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Abstract 
 
Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in 
GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves 
a distributed network of brain regions including limbic regions like amygdala and visual 
processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using 
benzodiazepines like alprazolam can be useful for studying this facial affect processing network 
and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological 
modulation and computational modeling to study the contribution of GABAergic abnormalities 
toward emotion processing deficits in schizophrenia. Specifically, we apply principles from 
network control theory to model persistence energy – the control energy required to maintain brain 
activation states – during emotion identification and recall tasks, with and without administration 
of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy 
quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam 
increases persistence energy in relatives but not in controls during threatening face processing, 
suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in 
this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and 
occipital cortices are important for facilitating state transitions during facial affect processing. 
Finally, we uncover spatial relationships (i) between regional variation in differential control 
energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter 
systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. 
Together, these findings reveal differences in emotion-processing circuitry associated with genetic 
vulnerability to schizophrenia.
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Introduction 
 
Schizophrenia is associated with deficits in emotion processing. Individuals with schizophrenia 
demonstrate marked deficits in facial affect perception, as measured through tasks that require the 
identification of emotions such as happiness, sadness, anger  or fear1,2. Emotion processing deficits 
in schizophrenia contribute substantially to impairments in social cognition and poor functional 
outcomes3,4. First-degree family members of individuals with schizophrenia also display 
abnormalities in facial affect perception, albeit to a lesser extent than probands5–8. Abnormalities 
in first-degree relatives are particularly remarkable as the study of family members allows for the 
investigation of schizophrenia associated endophenotypes without the confounding effects of 
antipsychotic medication and secondary effects related to disease chronicity9. More broadly, 
investigations of facial affect processing in family members may offer insight into a key cognitive 
domain adversely affected by schizophrenia and can serve to inform effective treatment strategies. 
 
Prior studies have used neuroimaging to characterize the neural circuitry associated with altered 
facial affect processing in individuals with schizophrenia and their relatives. These studies have 
primarily focused on linking differences in activation of limbic regions like the amygdala with 
altered identification and recall of threat-related faces9–12. However, facial affect perception is a 
complex process involving multiple brain regions, and evidence exists for impairment in both 
emotion-processing limbic regions as well as early-stage visual processing in schizophrenia9,13. 
Facial affect processing involves a distributed network comprising limbic regions, fusiform and 
occipital cortex, medial and lateral prefrontal areas, and insula14–16. Indeed, components of this 
distributed network have been implicated in facial emotion processing abnormalities in individuals 
with schizophrenia17 and individuals with high genetic risk for schizophrenia18, suggesting 
heritability. Thus, an integrative understanding of facial affect processing abnormalities in 
schizophrenia requires analysis of the distributed network regulating a complex domain. 
 
Facial affect processing abnormalities in schizophrenia, and other cognitive deficits, may be driven 
by abnormal GABAergic neurotransmission19. Notably, GABAergic abnormalities in 
schizophrenia have been documented quite broadly, across the prefrontal cortex20, visual 
cortex21,22, amygdala23, and temporal lobe24, regions that overlap with the distributed network 
involved in facial affect processing. The role of GABAergic circuitry in facial affect processing 
and its impairment in schizophrenia can be effectively studied through pharmacological 
modulation using GABA modulators like benzodiazepines25. Alprazolam (Xanaxâ) is among the 
most widely used benzodiazepines, with well-known anxiolytic effects through enhanced 
GABAergic inhibition of the amygdala and limbic structures, and sedative effects from more broad 
GABAergic inhibition26–28. Thus, benzodiazepine challenge provides an opportunity to study the 
role of GABAergic circuitry in the etiology of facial affect processing abnormalities in 
schizophrenia. 
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Benzodiazepines impair emotion identification and emotion memory in healthy individuals, 
mainly in processing threatening faces29–31. The neural basis for the observed impairments in threat 
processing have been investigated in neuroimaging studies of emotion processing with 
benzodiazepine challenge in healthy subjects. These studies have shown that benzodiazepines alter 
activation of brain regions in the distributed facial affect processing network including amygdala, 
fusiform gyrus, orbitofrontal cortex, and insula during facial affect processing tasks32,33. We 
showed that alprazolam unmasks amygdalar and/or GABAergic abnormalities in first-degree 
relatives of individuals with schizophrenia during emotion identification and recall tasks34. 
However, there remains a lack of mechanistic understanding of benzodiazepine action during 
facial affect processing that goes beyond traditional activation studies. More recent tools for 
modeling the dynamics of brain activation states can help to synthesize results from activation 
studies and provide mechanistic insight into benzodiazepine action as well as GABAergic 
abnormalities in schizophrenia. 
 
