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Abstract 

Changes to neuronal morphology and loss of neurites and synaptic connections can be an important 

early indicator of neurological diseases, and a pathognomonic sign of neurodevelopmental 

disorders. These changes are typically detectable by microscopy in cell culture or histological 

samples, but quantification can be challenging. The neurites extending from cell soma can be quite 

thin, dim, overlapping and complex, making them laborious to trace manually and difficult to 

annotate and quantify computationally or automatically. Moreover, the tools available to aid this 

aim are limited in their capacity to generalize to high throughput image acquisition such as time-

lapse or longitudinal imaging, where imaging conditions can change dramatically over the course of 

the experiment. In order to facilitate neurite quantification, we developed a deep learning (DL) 

neurite annotation prediction algorithm (NAPA) to predict the structure and length of neurites. 

NAPA overcomes experimental variation inherent to fluorescence imaging by learning more 

broader features that are important for neurite recognition. Based on a dataset with partial 

annotation, NAPA generated predictions on several unannotated datasets, and was able to capture 

differences between disease and control conditions. We also defined a sequence of steps to generate 

custom models with a small number of annotation inputs, and extended the predictions to a 3D 

tissue sample and longitudinal imaging. With this algorithm we developed an approach to quantify 

neurites with an accuracy that nears and sometimes exceeds human curation, in 1/100th of the time. 

This approach makes accurate analysis of large or longitudinal datasets feasible across a broad 

range of datasets.  

Introduction 
Neuronal morphology plays an important role in nervous system function, from how the 

brain forms connections in development to how the brain changes in response to disease. The 

number, dynamics and longevity of neuronal connections are informative to neuronal 

communication, synaptic plasticity, and normal brain function 1. The study of dendritic length and 

complexity, and spine density has become standard in the analysis of neuronal abnormalities, since 

alteration of these structures underlies many neurological diseases 2. Indeed, neuronal morphology 

can be a stronger marker than protein aggregates and plaques in determining early disease onset 3–7, 

and understanding the pace and extension of neurite loss could lead to novel therapeutic 
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interventions for neurodegenerative disease 8.  

In cell culture, neuronal soma size, neurite length, and branching complexity can all be 

measured 9 to evaluate physiological responses to perturbagens and potential treatments. However, 

accurately measuring neurite length and branching is challenging, as neurites are thin and irregular, 

and their dimness creates an inherent signal to noise constraint. These factors make hand tracing of 

neurites, the gold standard in neurite annotation, an extremely challenging task 10. This explains 

why neurites are not routinely assayed in studies and when they are, very limited sampling is 

performed. 

To alleviate this manual annotation step and to improve the robustness and objectivity of the 

measurements, many groups have focused on automating some or all of the steps necessary for 

downstream neurite quantification 11–13. Available tools such as Imaris (Bitplane), FIJI Neurphology 
14, and FIJI NeuronJ 15, and an implementation of a hidden Markov model 16 depend on image 

quality, culture complexity, and signal strength. However, human intervention is still required in all 

cases at least to ensure error checking and quality control 17.  

Recently, deep learning (DL)-based techniques have been shown to learn fairly broad 

parameters directly from images, particularly with convolutional neural network (CNN)-based 

architectures. CNNs have been shown to recognize patterns in images that help classify objects and 

pixels effectively. Moreover, machine learning (ML) algorithms can reach human-level accuracy on 

specialized classification tasks 18–20. The feasibility of adapting natural image-derived networks to 

microscopy images has been shown for many classification tasks 21–27. This CNN-based approach 

can adapt to new contexts and requires fewer parameters, which the model learns to weight 

correctly on its own. CNN-based architectures may further weight parameters that human observers 

cannot perceive but are important in classifying microscopy images. In addition, manual tracing can 

help the model learn which pixels to ignore (e.g. out of focus objects, debris, or camera or plate 

artifacts) and which ones to include.  

Here, we explore whether DL techniques can be used to automate manual annotation of 

neurites by learning relevant parameters across images with a broad range of imaging and 

experimental conditions. We describe a DL-based technique called NAPA (neurite annotation 

prediction algorithm) that takes a small number of annotated examples across a dataset and 

generates annotation for the full dataset. Since neurite tracing is a laborious manual process that can 

only capture neurites within the selected set of images, we designed a workflow that can expand 

and scale the investment of annotation to broader sets of images. This algorithm enables broad 

neurite prediction across large and diverse datasets and allows us to follow neurite connections 

longitudinally. In addition, by powering larger-scale neurite quantification, this approach can be 

used to probe the effect of potential therapeutics and address biological questions related to neurite 

structure in high throughput. NAPA enables neurite annotation with accuracies that approach and 

sometimes exceed hand curation and with a fraction of the time investment, making accurate 

neuronal structure analysis of large or longitudinal datasets feasible for the first time.  

Results 
We set out to develop a model that learns the important elements in predicting neurites. Our 

approach was to build an auto-encoder shaped model, which has been previously used in 

applications such as image denoising 28,29. With this approach, we designate the neurite signal we 

want to learn, and all other sources of intensity in the images would be the noise we would like to 

remove (e.g. debris, soma, imaging artifacts). We prototyped this framework with available datasets 

that had already received varying degrees of neurite annotation (Table 1). It is worth noting that 

annotation tasks were not directly related to the modelling task presented here. In each case, we 

started with a set of images that had associated binary neurite trace masks. We then trained a model 

that could predict those masks. Finally, we quantified the accuracy of the predictions and the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.23.441035doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441035
http://creativecommons.org/licenses/by/4.0/


 

3 

differences in neurite coverage across conditions. This sequence of steps is outlined in Figure 1. 
 

