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Summary 34 

Afucosylated IgG has enhanced Fc-receptor affinity and functionality, and is formed 35 

specifically against membrane proteins of enveloped viruses. We show that this also applies to 36 

Plasmodium falciparum erythrocyte membrane-specific IgG induced by natural infection, but not 37 

by soluble PfEMP1 vaccination.  38 
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Abstract  39 

IgG specific for members of the Plasmodium falciparum erythrocyte membrane 40 

protein 1(PfEMP1) family, which mediates receptor- and tissue-specific sequestration of infected 41 

erythrocytes (IEs), is a central component of naturally acquired malaria immunity. PfEMP1-specific 42 

IgG is thought to protect via inhibition of IE sequestration, and through IgG-Fc Receptor (FcγR) 43 

mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to 44 

FcγRIIIa is elevated up to 40-fold compared to fucosylated IgG, resulting in enhanced antibody-45 

dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is 46 

elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we 47 

show that naturally acquired PfEMP1-specific IgG is likewise markedly afucosylated in a stable and 48 

exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell 49 

degranulation. In contrast, immunization with a soluble subunit vaccine based on VAR2CSA-type 50 

PfEMP1 resulted in fully fucosylated specific IgG. These results have implications for 51 

understanding natural and vaccine-induced antibody-mediated protective immunity to malaria. 52 

Key words 53 
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Introduction 56 

The most severe form of malaria is caused by the protozoan parasite Plasmodium falciparum. 57 

The disease is currently estimated to cost around 400,000 lives a year, mostly of young children and 58 

pregnant women in sub-Saharan Africa. In addition, nearly 900,000 babies are born with a low birth 59 

weight as a consequence of placental malaria (PM) (World Health Organization, 2020). The 60 

particular virulence of P. falciparum is related to the efficient adhesion of the infected erythrocytes 61 

(IEs) to host receptors in the vasculature, such as endothelial protein C receptor, intercellular 62 

adhesion molecule 1, and oncofetal chondroitin sulfate A (Bengtsson et al., 2013; Fried and Duffy, 63 

1996; Lennartz et al., 2017; Turner et al., 2013), mediated by members of the protein family 64 

P. falciparum erythrocyte membrane protein 1 (PfEMP1), embedded in the membrane of IE (Hviid 65 

and Jensen, 2015). The sequestration of IEs can cause tissue-specific circulatory compromise and 66 

inflammation, which in turn can lead to severe and life-threatening complications such as cerebral 67 

malaria (CM) and PM (Jensen et al., 2020; Rogerson et al., 2007). Severe malaria in children has 68 

repeatedly been shown to be associated with parasites expressing particular subsets of PfEMP1, 69 

such as Group A and B/A (Jensen et al., 2004; Turner et al., 2013), whereas PM is strongly 70 

associated with parasites expressing VAR2CSA-type PfEMP1 (Salanti et al., 2004; Tuikue Ndam et 71 

al., 2005).  72 

Acquired protective immunity to P. falciparum malaria is mainly mediated by IgG with 73 

specificity for antigens expressed by the asexual blood-stage parasites (Cohen et al., 1961). PfEMP1 74 

is a key target (Hviid and Jensen, 2015), although antibodies to other blood-stage antigens, such as 75 

the merozoite-specific antigens glutamate-rich protein (GLURP), merozoite surface protein 1 and 76 

reticulocyte binding protein homolog 5, also contribute to naturally acquired protection (Conway et 77 

al., 2000; Douglas et al., 2011; Kana et al., 2017). Importantly, the selective protection from severe 78 

malaria that develops early in childhood, is related to acquisition of IgG specific for Group A and 79 
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B/A PfEMP1 variants (Bull et al., 2000; Cham et al., 2010; Jensen et al., 2004). As a result, life-80 

threatening complications are rare in teenagers and beyond in P. falciparum endemic regions. PM, 81 

which is caused by selective accumulation of VAR2CSA-positive IEs in the placenta from early in 82 

pregnancy (Ofori et al., 2018; Schmiegelow et al., 2017), constitutes an important exception to this 83 

rule. Only VAR2CSA mediates adhesion to placenta-specific chondroitin sulfate (Duffy et al., 84 

2006; Salanti et al., 2004; Viebig et al., 2005). Because of this, and because antibodies specific for 85 

non-pregnancy-related types of PfEMP1 do not cross-react with VAR2CSA (Barfod et al., 2010; 86 

Salanti et al., 2004; Tuikue Ndam et al., 2006), primigravid women are immunologically naïve to 87 

VAR2CSA and therefore highly susceptible to PM, despite general protective immunity acquired 88 

during childhood. However, substantial IgG-mediated protection against PM is acquired in a parity-89 

dependent manner, and PM is therefore mainly a problem in the first pregnancy (Fried and Duffy, 90 

1996; Fried et al., 1998; Ricke et al., 2000; Salanti et al., 2004; Staalsoe et al., 2004).  91 

Acquired immunity mediated by PfEMP1-specific IgG is generally thought to rely on their 92 

ability to interfere directly with IE sequestration (i.e., neutralizing, adhesion-inhibitory antibodies). 93 