The mechanistic basis of benzodiazepine action on the brain during emotion processing can be 
effectively modeled using network control theory (NCT). NCT is a tool originating in theoretical 
physics and systems engineering that has successfully been used to understand how to control real-
world systems comprised of interacting components, such as power grids and electronic 
circuits35,36. In the context of NCT, control refers to the ability to drive the system, through a 
suitable choice of inputs, from an initial state to a final state. Given that the brain is a complex 
system comprised of interconnected networks of neurons37, NCT provides an intuitive and 
compelling tool to model the dynamic trajectory of brain activation states that support its rich 
cognitive functions. Indeed, NCT has already been used to provide insight into the structure and 
function of model nervous systems like C. elegans38, Drosophila39, mouse39,40, and macaque41, as 
well as human brain networks39,42–46. 
 
The application of NCT to model the brain typically involves the definition of a structural network 
through diffusion weighted imaging, and the definition of brain states as activation patterns across 
brain regions47. Brain states can be defined by arbitrarily switching ‘on’ canonical brain sub-
networks like the visual and default mode networks, or directly as task activation obtained through 
functional magnetic resonance imaging data43,48–51. The NCT framework is then used to model the 
temporal progression of brain states as a function of the underlying structural network and 
theoretical control energy applied to different brain regions. The calculated control energy may 
represent external electrical stimulation or internal cognitive control needed to steer the brain 
between defined initial and final states42. Additionally, the brain regions important for driving 
specific brain state transitions can be identified through control impact analysis. This framework 
naturally lends itself to modeling the effect of drugs like alprazolam in driving brain state 
trajectories relevant to facial affect processing and can provide mechanistic insight into the mode 
of action of the drug beyond simple measures of activation. 
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Here we applied principles from network control theory to investigate the effect of alprazolam and 
schizophrenia risk status in driving brain state transitions during facial affect processing. We 
leveraged a previously reported dataset34 where fMRI BOLD data was collected during emotion 
identification and emotion memory tasks, with and without administration of alprazolam, in a 
cohort consisting of healthy controls and unaffected first-degree relatives of individuals with 
schizophrenia. We considered task-evoked brain activation patterns during emotion processing 
tasks to be brain states and quantified the theoretical control energy needed to maintain those states 
– the persistence energy. In our previous study, we showed that alprazolam unmasked GABAergic 
abnormalities in the amygdala in relatives34. Accordingly, our primary hypothesis was that when 
administered alprazolam, family members would have altered persistence energy during 
identification and recall of threatening faces which requires amygdalar processing, but not during 
non-threatening or neutral stimuli. We predicted that brain regions of high control impact in the 
NCT model would align with known regions involved in facial affect processing including 
fusiform cortex, occipital cortex, and sub-cortical regions like the amygdala and insula. Finally, 
we predicted that regions of high control impact would also spatially align with regions of high 
GABA receptor expression, but not with other neurotransmitters like dopamine and serotonin, 
reflecting the biological mode of benzodiazepene action. By testing and validating our hypotheses, 
we uncover novel insights regarding the contribution of GABAergic abnormalities toward emotion 
processing deficits in schizophrenia. 
 
Methods  
 
Participants 
 
The sample included 27 healthy participants with a first-degree relative affected by schizophrenia 
and 20 healthy controls without a family history of schizophrenia, for a total of n=47 participants. 
Controls and relatives were matched based on demographic and clinical variables (Table 1). After 
excluding scans based on motion estimates (mean framewise displacement > 0.5mm), the final 
sample for data analysis included n=44 participants (19 relatives; 25 controls) for emotion 
identification, and n=40 participants (17 relatives; 23 controls) for emotion memory (see 
Supplementary Methods for details on assessment). Study procedures were approved by the 
University of Pennsylvania Institutional Review Board, and written informed consent was 
obtained from participants. Participants underwent standard medical, neurological, psychiatric, 
and neurocognitive evaluations (see Supplementary Methods).
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Table 1. Demographic and clinical information at time of scan 

Variable Controls (n=27) Relatives (n=20) p-value  
 Percentage Proportion Percentage Proportion  Odds ratio 
Sex (% F) 51.9 14F/13M 55.0 11F/9M 1.0 0.88 
Handedness (% R) 92.6 25R/2L 80.0 16R/4L 0.38 0.32 
Smoke (% N) 77.8 21N/6Y 80.0 16N/4Y 1.0 0.88 
  

Mean (SD) 
 

Range 
 

Mean (SD) 
 