Dataset  Cell type Marker Image  

Min/Max5 

Image 

Mean±SD6 

Annotation 

Coverage7 

I DA8 neurons 

(human iPSCs) 

AAV1- hSynapsin -

GFP 

0/13846 14±121 Complete 

II Primary rodent 

cortical neurons 

pGW1-mApple 24/3267 140±19 Partial 

III CA1 pyramidal 

neurons9  

Fluorescent lucifer 

yellow 

0/65535 6250±5516 None/partial 

IV Forebrain neurons 

(human iPSCs) 

hSynapsin-mApple 0/31400 27±252 None/partial 

Table 1: The datasets used in this work and a summary of their parameters. All images are 16-bit 
depths, and table shows values derived from a histogram of one representative image. 

 

The images in the datasets varied in image parameters (signal strength, amount of noise), 

sample preparation (cell type, cell species, method of whole cell marker expression, fluorophore 

and promoter used for cell marker, transfection efficiency, environment), imaging conditions 

(camera, microscope, exposure), and annotation coverage (full vs. partial). Representative images 

from a subset of the datasets are shown in Figure 2 and exemplify the variation we set out to 

capture.  

We used a fully convolutional neural network architecture and explored model parameters 

that influence the ability to predict neurite annotation (Figure 3). Fully convolutional networks 

have been shown to work well in segmentation tasks for images of cells 30, so we asked if we could 

use a related architecture to selectively highlight the neurite structures in a fluorescence image. 

Pairs of images (the fluorescence image containing neurons and the corresponding traced neurite 

mask) served as input to predict an output that matched the annotation mask. The loss function, 

detailed in the methods, compares how closely the prediction and annotation match, per pixel, as an 

average root mean squared error (RMSE). The loss is further weighted to accommodate the 

imbalance of background (98%) and neurite (2%) pixels. Ultimately, the goal is to read in 

fluorescence images of cells that express the neuronal morphology marker and return masks that 

exclude soma and any debris, dust, or out-of-focus artifacts that might confound the fluorescence 

input. 

                                                
5 The minimum and maximum intensity values in an image capturing the dynamic range. All images are 16-bit with 

possible values of 0 to 65,53565535. 
6 The mean intensity ± standard deviation for the image. 
7 Annotation coverage crudely captures how many of the imaged neurites are traced. Complete: more than 80% of the 

neurites are traced for model training. Partial: three of the most prominent neurites were traced for several cells in the 

image for model training. None/partial: No neurites were annotated for model training and some annotation was added 

only for the purpose of comparison and evaluation. For dataset III, the partial annotation was later used for training a 

new model. 
8 Dopaminergic neurons 
9 CA1 pyramidal neurons from TgDyrk1A Down syndrome mouse model. 
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To evaluate whether our model could learn to distinguish between neurite foreground and 

all-else background, we analyzed image patches with neuronal morphology marker and 

corresponding neurite annotation that were centered around soma (Figure 4A–C, dataset I). NAPA 

was able to learn to exclude soma and keep only neurites, and in some cases, it captured neurites 

better than manual curation. This dataset had sparse neurons, very low signal, and each neurite was 

annotated (complete annotation). We then extended this model to a partially annotated dataset 

(dataset II) of a denser culture with much stronger signal (Figure 4D–E). Notably, the model 

predicted unannotated neurites, indicating the potential of amplifying a given curation input and 

predicting the rest of the dataset. In addition, in the second dataset we used image patches that were 

no longer soma-centered, approaching a more realistic distribution of fluorescence in the full image. 

The encouraging result of predicting neurites from the more realistic input was indicative of the 

capacity to predict neurites in a full image.  

Both for training and inference, we work with small image patches to streamline 

computation time. However, in full image prediction, patches can have more variation in content, 

ranging from no intensity, to bright spots of debris or soma, to complex networks of neurites, to 

everything in between. Therefore, we next asked if the model would continue to correctly assign 

neurites as foreground and everything else as background when considering full images. Figure 5 
summarizes the result, where panels A and B show the full fluorescence and annotated images, 

respectively, and the predicted image is in panel C. An overlay of A–C is shown in panel Figure 
5D, and a second example in Figure 5E. Neurite prediction for the complete image is 

computationally lightweight, and is much faster than manual annotation which can take several 

hours for images from a few columns of a 96 well-plate for a sparsely labelled sample. We applied 

this model to multiple other datasets with similar results (another example in Figure 8). Notably, as 

we tried crossing models trained on one dataset to predict on another dataset, we found that the best 

performance came from a model that was trained on the highest signal data.  

With these encouraging results across internal experiments, we next applied NAPA to 

neurons in a 3D tissue sample (dataset III). This dataset differs from the preceding data in several 

ways: the imaged neurons are from histology preparations of coronal brain slices, the tissue is 

imaged via confocal microscopy in a different laboratory, the image acquisition is low throughput 

and sampled in z rather than in the most focused x, y plane, and the sample is imaged through a 

glass coverslip rather than plastic multi-well plates. Our initial NAPA models did not extend well to 

this new dataset (data not included), which is perhaps not surprising, because our training data and 

its augmentations did not span the range of variation introduced by the new dataset. To develop a 

toolset that is more broadly useful, we sought to define a compact set of steps (or workflow) needed 

to generate data-specific models that could amplify training data by producing annotation for a 

complete dataset when curation of that scale is not generally possible. 