However, antibody-mediated opsonization of IEs is a likely additional effector function of these 94 

antibodies, since the antibody response to most P. falciparum asexual blood-stage antigens 95 

(including PfEMP1) is completely dominated by the cytophilic subclasses IgG1 and (to a lesser 96 

extent) IgG3 (Megnekou et al., 2005; Piper et al., 1999). Nevertheless, the relative importance of 97 

neutralization and opsonization remains largely unexplored. Complement-mediated destruction of 98 

IgG-coated IEs does not seem important (Larsen et al., 2019), suggesting that IgG opsonization of 99 

IEs by IgG functions mainly through IgG-Fc receptor (FcγR)-dependent phagocytosis and antibody-100 

dependent cellular cytotoxicity (ADCC) (Arora et al., 2018; Ataide et al., 2011; Marsh et al., 1989). 101 

The latter involves FcγRIIIa (Ravetch and Perussia, 1989; Scallon et al., 1989). Binding of IgG to 102 

FcγRIIIa critically depends on the composition of a highly conserved N-linked glycan at position 103 
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297 in the Fc region (Vidarsson et al., 2014). The level of fucosylation is of particular significance, 104 

since afucosylated IgG has up to 20-fold increased affinity for FcγRIIIa (Dekkers et al., 2017; 105 

Ferrara et al., 2011). Even more strikingly, IgG-afucosylation can convert a non-functional ADCC 106 

potential to strong and clinically significant responses (Dekkers et al., 2017; Kapur et al., 2014b; 107 

Larsen et al., 2021; Shields et al., 2002; Temming et al., 2019; Wang et al., 2017). Increased 108 

galactosylation at N297 can further enhance affinity to FcγRIII by additional two fold, and also 109 

increases the complement activating capacity of the antibody. In contrast, no influence of bisecting 110 

N-acetylglucosamine (GlcNAc) on antibody effector functions has been demonstrated so far 111 

(Dekkers et al., 2017).  112 

Fc fucosylation of plasma IgG is near 100% at birth, and although it decreases slightly with 113 

age, it normally remains high (~94%) in adults (Bakovic et al., 2013; de Haan et al., 2016). 114 

Nevertheless, very marked and clinically significant reductions (down to ~10%) in antigen-specific 115 

IgG-Fc fucosylation is frequently observed after alloimmunization against erythrocyte and platelet 116 

alloantigens (Kapur et al., 2014a; Kapur et al., 2014b; Sonneveld et al., 2017; Sonneveld et al., 117 

2016; Wuhrer et al., 2009). Afucosylation has also been observed for antigen-specific IgG to 118 

various enveloped viruses (Ackerman et al., 2013; Larsen et al., 2021; Wang et al., 2017). In human 119 

immunodeficiency virus (HIV) infections, low Fc fucosylation has been proposed as a trait of elite 120 

controllers (Ackerman et al., 2013), but it is associated with FcγRIIIa mediated immunopathology 121 

in SARS-CoV-2- and secondary dengue virus infections (Chakraborty et al., 2021; Larsen et al., 122 

2021; Wang et al., 2017). Vaccination with the attenuated paramyxoviruses measles and mumps 123 

also results in specific IgG with reduced fucosylation similar to that acquired after natural infection 124 

(Larsen et al., 2021). In contrast, infection with the non-enveloped parvovirus B19, protein subunit 125 

vaccination against hepatitis B virus, vaccination with inactivated influenza virus, or vaccination 126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441082
http://creativecommons.org/licenses/by-nc-nd/4.0/


against tetanus, pneumococcal, and meningococcal disease do not induce selectively afucosylated 127 

IgG (Larsen et al., 2021; Selman et al., 2012; Vestrheim et al., 2014).  128 

The above findings have led us to propose that afucosylated IgG has evolved as a beneficiary 129 

immune response to foreign antigens expressed on host membranes in the context of infections, 130 

which is mimicked in alloimmunizations with devastating consequences (Kapur et al., 2014a; Kapur 131 

et al., 2015; Kapur et al., 2014b; Larsen et al., 2021; Sonneveld et al., 2017; Sonneveld et al., 2016). 132 

In this study, we tested the hypothesis that antibody responses to P. falciparum antigens expressed 133 

on the IE surface are also a subject to afucosylation. To this end, we examined naturally acquired 134 

IgG responses to the PfEMP1 antigens VAR6 and VAR2CSA and to the merozoite antigen 135 

GLURP, and VAR2CSA-specific IgG induced by subunit vaccination.  136 
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Results and discussion 137 

Naturally acquired PfEMP1-specific IgG is highly afucosylated 138 

We first used a set of plasma samples collected from 127 pregnant Ghanaian women at the 139 

time of their first visit to antenatal clinics (Ofori et al., 2009), to assess N297 glycosylation of IgG 140 

with specificity for three P. falciparum recombinant antigens. We used the full ectodomains of 141 