Range  
Test 

statistic* 
(DOF) 

Age (years) 39.0 (11.4) 21.1-56.5 42.3 (14.8) 20.9-59.4 0.31 -1.02 
Education (years) 15.0 (2.0) 11.0-19.0 14.8 (2.3) 12.0-20.0 0.79 0.26 (45) 
Parental education 13.6 (3.1) 7.5-20.0 13.9 (2.7) 9.5-18.0 0.76 -0.31 (43) 
Height (in.) 67.7 (4.0) 61.0-77.0 67.6 (4.3) 60.0-73.0 0.93 0.09 (45) 
Weight (lb.) 176.4 

(33.0) 
115.0-
255.0 

175.5 
(34.0) 

118.0-
250.0 0.93 0.09 (45) 

BMI (lb./in.2) 27.1 (4.9) 20.4-36.8 27.0 (4.5) 18.7-33.9 0.94 0.08 (45) 
Trait anxiety 28.3 (6.7) 20.0-47.5 30.1 (8.9) 20.0-58.0 0.64 -0.46 
Schizotypy (SIS) 
total 11.5 (7.2) 1.0-29.0 15.0 (7.2) 7.0-39.0 0.11 -1.64 (44) 

Alprazolam level 
(ng/mL) 7.5 (4.1) 0.0-13.0 7.8 (4.1) 1.0-14.0 0.80 -0.26 (42) 

Notes: F=female, M=male, R=right, L=left, N=non-smoker, Y=smoker, SD=standard deviation, 
BMI=body mass index, SIS=structured interview for schizotypy, DOF = degrees of freedom; reported p-
values are from Fisher’s exact test for categorical variables (sex, handedness, and smoking status), 
Wilcoxon rank sum tests for non-normal data (age, trait anxiety), and two-sample t-tests for normally 
distributed data (all other variables). * t-statistic for two-sample t-tests, z-statistic for Wilcoxon rank sum 
test (degrees of freedom not reported). 
 
Study design and pharmacological challenge 
 
To study the impact of GABAergic modulation on brain activation during emotion processing, 
participants underwent fMRI imaging during facial affect processing tasks with and without 
administration of alprazolam. Details of study design have been described previously34. Briefly, 
participants underwent two identical fMRI sessions approximately one week apart. Participants 
were administered 1mg oral alprazolam in one session and an identical-appearing placebo in the 
other session, in a balanced double-blind within-subject crossover design. 
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During each fMRI session, participants performed an emotion identification task followed by an 
emotion memory task. In the emotion identification task, 60 unique color pictures of human faces 
were presented in pseudorandomized order, with facial expressions falling into one of five 
emotional categories: happy, sad, fearful, angry or neutral52. Participants were asked to identify 
the emotion expressed on each face. In the emotion memory task, the same sequence of faces as 
in the preceding emotion identification task was presented, with each target face accompanied by 
two foil expressions. Participants were instructed to recall the expression that matched the 
previously seen face. In both tasks, each emotion category was presented 12 times, with each 
emotion being used as a foil 24 times in the emotion memory task. Faces were displayed for 5.5s, 
with a variable interval of between 0.5-18.5s, during which a complex crosshair matched to faces 
on perceptual qualities was presented. Each task lasted 10.5 min, with a 2 min delay between tasks. 
 
 
 
 

Figure 1. Operationalizing network control theory in the context of human neuroimaging. The 
strength of structural connections between brain regions were determined by the quantitative anisotropy 
(QA) estimated from diffusion spectrum imaging data. We used beta coefficients from general linear 
models to specify brain activation maps during task sessions where participants were given 1mg oral 
alprazolam or placebo. These maps were then fed into a network control model to analyze the energy 
required for transitions between different brain states. We were particularly interested to estimate the 
persistence energy, 𝑷𝒆, defined as the energy required to maintain a state. Brain regions in the cortex and 
subcortex were defined by the 234-node Lausanne parcellation. 
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Image acquisition and processing 
 
Structural and functional image sequences were acquired with a Siemens Trio 3T system 
(Erlangen, Germany). Structural images were acquired for the whole brain, whereas functional 
volumes were acquired in a slab covering ventral regions of the brain with a spatial resolution of 
2×2×2 mm (Figure S1). 
 
We used fMRIPrep software (version 1.2.6) to process the BOLD fMRI data53. Briefly, fMRIPrep 
was used to perform brain extraction and segmentation of individual T1-weighted images, spatial 
normalization of T1 images to the ICBM 152 Nonlinear Asymmetrical template, susceptibility 
distortion correction for BOLD images, estimation of confound variables including head motion 
parameters and resampling of BOLD sequences to MNI152NLin2009cAsym standard space. We 
excluded sessions for which the average framewise displacement was greater than 0.5mm. No 
other exclusion criteria were applied. 
 
