significance of motif enrichment. If AME is used to examine motif content of 
multiple groups of sequences, the plot_ame_heatmap() function can also return a plot 
comparing motif significance within multiple groups. Several options exist to customize the 
heatmap values in order to capture different aspects of the output data. The 
ame_compare_heatmap_methods() function enables users to compare the distribution of 
values between samples in order to select a threshold that accurately captures the dynamic 
range of their results.

Containerized analysis maximizes availability and facilitates reproducibility

memes relies on a locally installed version of the MEME Suite which is accessed by the user’s 
R process. Although R is available on Windows, Mac, and Linux operating systems, the 
MEME Suite is incompatible with Windows, limiting its adoption by Windows users. 
Additional barriers also exist to installing a local copy of the MEME Suite on compatible 
systems, for example, the MEME Suite relies on several system-level dependencies whose 
installation can be difficult for novice users. Finally, some tools in the MEME Suite use 
python to generate shuffled control sequences for analysis, which presents a 
reproducibility issue as the random number generation algorithm changed between 
python2.7 and python3. The MEME Suite will build and install on both python2.7 and 
python3 systems, therefore without careful consideration of this behavior, the same code 
run on two systems may not produce identical results, even if using the same major version 
of the MEME Suite. In order to increase access to the MEME Suite on unsupported 
operating systems, and to facilitate reproducible motif analysis using memes, we have also 
developed a docker container with a preinstalled version of the MEME Suite along with an 
R/Bioconductor analysis environment including the most recent version of memes and its 
dependencies. As new container versions are released, they are version-tagged and stored 
to ensure reproducibility while allowing updates to the container.
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Results
Here we briefly highlight each of memes current features for analyzing ChIP-seq data. 
Additional detailed walkthroughs for each supported MEME Suite tool, and a worked 
example using memes to analyze ChIP-seq data can be found in the memes vignettes and the 
package website (snystrom.github.io/memes). In the following example, we reanalyze 
recent work examining the causal relationship between the binding of the transcription 
factor E93 to changes in chromatin accessibility during Drosophila wing development [11]. 
Here, we utilize ChIP-seq peak calls for E93 that have been annotated according to the 
change in chromatin accessibility observed before and after E93 binding. These data are an 
emblematic example of range-based genomic data (E93 ChIP peaks) containing additional 
groupings (the chromatin accessibility response following DNA binding) whose 
membership may be influenced by differential motif content. We show how memes syntax 
allows complex analysis designs, how memes utilities enable deep interrogation of results, 
and how memes flexible data structures empower users to integrate the memes workflow 
with tools offered by other R/Bioconductor packages.

The aforementioned ChIP-seq peaks are stored as a GRanges object with a metadata 
column (e93_chromatin_response) indicating whether chromatin accessibility tends to 
increase (“Increasing”), decrease (“Decreasing”), or remain unchanged (“Static”) following 
E93 binding.

head(chip_results, 3)
## GRanges object with 3 ranges and 2 metadata columns:
##       seqnames      ranges strand |          id e93_chromatin_response
##          <Rle>   <IRanges>  <Rle> | <character>            <character>
##   [1]    chr2L   5651-5750      * |      peak_1                 Static
##   [2]    chr2L 37478-37577      * |      peak_3             Increasing
##   [3]    chr2L 55237-55336      * |      peak_4                 Static
##   -------
##   seqinfo: 6 sequences from an unspecified genome; no seqlengths

Using the get_sequence() function, GRanges objects are converted into DNAStringSet 
outputs.

dm.genome <- BSgenome.Dmelanogaster.UCSC.dm3::BSgenome.Dmelanogaster.UCSC.dm3

all_sequences <- chip_results %>% 
  get_sequence(dm.genome)
head(all_sequences)
## DNAStringSet object of length 6:
##     width seq                                               names               
## [1]   100 GGAGTGCCAACATATTGTGCTCT...AAATTGCCGCTAATCAGAAGCAA chr2L:5651-
5750
## [2]   100 CGTTAGAATGGTGCTGTTTGCTG...GCTATGGGACGAAAGTCATCCTC chr2L:37478-
37577
## [3]   100 AAGCAGTGGTCTACGAAACAAAC...CATTCAACATCTGCAAAATCCAG chr2L:55237-
55336
## [4]   100 CAGTACTTCACAACACCTTGCAG...CCGTTTTGTCAACGGGAAACTAG chr2L:62469-
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62568
## [5]   100 CGCTGAATTGCACCAAAAGAGCG...AACCCCATCTTTGCATAGTCAGT chr2L:72503-
72602
## [6]   100 CAATCTTACACTCGTTAGATTGC...GCTGTTGCGATGCCATACACTAG chr2L:79784-
79883

