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Abstract

Due to an increase in human and wildlife interaction, more and more zoonotic diseases are
emerging. A prime example of this is the emergence of the Nipah virus (NiV). Due to high rate of
mortality specifically in India and Bangladesh, there is an urgent need for accelerated research for
NiV involving the development of vaccines or drugs. The genome of NiV consists of six genes
(N, P, M, F, G and L) encoding yielding nucleoprotein, phosphoprotein, matrix, fusion,
glycoprotein and large RNA polymerase. We have used these six genes for in silico assessment of
DNA codon optimization in Escherichia coli. It was observed that the codon adaptation index
(CAI) and GC content of the genes in optimized DNA were enhanced significantly as compared
to wild-type strain. On an average, CAI and GC content of N gene in optimized DNA was
enhanced by 2.3 (135.1%) and 1.2(9.9 %) fold respectively, while in P/V/C it was increased by
2.0 (98.3 %) and 1.1(7.8%) fold respectively. Further, the CAI and GC content in optimized DNA
of M gene and F gene was enhanced by 2.0(99.0%) and 1.1(7.2%) fold respectively for gene M
and 2.4(142.5 %), 1.2(15.4%) fold respectively for gene F. Gene G showed an increase of
2.1(114.8 %) fold for CAI 1.1(11.2%) fold for GC content and gene L showed an increase of
2.4(143.7%) fold for CAI, 1.2(17.2%) fold for GC content. Our result demonstrates that the
optimized genes could be useful for better expression in host without any truncated proteins and
also useful for protein folding and function.
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Introduction
Emerging zoonotic diseases are the products of socioeconomic and anthropogenic environmental

changes, Nipah virus (NiV) being one of its best examples. Nipah is a zoonotic disease caused by
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Nipah virus. Fruit eating species such as Pteropus bats, popularly known as flying foxes, are
supposed to be the natural hosts of the virus. NiV emerged as a new virus, causing severe morbidity
and mortality in both humans and animals exactly 20 years ago and destroyed the pig-farming
industry in Malaysia, and it continues to cause outbreaks in Bangladesh and India [1]. NiV is the
second member of the genus Henipavirus in the family Paramyxoviridae [1]. Similar to other
paramyxoviruses, NiV particles are pleomorphic, spherical to filamentous, having an RNA
genome and range in size from 40 to 1,900 nm. Among the NiVs known to cause disease in
humans, there are two major genetic lineages, i.e., NiV Malaysia (NiV-MY) and NiV Bangladesh
(NiV-BD). Genome of the Malaysia NiV is 18,246 nucleotides (nt) in length, whereas that of the
Bangladesh NiV is 18,252 nt [2].

The core of the virion contains a linear ribonucleoprotein (RNP) comprising of negative
sense single stranded RNA. The genome consists of six genes (N, P, M, F, G and L) encoding
nucleoprotein, phosphoprotein, matrix, fusion, glycoprotein and large RNA polymerase [3].
Nucelocapsid protein (N) is the most abundant protein present and necessary for capsid structure.
Phosphoproteins (P) and large polymerase proteins (L) aid RNA polymerase in transcribing RNA
to mRNA to antigenomic RNA. Traditional lipid bilayer envelopes the virion but it is “spiked”
with fusion (F) and receptor-binding glycoproteins (G). Matrix proteins (M) are present on the
underside of the lipid bilayer for structural support and regulating the budding process. The P gene
encodes at least three nonstructural proteins (C, V, and W) in addition to the P protein. However,
P protein is the only essential gene product for genome replication [3]. NiV entry and cell-to-cell
spread are driven by two transmembrane glycoproteins, the attachment (G) and the fusion (F)
proteins, that are exposed on the surface of viral particles and on infected cells to mediate

attachment to the host cell receptor and membrane fusion, respectively [4].
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As the world continues to struggle with the COVID-19 pandemic caused by SARS-CoV-2,
it becomes all the more crucial to study the characteristics of Nipah virus that might increase its
risk of causing a global pandemic in future. The route of infection of NiV from bats to humans is
by ingestion and consumption of NiV-contaminated or partially eaten fruits, or by contact with
infected animals such as pigs, cattle and goats [5]. Clinical presentation ranges from asymptomatic
infection to fatal encephalitis [1]. As an RNA virus, it has an exceptionally high rate of mutation
and if a human-adapted strain were to infect communities in South Asia, high population densities
and global interconnectedness would rapidly spread the infection [6]. Hence there is a potential
need for development of highly immunogenic vaccine against the virus.