VAR2CSA, and the non-pregnancy-restricted Group A-type VAR6, which are both naturally 142 

expressed on the IE surface. We also included the merozoite antigen GLURP, which is not 143 

expressed on IE surface (Borre et al., 1991) (Fig. 1).  144 

In line with our hypothesis suggesting that afucosylated IgG response is restricted to foreign 145 

antigens expressed on host cells (such as alloantigens and outer-membrane proteins of enveloped 146 

viruses (Kapur et al., 2014a; Kapur et al., 2015; Kapur et al., 2014b; Larsen et al., 2021; Sonneveld 147 

et al., 2017; Sonneveld et al., 2016)), IgG1-responses to VAR6 and VAR2CSA were markedly Fc 148 

afucosylated (Fig. 2A). All individuals showed lowered anti-VAR6 Fc fucosylation compared to 149 

total IgG1, which remained high. The magnitude of the decreased Fc fucosylation of VAR6-specific 150 

IgG1 exceeded any previously reported pathogen-derived immune response. The most similar 151 

responses are against rhesus D on red blood cells and human platelet antigen-1a on platelets. 152 

However, IgG1 responses to those antigens display big variation in Fc fucosylation ranging from 153 

almost 100% to 10% (Kapur et al., 2014a; Kapur et al., 2014b). In contrast, GLURP-specific IgG1 154 

Fc fucosylation was generally high, also in line with our hypothesis (Fig. 2A). A few women 155 

showed marked afucosylation of GLURP-specific IgG1 (Fig. 2A), possibly in response to GLURP 156 

deposited on the erythrocyte surface during invasion, as has been described for other merozoite-157 

specific antigens (Awah et al., 2009). IgG1 specific for all three P. falciparum antigens showed 158 

higher Fc galactosylation and sialylation levels than total IgG1, similar to what is known for recent 159 
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immunizations (Larsen et al., 2021; Selman et al., 2012) (Supplementary Fig. 1A-B). Levels of 160 

bisecting GlcNAc were lower for VAR2CSA- and VAR6-specific IgG1, and higher for GLURP-161 

specific IgG1 compared to total IgG1 (Supplementary Fig. 1C). These results indicate that antigen-162 

specific IgG levels are modulated in complex ways according to exposure and antigen context.  163 

Afucosylation of VAR2CSA-specific IgG1 was generally less pronounced than that of VAR6-164 

specific IgG1 (Fig. 2A). Exposure to VAR2CSA-type PfEMP1 occurs later in life, as it is restricted 165 

to pregnancy, whereas P. falciparum expressing Group A PfEMP1 (such as VAR6) are associated 166 

with severe malaria in children (Jensen et al., 2004; Lennartz et al., 2017; Turner et al., 2013). IgG 167 

responses to Group A PfEMP1 variants are acquired from early in life in endemic areas through 168 

repeated exposure to parasites expressing those variants (Bull et al., 2000; Cham et al., 2009; Cham 169 

et al., 2010; Nielsen et al., 2002; Olsen et al., 2018). VAR6-specific IgG1 was consistently 170 

afucosylated in all tested individuals, probably as a result of continuous exposure to Group A 171 

PfEMP1 in childhood (Fig. 2A), indicating that afucosylation is a persistent phenotype once 172 

acquired. In contrast, the level of fucosylation of VAR2CSA-specific IgG1 was more varied 173 

(Fig. 2A) and decreased with increased antigen exposure, using parity as proxy (Fig. 2B). This was 174 

not the case for VAR6- (Fig. 2C) or GLURP-specific IgG1 (Fig. 2D), and only marginal for total 175 

plasma IgG1 (Fig. 2E).  176 

Fc afucosylation of PfEMP1-specific IgG is stable  177 

The above findings support the hypothesis that afucosylated IgG specific for host membrane-178 

associated immunogens is attained following repeated exposure and that the phenotype is stable 179 

once acquired. To examine this hypothesis further, and to consolidate the findings described above, 180 

we proceeded to determine the Fc fucosylation of IgG with specificity for the same three antigens, 181 

using an availability-based subset (N=72) of plasma samples from a previously published cohort of 182 

Ghanaian women sampled while not pregnant (Ampomah et al., 2014a). The findings regarding 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441082
http://creativecommons.org/licenses/by-nc-nd/4.0/


total and antigen-specific IgG1 (Fig. 3 and Supplementary Fig. 1D-F) were fully consistent with 184 

those obtained with the samples from pregnant women. The marked Fc afucosylation of 185 

VAR2CSA- and VAR6-specific IgG1 was more pronounced among this second group of women 186 

(Fig. 3A), probably reflecting the more intense parasite transmission in the rainforest compared to 187 

the coastal savannah where the non-pregnant and pregnant women were recruited, respectively 188 