Next, we used generalized linear models (GLM) to measure subject-specific brain activation 
patterns during emotion identification and memory tasks. Specifically, GLM analysis was 
performed using the FEAT module54 in FSL 5.0.10 implemented using XCP Engine55. BOLD 
sequences preprocessed using fMRIPrep were high-pass filtered (100s) and spatially smoothed 
(4mm FWHM, isotropic); further, the first 6 non-steady state volumes were discarded. All event 
conditions were modeled as 5.5s-boxcars convolved with a canonical hemodynamic response 
function. Consistent with previous work15,56, correct responses to fear and anger stimuli were 
combined as a “threat” regressor; happy and sad stimuli were combined as a “non-threat” 
regressor; and neutral stimuli were modeled separately. All specified contrasts measured BOLD 
activation compared to baseline. Incorrect responses and 6 motion parameters were included as 
regressors of non-interest. We chose to include only correct responses in the model to limit the 
potential effects of inattention due to sedation by alprazolam. 
 
We then divided the brain into 233 parcels based on the Lausanne parcellation (after excluding the 
brain stem), which provides coverage of both cortical and subcortical areas including thalamus, 
caudate, putamen, pallidum, accumbens, hippocampus, and amygdala57. Parameter estimates (beta 
weights) from each voxel were averaged within each parcel resulting in estimates of brain 
activation (brain states); these activation maps were then evaluated using network control theory. 
 
See Supplementary Methods for further details on image acquisition and processing. 
 
Construction of structural brain networks from diffusion spectrum imaging data 
 
Structural brain connections are an essential component of network control theory models. Since 
we did not collect structural brain images in our previous study, we leveraged an average structural 
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matrix from a separate study. Diffusion spectrum imaging (DSI) data was collected from a separate 
set of 10 healthy young adults as described elsewhere47. Consistent with previous work48,49, we 
defined nodes of the structural network as brain regions according to the Lausanne atlas57. To 
encode each structural network, we constructed adjacency matrices for each subject based on the 
quantitative anisotropy (QA) between each pair of brain regions. The average structural matrix 
across 10 participants was used for all results shown in the main text. 
 
See Supplementary Methods for further details on DSI image acquisition, processing, and 
structural matrix generation. 
 
Network control theory 
 
We used principles from network control theory (NCT) to investigate the effect of alprazolam and 
schizophrenia risk status in driving brain state trajectories associated with facial affect processing. 
The NCT framework has been used to determine how underlying white matter architecture 
constrains transitions between different brain states inferred from neuroimaging data43,48–51. We 
begin by approximating brain state dynamics through the linear continuous-time equation  
 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 
 
where 𝑥(𝑡) is a vector of size 𝑁 × 1 (where 𝑁 is the number of brain regions in the network) that 
represents the state of the system at time 𝑡, 𝐴 is the weighted symmetric 𝑁 × 𝑁 structural matrix 
estimated through diffusion spectrum imaging, 𝐵 is an input matrix of size 𝑁 × 𝑁 specifying the 
set of control nodes, and 𝑢(𝑡) is the time-dependent control signal in each of the control nodes. 
 
The minimal control energy framework47 defines the unique control input 𝑢∗(𝑡) needed to 
transition the system from an initial state 𝑥(0) = 𝑥" to a final target state 𝑥(𝑇) = 𝑥# over the time 
horizon 𝑇 through the cost function 

𝑢∗(𝑡) = argmin
$

7 𝑢(𝑡)T𝑢(𝑡)𝑑𝑡.
#

"
 

By integrating each control input over time, we can calculate the control energy required by each 
brain region as 

𝐸%∗ = 7 ‖𝑢%∗(𝑡)‖&&𝑑𝑡.
#

"
 

By summing the control inputs over all 𝑁 brain regions, we can obtain the total control energy 
needed for the transition from 𝑥" to 𝑥#, which we write as 

𝐸∗ =<𝐸%∗
'

%()

. 
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In our model, we used parameter estimates (beta weights from a general linear model) to specify 
brain states 𝑥 from alprazolam and placebo sessions, and a single group-representative structural 
matrix 𝐴 (Figure 1). Since BOLD images were acquired in a slab covering ventral regions, we 
restricted our analysis to parcels with at least 50% coverage within the slab (Figure S1). Thus, 𝑥, 
𝐴, and 𝐵 matrices were truncated for each individual based on slab coverage. For simplicity, all 
nodes within the slab were set as controllers, thus allowing us to evaluate multi-point (as opposed 
to single-point) control.  
 