Currently, no drugs or vaccines exist for this virus, though many trials are in progress [7].
DNA vaccines also known as ‘naked DNA’ or nucleic acid vaccine, encode antigens of pathogenic
organisms including viruses, bacteria, fungi and parasites [8]. However, these are shown to have
low immunogenic properties in larger species such as primates and humans [9]. One promising
approach for enhancing its immunogenicity is to maximize its expression in the immunized host
[10]. Many organisms including viruses tend to have biases towards certain synonymous codon
and codon pairs in their genes. A gene containing rarely used codons in one particular organism
will show increased expression levels in heterologous system through codon optimization. There
are many software tools and technologies which have been developed for gene expression studies
and predicting the expression level of genes through computational methods. This is appealing as
expensive and difficult experiments are not required [11].

DNA codon optimization is one such useful technology for improving the yields of
expressed heterologous proteins. It is a technique to exploit the protein expression in living

organism by increasing the translational efficiency of gene of interest by transforming DNA
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sequence of nucleotides of one species into DNA sequence of nucleotides of another species like
plant sequence to human sequence, human sequence to bacteria or yeast sequences [ 12]. Variation
in codon usage is considered as one of the important factors affecting protein expression levels,
[13] since the presence of rare codons can reduce the translation rate and induce translation errors
with a remarkable impact on the economics of recombinant microbe-based production processes
[13,14,15]. Methods for optimizing genes are sophisticated and becoming increasingly popular for
a variety of applications such as expression in prokaryotes, yeast, plants and mammalian cells [16].
The host specific epitopes have been earlier identified in influenza A virus [12]. Codon
optimization of the Ag85B gene which encodes the secretory antigen of Mycobacterium
tuberculosis has also proved beneficial [10]. Furthermore, the use of codon optimized genes has
allowed notable increases in the production of many enzymes in a variety of hosts, including
cellulases in Saccharomyces cerevisiae [17], phytases in Aspergillus oryzae [18], cutinases [19],
lignocellulases [20], and lipases [21] in Pichia pastoris and calf prochymosin in Escerichia
coli [22]. Thus, it can be concluded that the list of products obtained by the expression of codon
optimized genes in microorganisms is constantly growing and includes biofuels, pharmaceuticals,
novel bio-based materials and chemicals, industrial enzymes, amino acids, and other metabolites
[13].

Therefore, the aim of this study is to optimize the codons for over expression of all six
target genes of NiV in E. coli using in silico tools for production of adequate amount of protein.
The synonymous codons were specifically altered without any changes in the amino acid sequence
so that antigenicity and functional activity of each protein remains exactly similar to its native
type. The DNA codon optimization of the studied genes will be useful in increasing the expression

level of desired proteins so as to ensure their efficient production for immunotherapy and
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immunodiagnostics purposes, without any bias.

Methods

Collection of sequences

Nucleotide sequences (cds) of different genes of Nipah virus (Accession number: NC 002728.1,
FJ513078.1, AY988601.1, AJ627196.1, AY029768.1, and MH523642.1) were retrieved from
NCBI-GenBank (http://www.ncbi.nlm.nih.gov).

Codon optimization and analysis

Optimizer (http://genomes.urv.es/OPTIMIZER/) [23] is an on-line PHP application useful for
predicting and optimizing the level of expression of a gene in heterologous gene expression host.
It was used for optimization and calculation of codon adaptation index (CAI), G+C and A+T
content of the retrieved DNA sequences with reference to E. coliK-12 MG1655 as it is a popular
host for heterologous gene expression. CAI was also calculated for each gene of six different
strains.

Statistical analysis

GraphPad Prism (version 8.1) software was used for statistical analysis of genes to calculate mean,
range and standard deviation. The values were tabulated and a graph was then plotted to compare
the CAI of wild-type and optimized gene sequences among different strains of Nipah virus. The
CAI GC and AT of all 6 genes of Nipah virus were compared using Mann Whitney test. A two-
tailed probability p < 0.05 were considered to be statistically significant.