One important requirement for such a workflow is that the amount of curation needed 

should be fairly minimal. We set out to determine the smallest number of curation examples that are 

necessary to produce a model that can infer the rest of the dataset. Initially, we tested this compact 

set of steps on dataset III, because it lacked annotation and thus we had no existing model for this 

dataset. In dataset III, there are only a few neurons in each image, and we tested tracing of 1, 2, 3, 

and 4 neurites per image for 20 images subsampled from 80 from a z-stack. Since this was our first 

purpose-annotated task, we defined criteria for what should be captured within the curation to 

minimize the number of training examples necessary to train a model that can label the remaining 

dataset. We annotated neurites that represented both dim and bright projection that clearly fell into 

focus within the image, and estimated that about 35 neurites (~400 128x128 training tiles) yielded 

good models. An example of prediction using a model for histology data from dataset III is shown 

in Figure 6, and a movie through the z-stack of the tissue is included as Supplementary Movie 1. 
We subsequently applied the same sequence of steps to other datasets from the lab, using NAPA to 

build individual models for each. 
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To distinguish between model quality for each tracing task in dataset III, and also more 

generally for datasets with available annotation, we used the black and white pixels in the manual 

traces to assign parts of an image to background (black) or foreground (white). The annotated 

foreground class accounted for only a few percent of the total pixels in the presented datasets, 

making it more difficult to learn. The background pixels were all non-neurite pixels, and a high 

background score represents the ability to remove soma, debris, and any other undesirable intensity 

sources. The foreground pixels were neurite pixels, and a high foreground score captures the 

model’s ability to correctly assign neurites within the annotated regions. A close up of a cell is 

shown in Figure 7 to illustrate the parts of the accuracy calculation. There are two caveats in this 

accuracy estimate: (1) many more background than foreground pixels are present in the image, so it 

is generally easier for background accuracy to be high, and (2) even the most thoroughly annotated 

images miss neurite intensities to different degrees, so some of the predicted intensities do get 

scored in the background class, negatively. This latter caveat makes a relatively small impact on the 

overall accuracy because neurite pixels make up only a few percent of the full image. From curation 

to accuracy evaluation, we have since applied this limited-curation strategy to new datasets, and can 

quickly obtain new models that predict neurite curation for new images. 

Using the metrics outlined above, we next applied our top-performing model to generate full 

image predictions and quantify neurites across different conditions. Here, we aimed to determine 

whether the output could resolve the visual differences between iPSC-derived neurons from control 

and Parkinson’s disease samples (dataset IV). We globally analyzed neurite coverage in control and 

Parkinson’s disease neurons across eleven wells (annotated for this task), and compared fractional 

coverage of neurite pixels (total neurite pixels / total image pixels) in the disease and control wells. 

This fraction is calculated for each image representing a well. The predicted neurites showed lower 

fractional coverage in the disease wells than the control, in agreement with previous studies 8,31–33, 

and echoing the manually traced result (Figure 8).  
One difference between the manually traced neurites and the predicted ones is that traced 

neurites have a fixed width that is propagated throughout their length, while the prediction tries to 

reproduce the actual width along the length of the neurite (Supplementary Figure 1). This 

difference affects the absolute magnitude we obtain from the manual traces. It is difficult to choose 

a generally relevant width, but we estimated 3 pixels for the datasets presented in this work. 

Comparison of the absolute numbers of pixels associated with neurites in manual and predicted 

traces showed that both methods capture a difference between the control and disease samples 

(Figure 8). To assess the extent of the difference, we compared the algorithm with multiple curators 

performing the same task (Supplementary Figure 2), and found that the neurite quantification 

from the model’s output detected a difference between the control and disease condition that was 

similar to the curators’ traces. The variation across curators is not a surprise, particularly since small 

differences in the display parameters has a noticeable impact on the visual curation landscape 

(example shown in Supplementary Figure 3). There are also notable differences between how the 

algorithm and curator perform the annotation task. For example, using an aided tracing tool we see 

that the manual traces sometimes take a shorter path in connecting neurites (Supplementary 
Figure 4). We observed that in addition to predicting the full and changing width of the neurite 

(Supplementary Figure 1), the model predicted many more of the intensities representing short 

neurites (Figure 8), and often followed the neurite more accurately than manual tracing. By 

contrast, manual curation tended to focus on the longer traces (Figure 8), meaning the frequent but 

shorter neurites pixels are missed. This could lead to a larger overall difference between disease and 

control conditions, an element that can be alleviated by an algorithmic approach.  