The impact of different modeling choices for the time horizon parameter 𝑇 (time during which the 
control input is effective) was explored by calculating the Pearson correlation between persistence 
energies calculated for pairs of parameter values47. We found that short time horizons resulted in 
a different control regime as expected47; however, correlations were >0.99 overall, indicating that 
the choice of time horizon did not significantly affect minimal control energy calculations (Figure 
S2). Based on these findings, we chose a time horizon of 𝑇 = 3 for our simulations. 
 
We wished to extract control energy parameters that reflected the cognitive process of facial affect 
processing. Here, we used the notion of persistence energy, defined as the control energy needed 
to maintain a brain state43,51. For an initial brain state x", we defined persistence energy P* as the 
minimum control energy needed for the system to reach a final state x+ = x", such that the initial 
state is maintained at time 𝑇 (Figure 1). Persistence energy associated with different brain states 
can be interpreted as the cognitive effort exerted during the performance of tasks relevant to sustain 
those states42,43. States with larger overall magnitude are always more difficult to maintain; thus, 
to facilitate comparisons between persistence energies associated with different brain states 
independent of the global activation magnitude of each state, we divided each brain state vector,	x, 
by its Euclidean norm. 
 
In order to evaluate the importance of different brain regions in driving brain state transitions 
during facial affect processing, we measured the control impact 𝐼% of individual nodes by iteratively 
removing each node from the network and recomputing the persistence energy49. Brain regions 
with highest control impact are those whose removal from the control set leads to the highest 
increase in control energy. Formally, the control impact is defined as 

𝐼% = log
𝐸∗(Κ%)
𝐸∗(Κ")

	, 

where Κ" represents the set of all control nodes and Κ% represents the set of control nodes after 
excluding node 𝑖. 
 
Spatial correlations with neurotransmitter maps 
 
In order to explore the underlying biology of drug action reflected through control energy 
measures, we analyzed the spatial alignment of drug-induced differences in control energy input 
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with neurotransmitter receptor maps obtained through PET imaging. Given the known role of 
alprazolam as a GABA modulator27, we expected brain regions whose control energy input varied 
strongly with drug condition to also be correlated with GABA receptor density, but not with other 
receptors such as serotonin and dopamine. 
 
For this analysis, we used published PET/SPECT maps of the following receptors: 5-HT1a 
(serotonin 5-hydroxytryptamine receptor subtype 1a), 5-HT1b (5-HT subtype 1b), 5-HT2a (5-HT 
subtype 2a), D1 (dopamine D1), D2 (dopamine D2), DAT (dopamine transporter), F-DOPA 
(dopamine synthesis capacity), GABAA (gamma-aminobutyric acid A receptor), NAT 
(noradrenaline transporter), and SERT (serotonin transporter)58–64. All provided PET/SPECT maps 
were voxel-wise average group maps of variable numbers of healthy volunteers, linearly rescaled 
to a range of 0 to 10058. We further averaged the PET/SPECT maps voxel-wise for each Lausanne 
parcel to obtain 233×1vectors, each of which represented a spatial map of the distribution of a 
given neurotransmitter. We then evaluated correlations between all PET/SPECT maps and region-
wise difference maps in control input between alprazolam and placebo sessions for all subjects. 
 
Statistical analyses 
 
Primary hypotheses concerning the effects of drug (alprazolam vs. placebo) and group (control vs. 
family) on persistence energy were evaluated using linear mixed models to accommodate the 
repeated measures data (with performance across two sessions nested within 44 participants in 
emotion identification and 40 participants in emotion memory). Categorical indicators for drug 
were modeled as 0=alprazolam and 1=placebo, and the categorical group indicator was modeled 
as 0=control and 1=relative. We also evaluated mixed effects models by replacing the categorical 
drug indicator with alprazolam blood levels and replacing the categorical group indicator with 
schizotypy scores measured as the total score on the structured interview for schizotypy 
(Supplementary Information). 
 
Separate models were evaluated for each emotion category (threat, non-threat, neutral) and task 
(emotion identification, emotion memory), resulting in 6 models. For each emotion category, 
formal models were constructed at level 1 as follows. 
 