Nucleotide sequence alignment
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Nucleotide sequence alignment was carried out using Clustal W between wild-type and optimized
sequences for all 6 genes of strain NC 002728.1 FJ513078.1, AY988601.1, AJ627196.1,

AY029768.1, and MH523642.1.

Results

Currently, no drugs or vaccines exist for Nipah virus, though many trials are in progress [7].
Treatment is limited to supportive care [24]. Ribavirin has shown some evidence for a reduction
in mortality, but its efficacy against N1V disease has not yet been established [25]. Therefore, there
is an urgent need for development of effective vaccines for which the current study, was
undertaken using the DNA codon optimization method for producing adequate quantity of protein
in the desired host. The codon usage for various genes of Nipah virus i.e. nucleocapsid protein,
P/V/C, matrix protein, fusion protein, attachment glycoprotein and polymerase were summarized
in Table 1-6 respectively. Their codons were optimized with reference to E. coli.

In the present study, we observed that the CAI of optimized sequences was more in
comparison to the wild-type sequences. The CAI, GC and AT frequencies in six strains of wild-
type nucleocapsid protein ranged from 0.237 to 0.244, 45.2 to 45.5 and 54.5 to 54.8 respectively
with an average (+SD) of 0.242(+0.002), 45.4(£0.121) and 54.6(£0.121) respectively. The
respective frequencies of these in optimized DNA range from 0.567 to 0.571, 49.6 to 50.2 and 49.8
to 50.4 with an average (+SD) of 0.569(0.001), 49.9(+0.210) and 50.1(£0.210) respectively. On
comparing the mean, CAI, GC and AT of Nucleocapsid of all six strains, the values of optimized
DNA was found to be significantly higher. The mean CAI and GC in optimized DNA were found
to be 2.3 (135.1%) and 1.2(9.9%) fold higher than respective mean values of wild-type. However,

mean of AT content in optimized DNA was decreased by 8.2 % compared to wild-type (Table 1).
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A graph was then plotted taking the CAI values on the x-axis while the number of strains studied
on y-axis (Fig. 1). The nucleocapsid gene sequences of the wild-type and codon-optimized were
aligned as shown (Fig. S1). Codon optimization did not change the amino acid sequence of
nucleocapsid protein.

Similarly, the CAI, GC and AT frequencies in strains of wild-type P/V/C range from 0.290
to 0.299, 43.3 to 43.7 and 56.3 to 56.7 respectively with an average (+SD) of 0.296(£0.003),
43.4(£0.167) and 56.6(£0.167) respectively. Their respective frequencies in optimized DNA range
from 0.577 to 0.595, 46.5 to 47.0 and 53.0 to 53.5 with an average (£SD) of 0.587(x0.007),
46.8(£0.160) and 53.2(+0.160) respectively. The mean CAI and GC in optimized DNA were found
to be 2.0 (98.3 %) and 1.1(7.8%) fold higher than respective values of wild-type. Though, mean
of AT content in optimized DNA was decreased by 6 % compared to wild-type (Table 2). A graph
was then plotted for the same (Fig. 2). The P/V/C gene sequences of the wild-type and codon-
optimized were aligned as presented in (Fig. S2).

Further, the CAI, GC and AT frequencies of matrix protein in wild-type strains range from
0.287 t0 0.300, 42.6 to 42.9 and 57.1 to 57.4 respectively with an average (£SD) of 0.294(+0.005),
42.8(£0.138) and 57.3(x0.138) respectively. The respective frequencies of these in optimized
DNA range from 0.566 to 0.606,45.5 to 46.1 and 53.9 to 54.5 with an average (£SD) of
0.585(x0.020), 45.9(£0.197) and 54.2(x0.197). The mean CAI and GC in optimized DNA were
found to be 2.0(99.0%) and 1.1(7.2%) fold higher than respective wild-type strain. But, mean of
AT content in optimized DNA was decreased by 5.4 % compared to wild-type (Table 3). A Graph
was plotted similar to above mentioned graphs (Fig. 3). The matrix protein gene sequences of the
wild-type and codon-optimized were aligned as shown (Fig. S3). Codon optimization did not show