Neurites are dynamic structures, and vital information relevant to health and disease could be 

gleaned by studying how neurites change over time. Unfortunately, because quantifying neurites 

manually at even a single time point is so laborious, quantifying how neurites change dynamically 

over time at scale is often unfeasible. To determine whether our algorithms could work for this 
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purpose, we next looked to see how neurite arborization evolved over time from initial plating in 

the same eleven wells that were manually curated in Figure 8. Figure 9 shows the progression of 

neurite morphology over eight days. We found that the fractional neurite coverage began to differ 

between the disease and control samples after about 36 hours. In the control samples neurite 

arborization proliferated, while in the disease samples the neurite coverage stayed roughly constant 

and perhaps slightly dropped, which may represent loss or retraction of neurites commonly seen in 

neurodegenerative disease 8,31. The manually annotated time point in Figure 8 is the 4th point in 

Figure 9 plot (1.5 days). Extending this analysis to the rest of the time points required running the 

raw images through the DL model, but did not require extra time spent manually annotating each 

image, allowing us to further scale these types of quantifications to new conditions and questions 

ahead. The highly significant differences underscore the value of our automated approach for 

quantifying a potentially disease-relevant neurite phenotype that would otherwise be difficult or 

unfeasible to quantify manually. 

Methods 
Datasets All datasets were prepared as part of projects unrelated to the machine learning task 

described here. The culture and imaging conditions are described below. In this work, only the 

morphology marker was used, even though cells were transfected with multiple plasmids and 

fluorescence markers. For neurite annotation, only dataset III was traced specifically for the 

machine learning task.  

Culture for dataset I (Dopaminergic neurons) iPSCs were grown on Matrigel (Corning)-coated 

plates and fed with mTeSR media (StemCell Technologies). iPSCs were differentiated into 

dopaminergic neurons as previously described 34. Cells were dissociated using trypsin-EDTA 

(ThermoFisher Scientific) and plated onto 384-well plates coated with poly-L-ornithine (Sigma-

Aldrich), fibronectin (Corning), and laminin (Sigma-Aldrich). Biosensor expression and imaging: 

iPSC-derived dopaminergic neurons were virally transduced with AAV1-hSyn-GFP (Addgene). 

Cells were imaged at day 46 of differentiation and neurites traced using the NeuronJ plugin for 

ImageJ. 
Culture and imaging for dataset II (Primary rodent neurons) Rat cortices were dissected from 

embryonic day 18–21 rats, digested with papain (10 U/ml) and seeded at 0.6 × 106 cells/ml on a 

poly-lysine/ laminin substrate in a 96 well plate (PerkinElmer #6005558). Primary cortical neurons 

were cultured for 5 days and then transfected using Lipofectamine 2000 (ThermoFisher # 

11668019). Cells were incubated with 0.5 μl Lipofectamine 2000 and 100ng pGW1-mApple 

plasmid construct per well as a morphology marker as described35. Cells were incubated for no 

more than 20 min at 37° C before rinsing. The remainder of the transfection protocol was per the 

manufacturer’s suggestions, resulting in an overall 1–5% transfection efficiency, which sparsely 

labels the cultures and facilitates single-cell microscopy studies.  
Histology for dataset III (CA1 pyramidal neurons) To reconstruct the dendritic tree architecture 

of single CA1 pyramidal cells, TgDyrk1A mice were perfused with 4% PFA, and 150 μm coronal 

sections from the dorsal hippocampal CA1 region (Bregma, antero-posterior = -1.06 to -2.54 mm; 

medio-lateral 0.5 to 1.6 mm) were obtained with a vibratome. Intracellular injections were 

performed in CA1 pyramidal neurons by continuous current of fluorescent Lucifer Yellow (LY) as 

described (Elston, 1997; Elston, 2001). Briefly, pyramidal neurons located randomly throughout the 

dorsal CA1 area (Bregma, antero-posterior = -1.06 to -2.54 mm; medio-lateral 0.5 to 1.6 mm; 

Paxinos and Franklin, 2001) were selected for LY injection and further reconstruction (number of 

neurons/animals: wild type = 18/4; TgDyrk1A = 19/4). Images of single neuron apical trees for 

neuronal reconstruction were acquired with a confocal microscope (SP5 Upright; Leica 

Microsystems) with a 20x air objective (HCX PL APO CS 20.0x0.70 dry UV). A line scan of 1024 

× 1024 pixels, 0.347µm wide z steps and 3-line intensity averages were used for imaging whole 
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dendritic trees.  

Culture for dataset IV (Forebrain neurons) iPSCs were grown on Matrigel (Corning)-coated 

plates and fed with mTeSR media (StemCell Technologies). iPSCs were differentiated into 

forebrain neurons as previously described 36. Cells were dissociated using trypsin-EDTA 

(ThermoFisher Scientific) and plated onto 96-well plates coated with poly-L-ornithine (Sigma-

Aldrich), fibronectin (Corning), and laminin (Sigma-Aldrich). Biosensor expression and imaging: 

iPSC-derived forebrain neurons were transfected with 0.1 µg hSyn-mApple plasmid per well of a 

96 well plate using Lipofectamine 3000 reagent (ThermoFisher Scientific). Forebrain neurons were 

imaged at day 40 of differentiation, and neurites traced using the NeuronJ plugin for ImageJ. 
Microscopy Datasets I, II, and IV were imaged longitudinally using a Nikon Plan Fluor ELWD 

20X/0.45 NA objective mounted on a Nikon Ti-E inverted microscope controlled by a custom 

plugin for Micro-Manager written in Java. Fluorescent excitation and emission spectra were 

generated with a Sutter Lambda XL Xenon arc lamp and full-multiband filter set 

(DAPI/FITC/TRITC/Cy5; excitation 560/25 and emission 607/36 for mApple fluorescence; and 

excitation 485/20 and emission 525/30 for GFP fluorescence). An Andor Zyla4.2 sCMOS camera 

with 2048 X 2048 pixels was used to capture images. Each well was imaged with 50ms (dataset I), 

400ms (dataset II), or 250ms (dataset IV) exposure, as 16 (4x4) or 9 (3x3) fields of view and images 

were background corrected and then stitched together using custom image processing scripts. The 

morphology images were used towards neurite tracing and model input for neurite prediction. 