Level 1: 
𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑃𝐸%, = 𝛽"% + 𝛽)%𝑑𝑟𝑢𝑔%, + 𝛽&%𝑎𝑣𝑔𝑒𝐹𝐷%, + 𝑒%,     (1) 
  
where 𝛽" is the intercept, indicating the average level of persistence energy for the prototypical 
male control in an alprazolam session (determined by reference categories of categorical 
predictors); 𝛽)% indicates within-person differences in persistence energy associated with drug or 
placebo sessions; 𝛽&% indicates within-person differences in persistence energy associated with 
within-person differences in head motion for each session captured by average framewise 
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displacement (𝑎𝑣𝑔𝑒𝐹𝐷%,) during each session, and 𝑒%, are autocorrelated session-specific residuals 
(AR1). 
 
Person-specific intercepts and associations from level 1were specified at level 2 as follows. 
 
Level 2: 
𝛽"- = 𝛾"" + 𝛾")𝐺𝑟𝑜𝑢𝑝% + 𝛾"&𝐴𝑔𝑒% + 𝛾".𝑆𝑒𝑥% + 𝑢"%      (2) 
𝛽)- = 𝛾)" + 𝛾))𝐺𝑟𝑜𝑢𝑝%         (3) 
  
where 𝛾 denotes a sample-level parameter and 𝑢 denotes residual between-person differences that 
may be correlated but are uncorrelated with 𝑒%,. Parameters 𝛾") to 𝛾". indicate how between-
person differences in the average persistence energy across sessions were associated with group, 
subject age, and subject sex. Parameter 𝛾)) tests the moderating effect of group on the association 
between session persistence energy and drug administration. If there were no significant 
interactions, main effects were evaluated after removing interaction terms from the equations. 
 
Exploratory analyses on relationships between persistence energy and task performance were 
conducted using a different set of linear mixed models. We evaluated separate models for each 
emotion category (threat, non-threat, neutral) and task (emotion identification, emotion memory), 
resulting in 6 models. Task performance measured as behavioral efficiency – proportion of correct 
responses divided by median reaction time for correct responses – was modeled as the dependent 
variable. 
 
For each emotion category, formal models were constructed at level 1 as follows. 
 
Level 1: 
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦%, = 𝛽"% + 𝛽)%𝑑𝑟𝑢𝑔%,	+𝛽&%𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑃𝐸%, + 𝑒%,     (4)  
 
where 𝛽" is the intercept, indicating the average task efficiency for the prototypical male control 
in an alprazolam session (determined by reference categories of categorical predictors); 𝛽)% 
indicates within-person differences in task efficiency associated with drug or placebo sessions; 𝛽&- 
indicates within-person differences in task efficiency associated with within-person differences in 
session persistence energy, and 𝑒%, are autocorrelated session-specific residuals (AR1). 
 
Person-specific intercepts and associations from level 1were specified at level 2 as follows. 
 
Level 2: 
𝛽"% = 𝛾"" + 𝛾")𝐺𝑟𝑜𝑢𝑝% + 𝛾"&𝐴𝑔𝑒% + 𝛾".𝑆𝑒𝑥% + 𝑢"%      (5)  
𝛽)% = 𝛾)" + 𝛾))𝐺𝑟𝑜𝑢𝑝%         (6) 
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where 𝛾 denotes a sample-level parameter and 𝑢 denotes residual between-person differences that 
may be correlated but are uncorrelated with 𝑒%,. Parameters 𝛾") to 𝛾". indicate how between-
person differences in task efficiency across sessions were associated with group, subject average 
persistence energy across sessions, subject age, and subject sex. Parameter 𝛾)) tests the moderating 
effect of group on the association between task efficiency and drug administration. If there were 
no significant interactions, main effects were evaluated after removing interaction terms from the 
equations. 
 
During exploratory analyses of spatial correlations between PET maps and region-wise difference 
maps in control input between alprazolam and placebo sessions, statistical significance was 
evaluated using permutation tests. Specifically, correlations were recomputed after randomizing 
PET spatial maps 10,000 times and p-values were estimated as the fraction of those iterations 
where the observed average correlation exceeded the randomized average correlation. Significant 
associations in all exploratory analyses were evaluated using the false discovery rate (FDR) to 
account for multiple comparisons65.  
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Results 
 
Alprazolam differentially modulates persistence energy in relatives and controls during 
threat emotion processing 
 