(Ampomah et al., 2014a; Ofori et al., 2009). Although VAR2CSA-specific IgG levels decay 189 

markedly within six months of delivery (Ampomah et al., 2014b; Staalsoe et al., 2001), the parity-190 

dependency of the degree of VAR2CSA-specific IgG1 Fc afucosylation remained in these non-191 

pregnant women (Fig. 3B). Furthermore, there was no significant correlation between the time since 192 

last pregnancy and Fc fucosylation levels of VAR2CSA-specific IgG1 (Fig. 3C). Taken together, 193 

these findings reinforce the inference that PfEMP1-specific IgG1 Fc afucosylation remains stable in 194 

the absence of exposure to antigen. This conclusion is in line with our previous findings regarding 195 

fucosylation of IgG1 alloantibodies being stable for >10 years (Kapur et al., 2015; Kapur et al., 196 

2014b; Sonneveld et al., 2016). However, unlike the Fc afucosylation of PfEMP1-specific IgG1, 197 

which appeared to be exposure-dependent, boosting with alloantigens was found to have no 198 

apparent effect on the Fc fucosylation (Kapur et al., 2015; Kapur et al., 2014b; Sonneveld et al., 199 

2016). It also suggests that in these cases, afucosylated IgG1 are secreted by long-lived plasma 200 

cells, which for VAR2CSA are sustained for up to a decade after the most recent exposure to 201 

parasites expressing VAR2CSA (Ampomah et al., 2014a). This stable response is similar to HIV- 202 

and cytomegalovirus-specific responses, but markedly different from initial SARS-CoV-2 203 

responses, which are in most patients only transiently afucosylated for a few weeks after 204 

seroconversion (Larsen et al., 2021). This may suggest that those antibodies were either secreted by 205 

short-lived plasma cells/plasmablasts, or that afucosylation in those cells is reprogrammed by 206 

particular inflammatory conditions.  207 
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Subunit VAR2CSA vaccination does not induce afucosylated IgG  208 

When measured at the time of delivery, high levels of IgG recognizing placenta-sequestering 209 

IEs are strongly associated with protection from adverse pregnancy outcome (Duffy and Fried, 210 

2003; Salanti et al., 2004; Staalsoe et al., 2004). Many of these antibodies interfere with placental 211 

IE sequestration (Fried et al., 1998; Ricke et al., 2000), and it is therefore generally assumed that 212 

neutralizing (adhesion-blocking) antibodies are required for clinical protection against PM (Beeson 213 

et al., 2004; Khunrae et al., 2010; Srivastava et al., 2010). On this basis, development of vaccines to 214 

prevent PM, based on the so-called minimal-binding-domain (MBD) of VAR2CSA (Clausen et al., 215 

2012; Srivastava et al., 2011), is currently in progress (Mordmuller et al., 2019; Sirima et al., 2020). 216 

To examine the levels of Fc fucosylation of VAR2CSA-specific IgG following subunit vaccination, 217 

we tested plasma samples from the PAMVAC Phase 1 clinical trial, which involved adult 218 

volunteers without previous P. falciparum exposure, vaccinated with a recombinant VAR2CSA-219 

MBD construct (Mordmuller et al., 2019). In contrast to the results obtained with naturally induced 220 

VAR2CSA-IgG1, the PAMVAC vaccination induced almost completely fucosylated IgG1, even 221 

significantly more fucosylated than total plasma IgG from the same donors (Fig. 4A and 222 

Supplementary Fig. 1G-I). This is in line with our recent comparison of naturally acquired and 223 

subunit vaccine-induced IgG1 specific for hepatitis B virus (Larsen et al., 2021). To assess the 224 

possibility that the full fucosylation of the vaccine-induced VAR2CSA-specific IgG was due to the 225 

vaccinees’ lack of previous exposure to P. falciparum, genetics, or other environmental parameters, 226 

we also tested samples obtained from the parallel trial of the PAMVAC vaccine in Beninese 227 

nulligravidae, who were therefore unexposed to VAR2CSA despite lifelong P. falciparum 228 

exposure. The results (Fig. 4B and Supplementary Fig. 1J-L) were essentially identical to those 229 

obtained with unexposed volunteers. Similar to the Ghanaian cohorts described above, the Beninese 230 

cohort had lower Fc fucosylation levels of total plasma IgG compared to previous reports of 231 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441082
http://creativecommons.org/licenses/by-nc-nd/4.0/


European cohorts and the unexposed vaccine cohort consisting of Europeans, reaffirming previous 232 

reports from rural areas (de Jong et al., 2016). This is likely due to accumulating afucosylated IgG 233 

to both P. falciparum membrane antigens and enveloped viruses (de Haan et al., 2016; Larsen et al., 234 

2021). 235 

Only afucosylated VAR2CSA-specific IgG induces natural killer cell degranulation 236 

 Afucosylation of IgG Fc improves the affinity of IgG for FcγRIII (Dekkers et al., 2017; 237 

Ferrara et al., 2011), increasing NK-cell mediated ADCC against IgG-opsonized targets (Temming 238 

et al., 2019). Recently it was reported that IgG from individuals naturally exposed to P. falciparum 239 

makes IEs susceptible to NK-cell mediated ADCC, and that PfEMP1-specific IgG is a major 240 

contributor to this response (Arora et al., 2018). To investigate the functional importance of 241 

afucosylation of PfEMP1-specific IgG for ADCC, we assessed the ten Ghanaian plasma samples 242 

with the highest and lowest Fc fucosylation of VAR2CSA-specific IgG, respectively, for NK cell 243 

degranulation efficiency. The samples had a similar distribution of VAR2CSA-specific IgG levels 244 