any modification in the amino acid sequence of matrix protein.
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Furthermore, the CAI, GC and AT frequencies of fusion protein in wild-type strains range
from 0.248 to 0.250, 37.9 to 38.5 and 61.5 to 62.1 respectively with an average (+SD) of
0.249(x0.001), 38.2(x0.240) and 61.8(+£0.240) respectively; while these values for attachment
glycoprotein range from 0.258 to 0.286, 39.8 to 40.4 and 59.6 to 60.2 respectively with an average
(£SD) 0f 0.271(£0.014), 40.0(+0.228) and 60.0(+0.228) respectively. Their respective frequencies
in optimized DNA range from 0.597 to 0.607, 43.9 to 44.3 and 55.7 to 56.1 with an average (£SD)
0f 0.604(+0.003), 44.1(x0.163) and 55.9(+0.163). The mean CAI and GC in optimized DNA were
found to be 2.4 (142.5 %) and 1.2 (15.4%) fold higher than respective wild-type strain. However,
mean of AT content in optimized DNA was decreased by 9.5 % compared to wild-type (Table 4).

Whereas the respective frequencies for attachment glycoprotein in optimized DNA range
from 0.560 to 0.602, 44.2 to 44.9 and 55.1 to 55.8 with an average (£SD) of 0.582(+0.020),
44.5(£0.308) and 55.5(x0.308) respectively. The mean CAI and GC in optimized DNA were found
to be 2.1(114.8 %) and 1.1(11.2%) fold higher than respective wild-type values. However, mean
of AT content in optimized DNA was decreased by 7.5 % compared to wild-type (Table 5). The
graphs were then plotted for both the genes taking the CAI values on the x-axis and the number of
strains studied on y-axis (Fig. 4 and 5). The fusion protein gene sequences of the wild-type and
codon-optimized were aligned as shown in (Fig. S4). The glycoprotein gene sequences of the wild-
type and codon-optimized were aligned as presented (Fig. S5). Codon optimization did not alter
the amino acid sequence of glycoprotein.

The CAI, GC and AT frequencies of polymerase (gene L) in wild type DNA range from
0.234 to 0.242,37.5 to 38.1 and 61.9 to 62.5 respectively and an average (=SD) of 0.238(+0.003),
37.8(£0.297), 62.2(£0.297) respectively. The respective frequencies of these in optimized DNA

range from 0.579 to 0.581, 44.1 to 44.4 and 55.6 to 55.9 with an average (+SD) of 0.580(£0.001),
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44.3(£0.164), 55.8(x0.164). The mean CAI and GC in optimized DNA were found to be
2.4(143.7%) and 1.2(17.2%) fold higher than respective wild-type values. However, mean of AT
content in optimized DNA was reduced by 10.3 % compared to wild-type (Table 6). A graph was
plotted on similar basis for all strains (Fig. 6). The polymerase gene sequences of the wild-type
and codon-optimized were aligned as shown (Fig. S6). It aims to increase the immunogenicity of
epitope-based vaccines as it can enhance translational efficiency. Thus, modification of the codon

bias of gene sequences is a promising tool of gene expression control.

Discussion

The applications of DNA codon optimization range from numerous animal tests to remove stop
codons, to clone, in custom design of synthetic genes, to improve the functionality of genes, to
increase protein expression level, for lower production costs, as well as in drug development. The
promise of DNA based immunity has been indicated by few human trials for HIV infection. Codon
usage adaptation of the gag protein of HIV delivered by a DNA vaccine increased gene expression
by 10-fold compared to wild-type [26]. Further, gene optimization has been effective for a number
of treatment applications where a protein is synthesized in vivo following gene delivery and is
becoming routinely used for a range of applications [27]. For example, codon optimization of the
gene for F protein, expressed from a DNA vaccine of the Respiratory syncytial virus improved the
performance relative to wild-type [28]. Codon optimization also ensures that the 5' mRNA end is
unlikely to form stable hairpins, thus facilitating optimal mRNA loading and protein translation.
This was elegantly shown by expressing 154 green fluorescent protein (GFP) mutants in E. coli,
where hairpins engineered into the 5' mRNA end reduced GFP expression by up to 250-fold,

compared to an optimal codon-optimized construct [29]. Apart from increasing protein expression
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levels, codon usage also finds application in metagenomic studies. RNA virus genomes from high
temperature acidic metagenomes have been analysed on the basis of codon usage frequency to
determine their host range, whether bacterial, archaeal or eukaryal [30].