In order to perform analysis within different groups of peaks, the GRanges object can be 
split() on a metadata column before input to get_sequence().

sequences_by_response <- chip_results %>% 
  split(mcols(.)$e93_chromatin_response) %>% 
  get_sequence(dm.genome)

This produces in a BStringSetList where list members contain a DNAStringSet for each 
group of sequences.

head(sequences_by_response)
## BStringSetList of length 3
## [["Decreasing"]] chr2L:248266-
248365=TTAACGAGTGGGGGAGGGAAGAATACGACGAGAGGCGAGG...
## [["Increasing"]] chr2L:37478-
37577=CGTTAGAATGGTGCTGTTTGCTGTTGGGCGAACGAGGACTAG...
## [["Static"]] chr2L:5651-
5750=GGAGTGCCAACATATTGTGCTCTACGATTTTTTTGCAACCCAAAATGG...

Denovo motif analysis

The DREME tool can be used to discover short, novel motifs present in a set of input 
sequences relative to a control set. The runDreme() command is the memes interface to the 
DREME tool. runDreme() syntax enables users to produce complex discriminative analysis 
designs using intuitive syntax. Examples of possible designs and their syntax are compared 
below.

# Use all sequences vs shuffled background
# Produces:
#  - All Sequences vs Shuffled All Sequences
runDreme(all_sequences, control = "shuffle")

# For each response category, discover motifs against a shuffled background 
set
# Produces:
#  - Increasing vs Shuffled Increasing
#  - Decreasing vs Shuffled Decreasing
#  - Static vs Shuffled Static
runDreme(sequences_by_response, control = "shuffle")

# Search for motifs enriched in the "Increasing" peaks relative to 
"Decreasing" peaks
# Produces:
#  - Increasing vs Decreasing

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.23.441089doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441089
http://creativecommons.org/licenses/by/4.0/


runDreme(sequences_by_response$Increasing, control = 
sequences_by_response$Decreasing)

# Use the "Static" response category as the control set to discover motifs 
# enriched in each remaining category relative to static sites
# Produces:
#  - Increasing vs Static
#  - Decreasing vs Static
runDreme(sequences_by_response, control = "Static")

# Combine the "Static" and "Increasing" sequences and use as a background set 
to
# discover motifs enriched in the remaining categories 
# Produces:
#  - Decreasing vs Static+Increasing
runDreme(sequences_by_response, control = c("Static", "Increasing"))

In order to discover motifs associated with dynamic changes to chromatin accessibility, we 
use open chromatin sites that do not change in accessibility (i.e. “static sites”) as the control 
set to discover motifs enriched in either increasing or decreasing sites.

dreme_vs_static <- runDreme(sequences_by_response, control = "Static")

These data are readily visualized using the universalmotif::view_motifs() function. 
Visualization of the results reveals two distinct motifs associated with decreasing and 
increasing sites (Figure 1). In this analysis, the de-novo discovered motifs within each 
category appear visually similar to each other; however, the MEME Suite does not provide a 
mechanism to compare groups of motifs based on all pairwise similarity metrics. We 
utilized the universalmotif::compare_motifs() function to compute Pearson correlation 
coefficients for each set of motifs to quantitatively assess motif similarity (Figure 1).
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Figure 1: PWMs of discovered motifs in Decreasing (A) and Increasing (B) sites. C,D Pearson 
correlation heatmaps comparing similarity of Decreasing (C) and Increasing (D) motifs.