We first tested our primary hypothesis of alprazolam altering persistence energy during threat 
emotion processing. Persistence energy was measured as the control energy needed to maintain 
specific brain activation patterns observed during in-scanner emotion identification and memory 
tasks. We evaluated the effect of group and drug on persistence energy using linear mixed models 
with drug and group treated as categorical variables (Equations 1-3). During emotion 
identification, there was no main effect of group or drug, and no group×drug interaction in any 
emotion category (Figure 2A, see Supplementary Data Files 1 for model coefficients and 
statistics). During emotion memory, we found that persistence energy was significantly increased 
with alprazolam administration during recall of threat stimuli, in family members but not in 
controls (Figure 2B, group×drug interaction, 𝛾))=-0.048, p=0.026, df=73). There was no main 
effect of group (𝛾")=0.026, p=0.133, df=73) or drug (𝛽)%=0.01, p=0.50, df=74) (Supplementary 
Data Files 1). As expected, no significant effects were found in non-threat and neutral conditions. 
Alternate analyses where categorical drug indicator was replaced with alprazolam blood levels and 
categorical group indicator was replaced with the total score on the structured interview for 
schizotypy (SIS) showed similar results (Supplementary Information, Supplementary Data Files 
2-3). 
 
In order to elucidate the influence of structural brain networks and spatial activation patterns on 
the observed results, we performed a series of investigations using structural and spatial null 
models (see Supplementary Methods for details). These investigations showed that the differential 
effect of alprazolam on persistence energy in relatives and controls during recall of threatening 
faces was driven partially by structural brain networks but largely by spatial activation patterns 
(Figure S4, Figure S5, Supplementary Data Files 8, 9). 
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Figure 2. Alprazolam modulates persistence energy during recall of threatening faces. (A) Boxplots 
show persistence energy for the emotion identification task, grouped by emotion category; P=placebo; 
A=alprazolam. (B) Boxplots show persistence energy for emotion memory task, grouped by emotion 
category. We observed a significant group×drug interaction in the threat condition (𝜸𝟏𝟏=-0.048, p=0.026, 
df=73); P=placebo, A=alprazolam. (C) Average spatial maps of control impact for threat emotion 
identification, shown on surface renderings of cortical and subcortical areas. (D) Average spatial maps of 
control impact for threat emotion identification, shown on surface renderings of cortical and subcortical 
areas. Parcels outside the imaging slab are colored gray. 

Finally, we used control impact analysis to investigate the relative importance of different brain 
regions in driving brain state transitions associated with emotion identification and memory. 
Control impact of individual nodes was measured by iteratively removing each node from the 
network and recomputing the persistence energy49. 
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As hypothesized, we found that regions with high control impact in both emotion identification 
and memory tasks were primarily located in the fusiform and occipital cortex, reflecting the visual 
and facial processing nature of the tasks (Figure 2C-D, Supplementary Data Files 4). One node in 
the precentral gyrus also exhibited high control impact, likely reflecting voluntary motor control 
for button presses during task execution. Surprisingly, subcortical areas including the amygdala, 
hippocampus, and insula had relatively low control impact. Areas with high control impact aligned 
largely with areas of high activation obtained from beta weight maps estimated from a general 
linear model (Figure S3, Supplementary Data Files 5). Thus, the control model suggests that the 
direct and indirect connectivity of the fusiform and occipital regions with the whole brain structural 
network facilitates efficient coordination of neural dynamics associated with facial affect 
processing. 
 
Individual differences in persistence energy explain variance in task performance during 
threat emotion identification 
 
Next, we performed an exploratory analysis to examine the relationship between persistence 
energy and task performance. We reasoned that increased persistence energy during emotion 
identification and memory tasks might reflect cognitive effort expended and thus might be 
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Figure 3. Task performance during threat emotion identification can be predicted from persistence 
energy. Scatterplots of efficiency in task performance against persistence energy, shown for the emotion 
identification (panels A-C) and emotion memory (panels D-F) tasks, separately for the threat, non-threat, 
and neutral categories. Task performance efficiency is measured as the proportion of correct responses 
divided by the median reaction time for correct responses. The 𝜷 weights from the linear mixed effects 
models containing drug, group, age, and sex as covariates are shown on each plot, along with associated 
p-values corrected for multiple comparisons. Associations are significant for threat emotion identification 
at a significance level of pFDR<0.05. 
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reflected in measures of task performance. We summarized task performance using an efficiency 
measure (accuracy divided by reaction time), and then evaluated associations between efficiency 
and persistence energy using a different set of linear mixed effects models (Equations 4-6).  
 
We found that efficiency during threat emotion identification was positively associated with 
persistence energy (Figure 3A, main effect of persistence energy, b=0.335, pFDR=0.047, df=81). 
No significant associations were found for other emotion categories, or for the emotion memory 
task, after correction for multiple comparisons (Figure 3B-F). Consistent with our previous 
study34, we found that alprazolam significantly reduced task efficiency during both emotion 
identification and memory tasks (see Supplementary Data Files 6 for all model coefficients and 
statistics). We also found, consistent with our previous study, that there were no group effects on 
task performance for any of the task conditions (Supplementary Data Files 6). Thus, relatives and 
controls performed equally well on emotion identification and memory tasks. 
 