Neurite tracing in FIJI without NeuronJ (used for dataset III) Neurites were traced manually in 

FIJI using the NeuronJ plugin 14 with the freehand selection tool. Each trace was added to the ROI 

manager. After all neurites were traced, a new mask (all zeros) of the same dimensions as the 

original traced image was created. The collected ROIs were applied to the mask with pixel width of 

3. The ROIs were flattened and mask image was binarized such that all neurite-traced pixels had 

values of 255 and background pixels were all zero. This binary mask served as paired input with the 

original image. 

Neurite tracing aided with NeuronJ (used for datasets I and II, and IV) Alternatively, images 

were first converted to 8-bit RGB tiff images and then opened using the NeuronJ plugin. Brightness 

and contrast were first adjusted to enable visualization of neurites, and pixel width was adjusted to 

3. Neurites were then traced starting at the cell body and following neurites outward. A snapshot 

that included traces was captured and converted to a binary mask, such that all neurite-traced pixels 

had values of 255 and background pixels were all zero. These binary images were paired with 

original raw images and comprised model inputs. Since subsequent steps begin with binary masks 

of traces, the two methods we used for manual neurite tracing were indistinguishable.  

Image processing Images for each well were collected, background corrected, and stitched together 

into a montage using custom scripts. 

Model We used several datasets to train a fully convolutional model that aims to predict neuronal 

morphology curation that reproduces the gold standard of manual curation. We used multiple 

datasets, with varying imaging and experimental conditions (Table 1). Each dataset was prepared to 

generate paired inputs for the model consisting of raw 16-bit images and curated masks of traced 

neurites (Figure 3). Each input pair was a 128 by 128-pixel square that came from tiling the 

original image and the target image (a neurite mask) at 128 pixel intervals. In our datasets, one 

image thus produces 1000 to 2000 tiles. The raw image input went through a sequence of 

convolution and max pooling steps for the model to learn kernel weights that minimize root mean 

squared error (RMSE) between predicted output and the curated mask. The curated mask was a 

black and white binary image where all background pixels were black and traced neurite pixels 

were white. Each tile was tracked with a label that made retrieval easy to reference to the original 

dataset and corresponding curation. Normalization was performed on the complete dataset to 
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generate 128 by 128 normalization tiles used to scale each input tile from -1 to 1, and centered 

around 0. During normalization, we also calculated the total number of pixels belonging to neurites 

according to the curation. This number tended to be less than 2%, even though in training, we only 

used raw image tiles that have annotation (whose target/mask had white pixels). We trained only on 

data that had annotation (however little) to focus resources on learning the signal. Because neurite 

pixels (<2%) were so much rarer than the background pixels (98%), we used the fraction of neurite 

pixels to weight the calculated loss. Without loss weighting, the loss decreases quickly and the 

model learns to predict all pixels as background without much penalty.  

Once tiles were generated, they were augmented with typical flips, rotations, and reflections 

available in the Tensorflow library, and the model was trained on this augmented input. We used 

tf.Dataset to further repeat, shuffle, and batch the input. The autoencoder consisted of an 

encoding/contracting path and a decoding/expanding path. The contracting path was a series of 

three convolution and max pool layers with ReLU activation. The expanding path consisted of a 

symmetric set of three convolutions and up-pool layers with ReLU activation. The complete model 

is shown in Figure 3a. Loss was defined as the mean square difference between predicted and 

actual pixel intensity for every pixel. The squared difference was multiplied by the weighted label 

vector which accounts for the low occurrence of neurite pixels. The weighting depended on the 

fraction of neurite pixels calculated for the full training dataset. Then, each non-neurite pixel was 

scored with an RMSE and multiplied by a factor that makes the contribution from non-neurite and 

neurite pixels about equal (rather than <2%). The RMSE loss was minimized to obtain the optimal 

weights. Approximately 1200 training steps reached loss-convergence with RMSE values ranging 

roughly 0.0002 to 0.002 for similar quality models. 

We tested the effect of varying hyper-parameters on model quality. These parameters included 

training batch (50-500), kernel (3-11), number of layers (2-4), and whether or not weighting is used. 

For higher signal tasks, such as soma segmentation, 2 sets of convolutions and max pooling layers 

on the contracting path and 2 more sets on the expanding path were sufficient. All of the neurite 

work is lower signal and noisier, and has so far required 3 contracting convolutions and max 

pooling pairs, and 3 expanding convolutions and up-pooling. The higher batch size helps prevent 

over fitting which otherwise occurs early in training. Weighting of the loss focused the model to 

learn non-black pixels, which comprised a small fraction of the total pixels, typically close to 2%. 

Kernel size was affected the most by image properties. We saw that lower signal and noisier images 

performed better with larger kernel choice. The models whose predictions are shown here all used a 

kernel of 3 pixels. 