In the present study, the mean, CAI and GC of all NiV strains, the values of optimized
DNA were found to be significantly different and higher than their respective wild-type strain, in
case of all genes. On an average, CAI of N gene in optimized DNA was enhanced by 2.3 (135.1%)
fold, while in P/V/C, it was increased by 2.0 (98.3%) fold, respectively. Further, the CAI in
optimized DNA of M gene and F gene was enhanced by 2.0 (99.0%) fold for gene M and 2.4
(142.5 %), fold for gene F. Gene G showed an increase of 2.1 (114.8 %) fold, and gene L showed
an increase of 2.4 (143.7%) fold. Also, an increase in the percentage of GC content was observed
in optimized DNA sequences as compared to the wild-type sequences. Further, on an average GC
content of the N gene in optimized DNA was enhanced by 1.2(9.9 %) fold, while in P/V/C, it was
increased by 1.1 (7.8%) fold, respectively. Similarly, GC content in an optimized DNA of M gene
and F gene was increased by 2.4 (142.5 %) and 1.2 (15.4%) fold, respectively. Gene G showed an
increase of 1.1(11.2%) fold for GC content, and gene L showed an increase of 1.2 (17.2%) fold.
However, AT content in all genes was significantly decreased, as compare to wild-type.

A handful of vaccine candidates are in development that employ NiV glycoprotein (G) and
fusion (F) proteins to stimulate a protective immune response in preclinical animal models. Some
approaches target specific neutralizing antibody responses; others have been evaluated for both
immune response and efficacy [31]. NiV envelope glycoprotein G was found to effectively induce
specific antibody responses which could block NiV entry to susceptible cells [32]. The generation
of neutralizing antibodies in response to G protein is suggestive of a robust adaptive immune

response, which is an essential prerequisite of a good vaccine. While G may itself serve as a good
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vaccine antigen, the stable prefusion of both F and G antigens has shown to produce a higher and
broader multivalent polyclonal antibody response in mice models, making it a more potent
candidate for vaccine development [33]. Therefore, G protein or G/F prefusions , being more
immunogenic, can serve as good vaccine candidates. Further, codon optimization can be used to
increase the expression of these genes in cells in order to achieve high titres for large scale
production. Thus, codon optimization coupled with immunology-based studies is important to
produce effective vaccines, which have a potential of being upscaled at industrial level. Identifying
and producing such vaccines will provide an excellent therapeutic strategy for fighting Nipah
virus infection.

Nonetheless, codon optimization might pose certain challenges. Although codon
optimization has applications like recombinant protein drugs and nucleic acid therapies, including
gene therapy, mRNA therapy, and DNA/RNA vaccine, recent reports indicate that it can affect
protein conformation and function, reduce efficacy and increase immunogenicity. It may decrease
the safety and efficacy of biotech therapeutics [34]. Synonymous codon changes may affect protein
conformation and stability, change sites of post translational modifications, and alter protein
function. Moreover, synonymous mutations have been linked to numerous diseases. The effects of
synonymous codon changes were highlighted in a recent study where the fluorescent properties of
a protein were altered by synonymous codon changes due to altered protein folding [35]. Thus, in

vitro analysis of such in silico studies is required to overcome these challenges.

Conclusion

A range of clinical presentations result from Nipah virus infections in humans, from asymptomatic

infection (subclinical) to acute respiratory infection and fatal encephalitis. The case fatality rate is
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roughly calculated at 40% to 75%. There is no treatment or vaccine available for either people or
animals [24]. High pathogenicity of Nipah virus in humans and lack of appropriate immunological
based therapeutics and diagnosis for prevention and cure of the disease, accounts for the need of
investigators worldwide to develop efficient vaccine and treatment regimes. Vaccines are
generally proteins with immunogenic properties and are not expressed in sufficient quantities
because of codon bias in the expression host. Thus, the study was carried out to optimize the codon
for overexpression of different Nipah virus genes in E. coli which could be used to develop vaccine
and immunoassay based diagnostic kit. The CAI and GC content of optimized sequences were
increased as compared to the wild-type sequences indicating that they can be over-expressed in E.
coli. Based on our codon optimization study and previous studies on immunogenicity of the
proposed genes, we believe that G proteins or F/G fusions can potentially serve as ideal candidates
for Nipah Virus vaccine. Future work involves in-vitro validation of this in silico study to
determine the level of overexpression as well as testing, their safety, and potency in generating an
immune response, which can then be applied on an industrial scale for development of

immunodiagnostics and immunotherapeutics.
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Legends to figures

Figure 1: Comparison of the wild-type and optimized DNA sequences of nucleocapsid gene.