(Fig. 5A). However, they differed markedly in their ability to induce NK-cell ADCC, assessed by 245 

degranulation-induced expression of CD107a (Fig. 5B) (Snyder et al., 2018). Only VAR2CSA-246 

specific IgG from individuals with low VAR2CSA-specific Fc fucosylation induced NK-cell 247 

degranulation, whereas IgG from individual with high VAR2CSA-specific Fc fucosylation was less 248 

effective (Fig. 5B). In line with earlier work (Dekkers et al., 2017; Temming et al., 2019), the 249 

fucosylation status of these antibody proved to be a more important predictor of NK-cell mediated 250 

activity than their quantity (Fig. 5A). To consolidate these results and to directly compare Fc 251 

fucosylation, we next assayed recombinant fucosylation variants of the VAR2CSA-specific human 252 

monoclonal antibody PAM1.4. Whereas both bound similarly in ELISA (Fig. 5C), only the 253 

afucosylated PAM1.4 induced marked NK-cell degranulation (Fig. 5D). Together, these findings 254 

underscore the functional significance of Fc afucosylation of PfEMP1-specific IgG, indicating that 255 
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IgG induced by PfEMP1 protein subunit vaccination lack potentially important characteristics of the 256 

naturally acquired antibody response.  257 

Conclusion 258 

Our study supports the hypothesis that the immune system has evolved a capacity to 259 

selectively modulate the glycosylation pattern of the IgG Fc region, thereby fine-tuning the effector 260 

response triggered by antibody-opsonized targets (Larsen et al., 2021). Specifically, it appears that 261 

immunogens expressed on host membranes induce afucosylated IgG, thereby increasing its ability 262 

to elicit FcγRIII-dependent effector responses such as ADCC. In contrast, immunogens in solution 263 

or present on the surface of pathogens seem to mainly induce fucosylated IgG, thus steering the 264 

effector response against IgG-opsonized targets towards other FcγR-dependent effector functions. 265 

The plasticity in human immune responses to modulate IgG effector functions by altered 266 

fucosylation endows the immune system with a so far largely unappreciated level of adaptability. 267 

While it is congruent with the current understanding of how the immune system works, the 268 

functional importance of afucosylated IgG in malaria remains to be demonstrated, which future 269 

studies will strive to elucidate. In the meantime, it should be emphasized that the decrease in Fc 270 

fucosylation reported here exceeds any that has previously been reported for pathogen-derived 271 

antigens. Indeed, it also surpasses the clinically significant afucosylation of the IgG response to 272 

alloantigens (Kapur et al., 2014a; Kapur et al., 2014b; Wuhrer et al., 2009), thus, implying that the 273 

immunopathogenic IgG raised in these instances is an unfortunate mimic of an evolutionary 274 

conserved and advantageous immune mechanism against intracellular pathogens. Finally, the data 275 

suggest that to induce afucosylated IgG responses with increased ADCC – and potentially 276 

protective capacity, alternative vaccination strategies are required, mimicking the expression of 277 

antigens on host cells.  278 
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Materials and methods 279 

Human subjects 280 

We used biological samples collected as part of the following studies: (i) A longitudinal study 281 

of malaria in pregnancy, conducted in Dodowa, located in a coastal savannah area with stable, 282 

seasonal P. falciparum transmission, approximately 40 km North of Accra, Ghana (Ofori et al., 283 

2009). (ii) A cross-sectional study of immune responses to VAR2CSA in healthy non-pregnant 284 

women (Ampomah et al., 2014a), conducted in Assin Foso, in a rainforest area with high and 285 

perennial P. falciparum transmission, located approximately 80 km North of Cape Coast, Ghana 286 

(Afari et al., 1995). (iii) A phase 1 clinical trial of the VAR2CSA-based PAMVAC vaccine, 287 

conducted in non-immune German volunteers and in adult, nulligravid P. falciparum-exposed 288 

Beninese women volunteers (Mordmuller et al., 2019). Healthy blood donor samples from Sanquin, 289 

Amsterdam, The Netherlands, were used as negative control donors.  290 

The Ghanaian donors all had serologic evidence of exposure to P. falciparum, with 291 

seropositivity rates above 90% in the non-pregnant cohort (Ampomah et al., 2014a) and above 70% 292 

in the pregnant cohort (Data not shown).  293 

A more detailed demographic description of the analyzed cohorts can be found in the 294 

supplementary materials (Supplementary table 1). 295 

P. falciparum recombinant antigens 296 

The full-length ectodomains of the VAR2CSA-type PfEMP1 antigen IT4VAR04 297 

(VAR2CSA) and of the Group A PfEMP1 antigen HB3VAR6 (VAR6) were expressed in 298 

baculovirus-infected insect cells and purified as described previously (Khunrae et al., 2010; 299 