For all trained models, the datasets (128x128 image pairs) were split into training (90%), validation 

(5%), and holdout (5%) sets. The training tiles were used for model training. Each model was 

evaluated by RMSE score and also qualitatively for its ability to capture neuronal morphology 

outside of the annotated pixels –these are neurites that are visible in the raw image, but were not 

traced and are thus not part of the mask, which provided the ground truth for scoring. The visual 

evaluation was applied to the unseen-by-the-model testing dataset and the best models were 

selected based on these two criteria. The top models were then applied to the holdout dataset and 

their quality was verified by RMSE and by their ability to predict neurite annotation as well as 

remove soma and debris from the image (ability to capture neuronal morphology within the raw 

image). The images shown in all the figures reflect each model’s performance on the holdout data 

or different datasets, all unseen by the model during training or tuning. 

Accuracy metrics We evaluated accuracy in several ways. The model training and evaluation of 

training used a mean pixelwise root-mean-square-error. Predicted pixels were compared to the 

target image (ground truth annotation) and mean squared error calculated. For each model, this 

metric guided improvement and hyper-parameter choice as the loss function. The training used only 

annotated patches of image, however, to evaluate model’s ability to reproduce the fully 
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reconstructed annotation, we used accuracy within the ground truth regions of the whole image – all 

the annotated neurite pixels. Binary predicted images were compared to ground truth binary masks 

within the manually annotated neurite regions. The fraction of total neurite pixels that were also 

predicted as neurite pixels by the model was calculated per image. A mean and standard deviation 

across all images is reported in the plots. The mean fraction of total background pixels (soma, 

debris, all non-neurite pixels) that are also predicted as background pixels are shown side-by-side 

with the neurite pixels (Figure 7). To compare across conditions and quantify the number of 

neurites in an image, total neurite pixels were counted for each binary manual or predicted image 

and reported as a fraction of all pixels in the image. Error bars show variation across images within 

a condition. 

In the case of the partially annotated datasets that we used to generate a model, the annotated 

dataset was divided as above into training, validation, and holdout sets. Once a model was 

generated and full images for the complete dataset were reconstructed, the initial annotated tiles 

were used within the dataset at prediction time, meaning that 450 tiles that were used in training 

were also part of the neurite prediction at run time where 3–8 million inputs required prediction. 

Discussion 
Here we report a new approach to obtaining neurite traces from fluorescence images of 

neurons labeled with a morphology marker. We use a fully convolutional DL model that can 

selectively keep neurites and remove soma, debris, and other imaging artifacts that are common in 

high throughput and longitudinal imaging.  

Neurite annotation is challenging due to several factors. First, the dimness of the neurites 

creates inherent signal to noise constraints. The neurites change in intensity throughout their length 

and, at such low signal, the background is uneven as well, especially in non-confocal, 

epifluorescence imaging. Further, the background near larger, thicker, and highly fluorescent objects 

(soma, cellular debris, or other artifacts) is often significantly greater than near dim objects. Thus, 

neurite tracing often requires multiple zoom levels and contrast updates to accurately assign the 

source of signal individually and contextually. Due to these complexities, it is also difficult to 

simplify the tracing task with conventional image processing steps, which typically begin with 

selecting a single pixel intensity to demarcate foreground from background. The choice of intensity 

at this early step presents an inherent trade-off. Either the threshold is set high, and the dim thin 

neurites fall below the level of detection, or the threshold is set low, and the portions of the 

background adjacent to bright objects (e.g., the thickest part of neurites, near the soma) are assigned 

to foreground, also leading to erroneous measurements. 

Previous approaches to automate this process broadly fall into two categories: tools that help 

annotate, and tools that take parameters from an image to search for neurite-like patterns. The tools 

that trace neurites (rather than assist in manual annotation), are often based on pipelines that 

combine image pre-processing, neurite tracing, and subsequent post-processing compatible with 

downstream quantification 37. Some solutions include novel ways of tracing out a neuronal 

projection from a seed soma 38, human in the loop 39, computer generated input 40,41, or using 

combinations of filters/transformations to skeletonize images and extract neurites 42–44. Other 

methods follow gradients 44,45 and minimize an energy function. Some methods are substantially 

more computationally intensive than others 16, and some require a lot of tuning parameters 14, but if 

they generalize, are much faster. However, in high throughput or longitudinal imaging contexts, 

where the experimental conditions can change dramatically over the course of the imaging 

experiment, parameter generalization is a particularly challenging task. DL-based algorithms can 

help capture relevant parameters more broadly and overcome experimental variation inherent to 

fluorescence imaging.  

DL approaches have previously been applied in the assignment of foreground and 
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background pixels to perform various segmentation tasks 30,46. In fact, several deep learning 

approaches 38,41,47–49 have been applied to neurite tracing, a related task. Our DL network is based 

on an autoencoder architecture 50–54 with a fully convolutional approach, where our task is instead to 

de-noise the images by removing any non-neurite intensities. With a related, U-Net architecture 

applied to the same datasets, we saw segmentation output often returned soma in addition to 

neurites, thus failing to classify soma pixels as background. We showed that using the lightweight 

autoencoder-based architecture, it is possible to predict neurites across multiple datasets. We also 

analysed diverse sample types to better understand the breadth of neuronal data variation. This 

allowed us to come up with a compact scheme for generating predictive models from a limited 

number of annotated inputs, an annotation task that should be possible to achieve in less than an 

hour. Our approach enables quick training towards new datasets. Because a single dataset might be 

comprised of thousands of images, the relative cost of generating a custom model is still low, as the 

model enables generation of a fully curated dataset from relatively few curated examples (about 30–

40 traced neurites per dataset). Further, we verified that this approach removes undesirable 

intensities and correctly returns neurites at about 80% accuracy compared with manual annotation, 

which unfortunately is itself error-prone 11. When we applied NAPA to a larger dataset from a 96-

well neuronal culture of healthy control and Parkinson’s disease lines imaged over 192 hours we 

were able to resolve differences between these two conditions and quantify neurite outgrowth over 

the time course of the study, a task that would be quite difficult to achieve with manual annotation 

alone.  