Figure 2: Comparison of the wild-type and optimized DNA sequences of phosphoprotein

gene

Figure 3: Comparison of the wild-type and optimized DNA sequences of matrix gene.
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Figure 4: Comparison of the wild-type and optimized DNA sequences of fusion protein gene.
Figure 5: Comparison of the wild-type and optimized DNA sequences of attachment
glycoprotein.

Figure 6: Comparison of the wild-type and optimized DNA sequences of polymerase gene.

Legends to supplementary (S) figures

Figure S1: Alignment of wild-type and codon-optimized DNA of nucleocapsid gene of Nipah
virus (NC_002728.1). *The bases highlighted in green represent differences in base pairs
among the wild-type and optimized sequences.

Figure S2: Alignment of wild-type and codon-optimized DNA of P/V/C gene of Nipah virus
(NC _002728.1). *The bases highlighted in green represent differences in base pairs among
the wild-type and optimized sequences.

Figure S3: Alignment of wild-type and codon-optimized DNA of matrix protein gene of
Nipah virus(NC _002728.1). *The bases highlighted in green represent differences in base

pairs among the wild-type and optimized sequences.

Figure S4: Alignment of wild-type and codon-optimized DNA of fusion protein gene of
Nipah virus(NC_002728.1). *The bases highlighted in green represent differences in base
pairs among the wild-type and optimized sequences.

Figure S5: Alignment of wild-type and codon-optimized DNA of glycoprotein gene of Nipah
virus. (NC_002728.1). *The bases highlighted in green represent differences in base pairs

among the wild-type and optimized sequences.
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Figure S6: Alignment of wild-type and codon-optimized DNA of polymerase gene of Nipah

virus. (NC_002728.1). *The bases highlighted in green represent differences in base pairs

among the wild-type and optimized sequences.
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TABLE 1: Expression level of N (Nucleocapsid) gene of Nipah Virus in E. coli of wild-type and
codon-optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS (GenBank
Accession No.)
CAI | GC% | AT% CAl GC% | AT%
NC 002728.1 0.242 45.5 54.5 0.569 50.0 50.0
FJ513078.1 0.244 45.4 54.6 0.571 49.8 50.2
AY988601.1 0.243 45.2 54.8 0.568 49.6 50.4
AJ627196.1 0.237 45.5 54.5 0.568 50.2 49.8
AY029768.1 0.242 45.5 54.5 0.569 50.0 50.0
MH523642.1 0.242 45.5 54.5 0.567 49.8 50.2
N 6 6 6 6 6 6
Min. 0.237 45.2 54.5 0.567 49.6 49.8
Max. 0.244 45.5 54.8 0.571 50.2 50.4
Mean+SD 0.242 45.4 54.6 0.569 49.9 50.1
+0.002 + + + + +
0.121 | 0.121 | 0.0017 | 02107 | 0.210°

ek p <0.002: in comparison with wild type.

TABLE 2: Expression level of P/V/C (phosphoprotein) gene of Nipah Virus in E. coli of wild-
type and codon optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS (GenBank
Accession No.)
CAl | GC% | AT% CAl GC% | AT%
NC 002728.1 0.297 43.3 56.7 0.592 46.8 53.2
FJ513078.1 0.298 43.3 56.7 0.577 46.5 53.5
AY988601.1 0.295 43.5 56.5 0.578 46.8 53.2
AJ627196.1 0.299 43.3 56.7 0.595 46.8 53.2
AY029768.1 0.297 43.3 56.7 0.592 46.8 53.2
MH523642.1 0.290 43.7 56.3 0.586 47.0 53.0
N 6 6 6 6 6 6
Min. 0.290 43.3 56.3 0.577 46.5 53.0
Max. 0.299 43.7 56.7 0.595 47.0 53.5
Mean+SD 0.296 43.4 56.6 0.587 46.8 53.2
+0.003 | £0.167 | +0.167 | £0.007" | £0.160"" siO.*160*

ek p <0.002: in comparison with wild type.
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TABLE 3: Expression level of M (matrix protein) geneof Nipah Virus in E. coli of wild-type