Transcription factors often bind with sequence specificity to regulate activity of nearby 
genes. Therefore, comparison of de-novo motifs with known DNA binding motifs for 
transcription factors can be a key step in identifying transcriptional regulators. The 
TomTom tool is used to compare unknown motifs against a list of known motifs to identify 
matches, memes provides the runTomTom() function as an interface to this tool. By passing 
the results from runDreme() into runTomTom() and searching within a database of 
Drosophila transcription factor motifs, we can identify candidate transcription factors that 
may bind the motifs associated with increasing and decreasing chromatin accessibility.
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dreme_vs_static_tomtom <- runTomTom(dreme_vs_static, database = 
"data/flyFactorSurveyCleaned.meme", dist = "ed")

Using this approach, the results can be visualized using the view_tomtom_hits() function 
to visually inspect the matches assigned by TomTom, providing a simple way to assess the 
quality of the match. A representative plot of these data is shown in Figure 2, while the full 
results can be viewed in Table 1. This analysis revealed that the motifs associated with 
decreasing sites are highly similar to the E93 motif. Conversely, motifs found in increasing 
sites match the transcription factors Br, L(3)neo38, Gl, and Lola (Table 1). These data 
support the hypothesis that E93 binding to its motif may play a larger role in chromatin 
closing activity, while binding of the transcription factor br is associated with chromatin 
opening.

Figure 2: Representative plots generated by view_tomtom_hits showing the top hit for motifs 
discovered in decreasing (A) and increasing (B) peaks.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.23.441089doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441089
http://creativecommons.org/licenses/by/4.0/


Table 1: Summary of all TomTom matches for denovo motifs discovered in E93 responsive 
ChIP peaks.

Motif enrichment testing using runAme

Discovery and matching of de-novo motifs is only one way to find candidate transcription 
factors within target sites. Indeed, in many instances, requiring that a motif is recovered de-
novo is not ideal, as these approaches are less sensitive than targeted searches. Another 
approach, implemented by the AME tool, is to search for known motif instances in target 
sequences and test for their overrepresentation relative to a background set of sequences 
[12]. The runAme() function is the memes interface to the AME tool. It accepts a set of 
sequences as input and control sets, and will perform enrichment testing using a provided 
motif database for occurrences of each provided motif.

A major limitation of this approach is that transcription factors containing similar families 
of DNA binding domain often possess highly similar motifs, making it difficult to identify 
the “true” binding factor associated with an overrepresented motif. Additionally, when 
searching for matches against a motif database, AME must account for multiple testing, 
therefore using a larger than necessary motif database can produce a large multiple testing 
penalty, limiting sensitivity of detection. One way to overcome these limitations is to limit 
the transcription factor motif database to include only motifs for transcription factors 
expressed in the sample of interest. Accounting for transcription factor expression during 
motif analysis has been demonstrated to increase the probability of identifying biologically 
relevant transcription factor candidates [11,13].

The universalmotif_df structure can be used to integrate expression data with a motif 
database to remove entries for transcription factors that are not expressed. To do so, we 
import a Drosophila transcription factor motif database generated by the Fly Factor Survey 
and convert to universalmotif_df format [14]. In this database, the altname column 
stores the gene symbol.
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fly_factor <- universalmotif::read_meme("data/flyFactorSurveyCleaned.meme") 
%>% 
  # Add motif names to the list entry
  setNames(., purrr::map_chr(., ~{.x['name']})) %>% 
  to_df()
## # A tibble: 3 x 16
##   name     altname family organism consensus      alphabet strand icscore 
nsites
##   <chr>    <chr>   <chr>  <chr>    <chr>          <chr>    <chr>    <dbl>  
<int>
## 1 ab_SANG… ab      <NA>   <NA>     BWNRCCAGGWMCN… DNA      +-       15.0      
20
## 2 ab_SOLE… ab      <NA>   <NA>     NNNNHNRCCAGGW… DNA      +-       14.6     
446
## 3 Abd-A_F… abd-A   <NA>   <NA>     KNMATWAW       DNA      +-        7.37     
37
## # … with 7 more variables: bkgsites <int>, pval <dbl>, qval <dbl>, eval 
<dbl>,
## #   type <chr>, bkg <named list>, motif <I<named list>>

Next, we import a pre-filtered list of genes expressed in a timecourse of Drosophila wing 
development.

wing_expressed_genes <- read.csv("data/wing_expressed_genes.csv")

Finally, we subset the motif database to only expressed genes using dplyr data.frame 
subsetting syntax (note that base R subsetting functions operate equally well on these data 
structures), then convert the data.frame back into universalmotif format using 
to_list(). This filtering step removes 43% of entries from the original database, greatly 
reducing the multiple-testing correction.