Indeed, the predictions made by NAPA are not perfect. Neurites are still missed, particularly 

in very neurite-dense cultures, and those that are predicted are often not completely continuous, 

which is problematic for per-cell quantifications downstream. Indeed, potential per-cell 

quantifications are generally complicated by ownership ambiguity in denser cultures, even with 

continuous predictions. However, an advantage with our approach is that the prediction output 

reflects the annotation in the training data, which provides a direct readout for what types of events 

are poorly represented in the training data. This can inform a more narrowly targeted curation to not 

only add examples of what the NAPA has missed and improve its models, but also to address new 

needs. Since NAPA amplifies the training data, the aim of curation is to teach the models what the 

curator would like traced the image, which can be tailored to the task. Output images could also be 

generated for the purpose of broadly improving signal to noise ratio in the fluorescence images 55 

and interface with post processing algorithms that focus on reconstruction of island neurite 

intensities (not presented) as has been achieved with other algorithms 47,56.  

Since the annotation we used was not directly generated for the DL task, its coverage varied, 

depending on the sample and experimental conditions. Very dense networks of neurites, covering 

more than 10% of the pixels in an image (> 1 million neurite pixels in the examples here), did not 

have every neurite annotated; more complete annotation coverage is reasonable for sparser samples, 

although it is still difficult and requires multiple iterations with different contrast settings. The main 

concern with partially annotated data was that false negatives would be introduced in training. We 

initially tried minimize false negatives by controlling the context provided with the size of the input 

patch. However, we soon learned that by weighting the loss towards the annotated pixels, the model 

was able to focus on correctly predicting the various types of positive neurite examples provided in 

the training data, and in effect amplify them in the rest of the image. This technique enabled us to 

ask more general questions about neuronal morphology. 

There is certainly a trade-off between manual tracing and automated techniques. On one 

hand, manual tracing may be highly accurate, although not perfect in its ability to faithfully follow 

neurites (Supplementary Figure 4) or in its completeness. The problem is that the manual traces 

remain bound to the dataset and do not extend to very large datasets, including longitudinal and 

dynamic ones, where tracing is not a feasible option. In addition, the traces generated are prone to 

bias based from the curator, and as we have seen, the same dataset can be traced to yield different 
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outcomes (Supplementary Figure 2). On the other hand, fully-automated, off-the-shelf algorithms 

have significant limitations, requiring substantial manual tuning or exhibiting brittle performance 

that is susceptible to the qualities of the dataset. Another aspect of this trade-off is time. This can be 

time allocated to manual tracing or time needed to tune parameters to a given dataset. In the case of 

manual annotation, to fully annotate an image with culture density shown in Figure 8 would require 

20–40 minutes per image using an assisted tracing tool such as NeuronJ. Denser samples require 

more time. With 30 minutes per image, a typical dataset of 96 wells and 9 timepoints would 

requires 432 hours to manually annotate. Further, the variation between curators (Supplementary 
Figure 2) might increase the required time. With our DL approach, the per image curation time is 

closer to 10 minutes. We typically annotate about 20 representative images from the entire 

experiment, so this would amount to ~3 hours of annotation in the slowest case (without tracing 

assistance from NeuronJ), and a 100x speedup. For a purely manual curation approach, as the 

experiment grows, the manual curation time needed would scale and likewise grow. With the 

approach we describe, the manual curation time would remain constant. The strategy and algorithm 

described here are an effort to bring together the best parts of manual and automated annotation by 

using an ML algorithm that requires little input. 

Neuronal morphology plays an important role in signaling, development, and disease, but its 

study is limited by the labor-intensive process of manually generating cell traces. Although manual 

tracing is technically possible for any task, it can be so impractical and expensive for larger datasets 

that it is effectively unfeasible. Hence, automating neuronal curation would enable us to address 

broader questions more quantitatively and with improved statistical power. Here we present NAPA, 

a CNN-based DL approach to predict manual curation from a small fraction of traced neurites, and 

show quantification applications that allow us to broadly distinguish between disease and control 

samples and over time. In each case, the input to the model is the fluorescence image and the 

annotation to be amplified, and the output is ultimately a binary mask that can be used with already 

available algorithms. Since this supervised model learns from given examples, it can be targeted to 

more specific questions in the initial annotation step, such as annotating branch points or a 

particular type of neurite break or contact. These kinds of neurite features would be difficult to 

access through current technologies that focus automation on more general neurite properties.  
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Figure 1. Schematic of workflow for generating NAPA. Images of cells in culture obtained using 

fluorescence microscopy are annotated through manual tracing of neurites, and these annotations 

that are converted to binary masks (I). Pairs of raw image intensities and corresponding binary 

masks (128 pixels x 128 pixels) serve as input pairs to NAPA (II). Pixel-wise root mean squared 