and codon-optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS (GenBank
Accession No.)
CAl | GC% | AT% CAl GC% | AT%
NC 002728.1 0.287 42.6 57.4 0.566 45.9 54.1
FJ513078.1 0.299 42.8 57.2 0.604 45.8 542
AY988601.1 0.300 42.9 57.1 0.606 45.9 54.1
AJ627196.1 0.291 42.9 57.1 0.568 46.1 53.9
AY029768.1 0.287 42.6 57.4 0.566 45.9 54.1
MH523642.1 0.297 42.7 57.3 0.601 45.5 54.5
N 6 6 6 6 6 6
Min. 0.287 42.6 57.1 0.566 45.5 53.9
Max. 0.300 42.9 57.4 0.606 46.1 54.5
Mean+SD 0.294 42.8 57.3 0.585 45.9 542
+£0.005 | +£0.138 | +0.138 | £0.020" | £0.197"" | £0.197"

*

g p <0.002: in comparison with wild type.

TABLE 4: Expression level of F (fusion protein) gene of Nipah Virus in E. coli of wild-type and

codon optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS
(GenBank Accession
No.)
CAl | GC% | AT% CAI GC% | AT%
NC 002728.1 0.249 38.1 61.9 0.606 44.3 55.7
FJ513078.1 0.248 38.5 61.5 0.597 43.9 56.1
AY988601.1 0.250 38.5 61.5 0.603 44.0 56.0
AJ627196.1 0.249 37.9 62.1 0.607 44.2 55.8
AY029768.1 0.249 38.1 61.9 0.606 44.3 55.7
MH523642.1 0.249 38.2 61.8 0.602 44.1 55.9
N 6 6 6 6 6 6
Min. 0.248 37.9 61.5 0.597 43.9 55.7
Max. 0.250 38.5 62.1 0.607 44.3 56.1
Mean+SD 0.249 38.2 61.8 0.604 44.1 55.9
+£0.001 | +0.240 | £0.240 | £0.003" | £0.163"" | £0.163""

*

g p <0.002: in comparison with wild type.
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TABLE 5: Expression level of G (attachment glycoprotein) gene of Nipah Virus in E. coli of

wild-type and codon optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS
(GenBank Accession
No.)
CAl | GC% | AT% CAl GC% | AT%
NC 002728.1 0.258 39.8 60.2 0.602 44.2 55.8
FJ513078.1 0.286 40.1 59.9 0.566 44.7 55.3
AY988601.1 0.284 40.0 60.0 0.565 44.6 55.4
AJ627196.1 0.258 39.9 60.1 0.599 44.2 55.8
AY029768.1 0.258 39.8 60.2 0.602 44.2 55.8
MH523642.1 0.282 40.4 59.6 0.560 44.9 55.1
N 6 6 6 6 6 6
Min. 0.258 39.8 59.6 0.560 44.2 55.1
Max. 0.286 40.4 60.2 0.602 44.9 55.8
Mean=SD 0.271 40.0 60.0 0.582 44.5 55.5
+0.014 | £0.228 | +0.228 | £0.020" | £0.308"" | £0.308"™"

ek p <0.002: in comparison with wild type.

TABLE 6: Expression level of L (polymerase) gene of Nipah Virus in E. coli of wild-type and

codon optimized sequences.

NIPAH VIRUS WILD-TYPE DNA OPTIMIZED DNA
STRAINS
(GenBank Accession
No.)
CAI |GC% | AT% CAI GC% | AT%
NC_002728.1 0.234 37.6 62.4 0.581 44.1 55.9
FJ513078.1 0.24 38 62 0.58 44.4 55.6
AY988601.1 0.241 38.1 61.9 0.579 44.4 55.6
AJ627196.1 0.234 37.5 62.5 0.581 44.1 55.9
AY029768.1 0.234 37.5 62.5 0.581 44.1 55.9
MH523642.1 0.242 38.1 61.9 0.579 44.4 55.6
N 6 6 6 6 6 6
Min. 0.234 37.5 61.9 0.579 44.1 55.6
Max. 0.242 38.1 62.5 0.581 44.4 55.9
Mean+SD 0.238 37.8 62.2 0.580 44.3 55.8
+£0.003 | £0.297 | +£0.297 | £0.001"" | £0.164"" | £0.164""
ES

g p <0.002: in comparison with wild type.
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Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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