Stevenson et al., 2015). The amino-terminal, non-repetitive R0 region of glutamate-rich protein 300 
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(GLURP) was expressed in Escherichia coli and purified as described elsewhere (Theisen et al., 301 

1995).  302 

Purification of IgG from plasma samples 303 

Total IgG from individual donors was purified from ~1 µL plasma using the AssayMAP 304 

Bravo platform (Agilent Technologies, Santa Clara, USA) with Protein G-coupled cartridges as 305 

described elsewhere (Larsen et al., 2021).  306 

P. falciparum antigen-specific IgG was purified from individual donors by incubation (1h, 307 

room temperature) of individual plasma samples (diluted 1:10 in phosphate-buffered saline (PBS) 308 

supplemented with TWEEN 20 (0.05 %; PBS-T)) in 96-well Maxisorp plates (Nunc, Roskilde, 309 

Denmark) coated overnight (4°C; PBS) with VAR2CSA (2 µg/mL), VAR6 (2 µg/mL), or GLURP 310 

(1 µg/mL). Following the incubation, the plates were washed 3× with PBS-T, 2× with PBS, and 2× 311 

with ammonium bicarbonate (50 mM). Antigen-specific IgG were finally eluted by formic acid 312 

(100 mM; 5 min shaking).  313 

Mass spectrometric IgG Fc glycosylation analysis 314 

Eluates of purified IgG were collected in low-binding PCR plates (Eppendorf, Hamburg, 315 

Germany) and dried by vacuum centrifugation (50ºC). The dried samples were dissolved in a 316 

reduction and alkylation buffer containing sodium deoxycholate (0.4%), tris(2-317 

carboxyethyl)phosphine (10 mM), 2-chloroacetamide (40mM), and TRIS (pH8.5; 100 mM), or 318 

ammonium bicarbonate (50 mM). After boiling the samples (10 min; 95ºC), trypsin (5 µg/mL) in 319 

ammonium bicarbonate (50 mM) was added. The digestion was terminated after overnight 320 

incubation (37ºC) by acidifying to a final concentration of 2% formic acid. Prior to mass 321 

spectrometry injection, sodium deoxycholate precipitates, in samples where this was added, were 322 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441082
http://creativecommons.org/licenses/by-nc-nd/4.0/


removed by centrifugation (3,000×g; 30 min), and filtering through 0.65 µm low protein binding 323 

filter plates (Millipore, Burlington, USA).  324 

Analysis of IgG Fc glycosylation was performed with nanoLC reverse phase-electrospray- 325 

mass spectrometry on an Impact HD quadrupole-time-of-flight mass spectrometer (Bruker 326 

Daltonics, Bremen, Germany) and data was processed with Skyline software as described elsewhere 327 

(Larsen et al., 2021). The level of fucosylation and bisection were calculated as the sum of the 328 

relative intensities of glycoforms containing the respective glycotraits. Galactosylation and 329 

sialylation levels were calculated as antenna occupancy. The relative intensities of the glycoforms 330 

were summed with mono-galactosylated/sialylated species only contributing with 50 % of their 331 

relative intensity. 332 

Human monoclonal VAR2CSA-specific IgG  333 

The human monoclonal IgG1 antibody, PAM1.4, derived from an EBV-immortalized 334 

memory B-cell clone from a Ghanaian woman with natural exposure to PM (Barfod et al., 2007), 335 

recognizes a conformational epitope in several VAR2CSA-type PfEMP1 proteins, including 336 

IT4VAR04. In the present study, we used a non-modified recombinant version of PAM1.4 337 

produced in HEK293F cells with high Fc fucosylation and a glyco-engineered variant with low Fc 338 

fucosylation (Dekkers et al., 2016; Larsen et al., 2019). 339 

Quantification of VAR2CSA-specific IgG 340 

 Levels of VAR2CSA-specific IgG were assessed by ELISA as previously described (Lopez-341 

Perez et al., 2018). In brief, 96-well flat-bottom microtiter plates (Nunc MaxiSorp, Thermo Fisher 342 

Scientific) were coated overnight at 4°C with full-length VAR2CSA (100 ng/well in PBS. 343 

Monoclonal antibody (0.08 to 10 μg/mL) or plasma samples (1:400) were added in duplicate, 344 

followed by washing and horseradish peroxidase-conjugated rabbit anti-human IgG (1:3,000; 345 
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Dako). Bound antibodies were detected by adding TMB PLUS2 (Eco-Tek), and the reaction 346 

stopped by the addition of 0.2 M H2SO4. The optical density (OD) was read at 450 nm and the 347 

specific antibody levels were calculated in arbitrary units (AU), using the equation 348 

100 × [(ODSAMPLE- ODBLANK)/(ODPOS.CTRL-ODBLANK)].  349 

Antibody�dependent cellular cytotoxicity (ADCC) assay  350 

Degranulation-induced CD107a expression in response to IgG bound to plastic-immobilized 351 

antigen is a convenient marker of NK-cell ADCC (Jegaskanda et al., 2013). Here, we coated 96-352 

well flat-bottom microtiter plates (Nunc MaxiSorp; Thermo Fisher Scientific) overnight at 4°C with 353 

full-length VAR2CSA (100 ng/well in PBS; (Lopez-Perez et al., 2018)).Following 1h blocking with 354 