error (RMSE) loss is evaluated at each training step to minimize difference between prediction and 

target. Model output is used in downstream post-processing, scoring, and quantification steps (III) 

that can be applied to much larger datasets than the subset used for curation (IV).  
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Figure 2. Example images of different neurons that demonstrate the variation in image acquisition 

across datasets. A. Neuron from dataset I that displays fairly low fluorescent signal. B. Multiple 

neurons from dataset II that display high fluorescent signal. C. Contrast saturated version of image 

in (B) enhancing the complexity of underlying neuronal morphology. Scale bar in A is 100um, scale 

is the same for all images.  
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Figure 3. A. Schematic of model structure and example inputs. The CNN-based NAPA has three 

sets of convolution and pool layers in the contracting path, and three in the expanding path. Input is 

augmented with rotations, flips, and reflections. B–D. Examples of model inputs for a single dataset 

(dataset II). B. Twenty-five randomly chosen examples are used towards model generation. The 5 x 

5 matrix shows patches of fluorescence images, with a faint grid added to visually separate image 

patches. C. Corresponding neurite traces converted to binary masks. D. Overlay showing partial 

coverage of the manually generated traces. Each tile in B–D is a 128x128 pixel patch and 40 µm 

wide. 
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Figure 4. NAPA performs well on two prediction tasks from different datasets. A–C. Dataset I has 

low signal, fewer neurons, and every neurite is manually annotated. A 5 x 5 matrix of patches of 

fluorescence images (red) and manual annotation (green) overlays for dataset I (A), morphology 

images (red) overlayed with prediction (blue) (B), and prediction (blue) overlay with annotation 

(green) (C). D–E. In dataset II, the dominant neurites are annotated but many dim neurites are 

unannotated (partial annotation). A 5 x 5 matrix of patches of morphology images (red) and 

annotation (green) overlays (D), morphology images (red) overlaid with prediction (blue) (E), and 

prediction (blue) overlay with annotation (green) (F). The overlap between panel prediction and 

annotation is used to evaluate accuracy (Figure 7). Each tile in A–F is 40 µm. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.23.441035doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441035
http://creativecommons.org/licenses/by/4.0/


 

21 

 

 

Figure 5. Neurite prediction for a full input image. Model is trained on small input tiles (128 x 128 

pixels). Full image predictions shown in A–D. A. Fluorescence image of neuronal morphology 

marker. B. Corresponding annotation. For four cells, three of the most prominent neurites are 

traced. C. Output from model trained to predict neurite annotation. D. Colored overlay showing 

prediction (blue), morphology image (red), soma (yellow), and annotation ground truth (grey) for 

images A–C. E. Another image showing overlay with the same coloring scheme but enhanced 

prediction rather than fluorescence. Since the neurites are fairly thin structures, the images in are 

enhanced in the full view to give a sense of overall coverage. Scale bars in A and D are 100 µm.  
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Figure 6. NAPA prediction of neurites in 3D coronal sections from fixed mouse brains. 

Fluorescence image in red, prediction in blue, provided annotation (marked with arrow) in green 

(appears white because of colocalization with prediction). Scale bar is 100 µm. 
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Figure 7. Model accuracy is evaluated based on the ability to capture ground truth. A. Fluorescence 

image of morphology marker. B-C. Examples of predictions made by two different sample models 

(different hyperparameter choices) for a single image. D. Annotated ground truth mask. E. Overlay 

of fluorescence (red), prediction from model I (blue), and annotation (green). Open arrows show 

regions that are correctly removed in the output image (background pixels in plot). F. Overlay of 

annotation (green) and prediction from model 2 (blue). Good overlap between prediction (blue) and 

annotation (green) results in high accuracy. Regions shown in green are scored as foreground 

(neurite pixels). All other regions are scored as background. Yellow boxes in B, C, D, and F show 

one point of difference between predictions from model 1 (B) and model 2 (C) within the scoring 

region (D) marked also by green in F. Differences such as this lead to different model accuracies. G. 

Model accuracy shown for two models applied to the same data. Red bars (neurite pixels) report the 

average fractional overlap of the white pixels in the prediction (B and C) and the annotation (D) 

within the annotated regions. Grey bars (background pixels) report the average fractional overlap of 

black pixels in the prediction (B and C) and the annotation (D) outside of the annotated regions. 

Error bars show standard deviation, and n = 12, 19 (model 1, 2). Scale bar in A is 100 µm. 
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Figure 8. Differences between control and disease samples are evident by both manual and 

predicted neurite traces. Predictions were generated across 11 wells and used towards quantification 

of neurite coverage. A–B. Representative image overlays for iPSC-neurons derived from a healthy 

control (A) and Parkinson’s disease patient (B). Fluorescence image (red), manually traced neurites 

(green), predicted neurites (blue). Neurite contrast is artificially enhanced for visibility. C. 

Quantification of total neurite coverage (neurite pixels/all image pixels) for predicted and manually 

traced images for all images across disease (n=5) and control (n=6) groups. Scale bar represents 100 

µm. 
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Figure 9. Longitudinal analysis of neurites in iPSC-neurons from control and Parkinson’s disease 

patients. For neurites in the healthy control cells, fractional neurite coverage increased over time, as 

expected, with cell proliferation. On the other hand, in cells from a Parkinson’s disease line, 

fractional neurite coverage stays low. The fourth time point corresponds to the images in Figure 8.  
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