fly_factor_expressed <- fly_factor %>% 
  dplyr::filter(altname %in% wing_expressed_genes$symbol) %>%
  to_list()

runAme() syntax is identical to runDreme() in that discriminative designs can be 
constructed by calling list entries by name. Data can be visualized using 
plot_ame_heatmap(), revealing that the E93 motif is strongly enriched at Decreasing sites, 
while l(3)neo38, lola, and br motifs are enriched in Increasing sites, supporting the de-novo 
discovery results (Figure 3). Additionally, AME detects several other transcription factor 
motifs that distinguish decreasing and increasing sites, providing additional clues to 
potential factors that also bind with E93 to affect chromatin accessibility.

ame_vs_static <- runAme(sequences_by_response, control = "Static", database = 
fly_factor_expressed)
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Figure 3: A heatmap of the -log10(adj.pvalues) from AME enrichment testing within 
increasing and decreasing sites.

Motif matching using runFimo

A striking result from these analyses is that the E93 motif is so strongly enriched within 
E93 ChIP peaks that decrease in accessibility. Significance of motif enrichment can be 
driven by several factors, such as quality of the query motif relative to the canonical motif 
or differences in motif number in one group relative to other groups. These questions can 
be explored directly by identifying motif occurrences in target regions and examining their 
properties. FIMO allows users to match motifs in input sequences while returning 
information about the quality of each match in the form of a quantitative score [15].

In order to examine the properties of the E93 motif between different ChIP peaks, we scan 
all E93 ChIP peaks for matches to the Fly Factor Survey E93 motif using runFimo(). Results 
are returned as a GRanges object containing the positions of each motif.

e93_fimo <- runFimo(all_sequences, fly_factor_expressed$Eip93F_SANGER_10, 
thresh = 1e-3)

Using plyranges, matched motifs can be joined with the metadata of the ChIP peaks with 
which they intersect [16].

e93_fimo %<>% 
  plyranges::join_overlap_intersect(chip_results)

Using this approach we can deeply examine the properties of the E93 motif within each 
chromatin response category. First, by counting the number of E93 motifs within each 
category, we demonstrate that Decreasing sites are more likely than increasing or static 
sites to contain an E93 motif (Figure 4A). We extend these observations by rederiving 
position-weight matrices from sequences matching the E93 motif within each category, 
allowing visual inspection of motif quality across groups (Figure 4B). Notably, differences 
in quality at base positions 8-12 appear to distinguish increasing from decreasing motifs, 
where decreasing motifs are more likely to have strong A bases at positions 8 and 9, while 
E93 motifs from increasing sites are more likely to have a T base pair at position 12 
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(Figure 4B). Examination of bulk FIMO scores (where higher scores represent motifs more 
similar to the reference) also reveals differences in E93 motif quality between groups, in 
particular, E93 motifs from Decreasing sites have higher scores (Figure 4C). Together, 
these data demonstrate that a key distinguishing factor between whether a site will 
decrease or increase in chromatin accessibility following E93 binding is the number and 
quality of E93 motifs at that site.

In summary, memes establishes a powerful motif analysis environment by leveraging the 
speed and utility of the MEME Suite set of tools in conjunction with the flexible and 
extensive R/Bioconductor package landscape.
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Figure 4: A. Stacked barplot showing fraction of each chromatin response category containing 
E93 motif matches. B. PWMs generated from E93 motif sequences detected in each chromatin 
response category. C. Boxplot of FIMO Score for each E93 motif within each chromatin 
response category. Outliers are plotted as distinct points.
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Availability and Future Developments
memes is part of Bioconductor. Installation instructions can be found at 
https://bioconductor.org/packages/memes. The memes package source code is available on 
github: github.com/snystrom/memes. Documentation is stored in the package vignettes, 
and also available at the package website: snystrom.github.io/memes. The memes_docker 
container is available on dockerhub: https://hub.docker.com/r/snystrom/memes_docker, 
and the container source code is hosted at github: 
https://github.com/snystrom/memes_docker.

This manuscript was automatically generated using Rmarkdown within the memes_docker 
container. Its source code, raw data, and instructions to reproduce all analysis can be found 
at github.com/snystrom/memes_paper/. Data used in this manuscript can be found on GEO 
at the following accession number: GSE141738.

In the future we hope to add additional data visualizations for examining motif positioning 
within features. We will continue to add support for additional MEME Suite tools in future 
versions of the package. Finally, we hope to improve the memes tooling for analyzing amino-
acid motifs, which although fully supported by our current framework, may require extra 
tools that we have not considered.
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