PBS containing 1% Ig-free bovine serum albumin-BSA (1% PBS-BSA), plasma samples (1:20) or 355 

PAM1.4 variants (0.08 to 10 µg/mL) were added for 1h at 37°C. After washing, 1.6×105 NK92 356 

cells stably expressing CD16a and GFP (Snyder et al., 2018) were added to each well. In addition, 357 

anti-human CD107a-PE (H4A3 clone; BD Biosciences), 10 μg/mL brefeldin A (Sigma-Aldrich), 358 

and 2 µM monensin (Sigma-Aldrich) were added, and the cells incubated for 4 h at 37°C. Cells 359 

were then centrifuged and stained with near-IR fixable Live/Dead dye (Invitrogen), followed by 360 

data acquisition on a FACS LSRII flow cytometer (BD Biosciences), and analysis with FlowLogic 361 

software (Inivai Technologies, Australia). Wells with antigen and NK cells, but without antibody 362 

were included in all experiments to control for unspecific activation. Plasma samples from four 363 

Danish non-pregnant women without malaria exposure and purified human IgG (Sigma-Aldrich) 364 

were included as negative controls. 365 

Statistical tests 366 

Statistical analyses were performed using R: A Language and Environment for Statistical 367 

Computing (Version 3.5.2). Performed tests are mentioned in the text. 368 
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Abbreviations 698 

ADCC: Antibody-dependent cellular cytotoxicity; CM: Cerebral malaria; Fc: fragment 699 

crystallizable; FcγR: Fcγ receptor;GlcNac: N-acetylsglucosamin; GLURP: Glutamate-rich protein; 700 

IgG: Immunoglobulin G; IE = Infected erythrocyte; MBD: Minimal-binding domain; 701 

PBS: Phosphate-buffered saline; PBS-T = PBS supplemented with TWEEN20; 702 

PfEMP1: Plasmodium falciparum erythrocyte membrane protein-1; PM: placental malaria. 703 
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Figure legends 704 

Figure 1. Background and study workflow 705 

(A) IgG1 specific for the merozoite antigen GLURP and two members of the PfEMP1 family 706 

expressed on the surface of IEs were analyzed in this study. Most PfEMP1 variants facilitate 707 

sequestration of IEs to vascular endothelium (exemplified here by VAR6), while VAR2CSA-type 708 

PfEMP1 mediate IE sequestration in the placental syncytiotrophoblast and intervillous space. (B) 709 

Plasma samples were split and used to purify total plasma IgG1 and antigen-specific IgG1, using 710 

protein G-coupled sepharose and solid-phase absorption with recombinant antigens, respectively. 711 

Eluted IgG1 was digested with trypsin and the glycopeptides analyzed by liquid chromatography 712 

mass spectrometry (LC-MS). Examples of MS spectra of total IgG1 (left) and antigen-specific (anti-713 

VAR6) IgG1 (right) from one sample is shown. (C) The fractions of the different glycosylation 714 

traits of the Fc glycan depicted were calculated from LC-MS spectra. 715 

Figure 2. Fc fucosylation of naturally acquired P. falciparum-specific IgG depends on antigen 716 

location and exposure  717 

(A) Fc fucosylation levels of total plasma IgG1 (gray, n=127) and IgG1 specific for 718 

VAR2CSA (orange, n=117), VAR6 (green, n=121), and GLURP (blue, n=88) in Ghanaian pregnant 719 

women (left four panels). Fc fucosylation levels of total plasma IgG1 from unexposed Dutch 720 

women (n=5) were included for comparison (right panel). Medians and densities are shown. 721 

Statistically significant pairwise differences (multiple Wilcoxon signed rank test with Bonferroni 722 

correction) are indicated (****: P<0.0001). (B-E) Correlations of (B) VAR2CSA-, (C) VAR6-, (D) 723 

GLURP-specific and (E) total IgG1-Fc fucosylation levels with parity. P-values, and correlation 724 

coefficients are shown. Statistical significance of correlations (Spearman’s correlations. *: P<0.05; 725 

**: P<0.01; ***: P<0.001; ****: P<0.0001. 726 
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Figure 3. Fc fucosylation levels of VAR2CSA-specifc IgG is temporally stable 727 

Fc fucosylation levels of total plasma IgG1 (gray, n=72) and IgG1 with specificity for 728 

VAR2CSA (orange, n=50), VAR6 (green, n=65), and GLURP (blue, n=43) in non-pregnant 729 

Ghanaian women exposed to VAR2CSA during one or more previous pregnancies. Fc fucosylation 730 

levels of total plasma IgG1 from unexposed Dutch females (n=5) are included as controls. Medians 731 

and densities are shown. (B) Correlation between fucosylation levels of VAR2CSA-specific IgG1 732 

and parity. (C) Correlation between fucosylation levels of VAR2CSA-specific IgG1 and time since 733 

last pregnancy. P-values, and correlation coefficients are shown. Statistically significant differences 734 

calculated and indicated as in Fig. 2. 735 

Figure 4. VAR2CSA-specific IgG induced by subunit vaccination is not Fc-afucosylated 736 

Fc fucosylation levels of total (gray) and VAR2CSA-specific (orange) plasma IgG1 in 737 

German vaccinees (n=32) without (A) and in Beninese vaccinees (n=18) with (B) natural exposure 738 

to P. falciparum. Medians and densities are shown. Statistically significant differences calculated 739 

and indicated as in Fig. 2.  740 

Figure 5. Only afucosylated PfEMP-1 specific IgG induces NK cell-mediated ADCC  741 

Association between (A) VAR2CSA-specific IgG levels or (B) Fc fucosylation of 742 

VAR2CSA-specific IgG and CD107a expression on NK92-CD16a cells. Spearman’s rank 743 

correlation (r) and p values are shown for highly fucosylated (filled symbols) and afucosylated anti-744 

VAR2CSA IgG (open symbols) samples, respectively. The groups were compared by Mann- 745 

Whitney test. (C) Similarly, the VAR2CSA-specific, human monoclonal antibody PAM1.4 as either 746 

fucosylated or afucosylated IgG1 was titrated in the same assay and measured for binding or (D) 747 

degranulation activity (CD107a expression) on NK92-CD16a cells. Data represent mean values ± 748 

SD from three independent experiments.  749 
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Supplementary Figure 1. Fc glycosylation traits of P. falciparum-specific IgG in pregnant 750 

women 751 

(A, D, G, and J) Fc galactosylation-, (B, E, H, and K) Fc sialylation-, and (C, F, I, and J) Fc 752 

bisecting GlcNAc levels of total IgG1 (gray) and IgG1 with specificity for VAR2CSA (orange), 753 

VAR6 (green), and GLURP (blue) in (A to C) pregnant Ghanaian women, (D to F) non-pregnant 754 

Ghanaian women, (G to I) P. falciparum-naïve German and (J to L) VAR2CSA-naïve Beninese 755 

vaccinees. Medians and densities are shown. Statistically significant differences calculated and 756 

indicated as in Fig. 2. 757 
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Supplementary Table 1 758 

Summary statistics of plasma donors studies 759 

Cohort Origin Donors 
(N) 

Women 
(N; %) 

Age (median; inter-
quartile range (in 

years)) 
Ref. 

P. falciparum-exposed 
and pregnant 

Ghana 127 127; 100% 24; 20-27 
(Ofori et al., 
2009) 

P. falciparum-exposed 
and non-pregnant women 

Ghana 72 72; 100% 29; 23-38 
(Ampomah et 
al., 2014a) 

Non-exposed vaccinees Germany 36 n.a.1 Adults1 
(Mordmuller 
et al., 2019) 

P. falciparum-exposed 
vaccinees 

Benin 21 21; 100% Adults1 (unpublished) 

1 Data not available due to blinding of the clinical trial data  760 
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Supplementary Table 2 761 

Overview of included Fc glycopeptides 762 

 763 

N-Glycopeptide m/z 2+ m/z 3+ Retention time (sec) 

IgG1 H3N4F1S0 [G0F] 1317.526 878.687 80 

IgG1 H4N4F1S0 [G1F] 1398.552 932.704 78 

IgG1 H5N4F1S0 [G2F] 1479.579 986.722 77 

IgG1 H3N5F1S0 [G0FN] 1419.066 946.380 81 

IgG1 H4N5F1S0 [G1FN] 1500.092 1000.398 79 

IgG1 H5N5F1S0 [G2FN] 1581.119 1054.415 78 

IgG1 H3N4F0S0 [G0] 1244.497 830.001 83 

IgG1 H4N4F0S0 [G1] 1325.524 884.018 82 

IgG1 H5N4F0S0 [G2] 1406.550 938.036 81 

IgG1 H3N5F0S0 [G0N] 1346.037 897.694 83 

IgG1 H4N5F0S0 [G1N] 1427.063 951.712 82 

IgG1 H5N5F0S0 [G2N] 1508.090 1005.729 79 

IgG1 H4N4F1S1 [G1FS] 1544.100 1029.736 77 

IgG1 H5N4F1S1 [G2FS] 1625.127 1083.754 75 

IgG1 H4N5F1S1 [G1FNS] 1645.640 1097.429 77 

IgG1 H5N5F1S1 [G2FNS] 1726.667 1151.447 77 

IgG1 H4N4F0S1 [G1S] 1471.071 981.050 80 

IgG1 H5N4F0S1 [G2S] 1552.098 1035.068 79 

IgG1 H4N5F0S1 [G1NS] 1572.611 1048.743 77 

IgG1 H5N5F0S1 [G2NS] 1653.638 1102.7610 77 

IgG1 H5N4F1S2 [G2FS2] 1770.675 1180.786 76 
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