Regional differences in control energy spatially align with neurotransmitter systems 
 
Finally, we explored the underlying biology of control energy measures by evaluating the spatial 
correspondence between control energy parameters from our model and known neurotransmitter 
systems described through PET/SPECT receptor maps58. To achieve this, we calculated the spatial 
correlation between PET/SPECT maps (Figure 4A-B) and maps describing regional differences 
in control energy input between alprazolam and placebo conditions (Figure 4C, Supplementary 
Data Files 7). Given the known role of alprazolam as a GABAA receptor modulator27, we expected 
brain regions whose control input varied strongly with drug condition to also be correlated with 
GABAA receptor density. 
 
To calculate regional control input difference maps, we subtracted total control input in each brain 
region (over the simulation time) between alprazolam and placebo sessions. These maps show that 
the effects of alprazolam are mainly located in occipital and fusiform areas, with some effects in 
frontal and orbitofrontal regions (Figure 4C, Supplementary Data Files 7). We then evaluated 
correlations between regional control input difference maps and PET/SPECT receptor maps. 
Surprisingly, we found that correlations between control input difference maps and GABAA 
receptors were not significant (Figure 4D-E). Moreover, in both emotion identification and 
memory tasks, control input difference maps were positively correlated with serotonergic 
receptors, and negatively correlated with dopaminergic receptors (Figure 4D-E).  
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Figure 4. Neurotransmitter receptor profiles are associated with drug effect on control input. (A) 
PET neurotransmitter heatmaps from Dukart et al. (2020). (B) PET map of GABAA expression shown on 
surface renderings of cortical and subcortical areas. (C) Regional differences in average control input on 
alprazolam and placebo (absolute values) during threat emotion identification and memory, shown on 
surface renderings of cortical and subcortical areas. (D-E) Boxplots of subject-level Spearman correlation 
coefficients between PET spatial maps and regional control input differences during threat emotion ID 
(panel D) and threat emotion memory (panel E). Red asterisks indicate the level of statistical significance 
from permutation tests with 500 permutations, corrected for multiple comparisons; * pFDR < 0.05, ** pFDR 
< 0.005, *** pFDR < 0.0005.  
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Discussion 
 
In this study, we applied a network control theory model to investigate the effects of alprazolam 
during facial affect processing in a cohort of healthy controls and first-degree relatives of people 
with schizophrenia. The main findings from our analysis and their implications are discussed 
below. 
 
Control energy measures as an endophenotype of schizophrenia 
 
In our previous study34, we found that alprazolam effects on standard task fMRI measures in 
amygdala were stronger in relatives of individuals with schizophrenia compared to controls during 
emotion identification, suggesting alprazolam could be unmasking underlying GABAergic 
abnormalities. Given these prior results, we expected that alprazolam would also differentially 
influence control energy measures associated with whole-brain emotion-processing activation 
patterns in relatives versus controls. Indeed, we found that alprazolam increased the persistence 
energy associated with brain states during the recall of threatening faces (anger and fear) in family 
members but not in controls. 
 
The persistence energy is the control energy needed to maintain a brain state associated with a task 
and has been previously associated with the cognitive effort required during those tasks43. We 
found further evidence for this relation between energy and effort by demonstrating that increased 
persistence energy is associated with better task performance in a subset of tasks. Since family 
members demonstrated relatively normal behavioral performance, increased persistence energy 
during the processing of threatening faces may represent a compensatory GABAergic mechanism 
that enables them to perform as well as controls. Further investigation into potential compensatory 
mechanisms might uncover promising avenues to target therapeutic drugs that aim to support 
improved cognitive function in schizophrenia. 
 
Control energy measures go beyond traditional measures of activation, instead reflecting brain-
wide network dynamics constrained by underlying white matter architecture43,50,51. Since facial 
affect processing is known to involve a distributed network of brain regions14,15, models that 
capture network-wide brain dynamics are important to investigate the neural substrate of this 
cognitive domain and its modulation by psychiatric disease. Our results add evidence of 
GABAergic abnormalities in family members when processing faces with negative affect, 
unmasked by drug action. Importantly, these abnormalities were measured using network-wide 
readouts, demonstrating that our analyses provide an important complementary approach to 
identifying such effects. Taken together, our results indicate that control energy measures could 
potentially be useful as an endophenotype of schizophrenia. 
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Regions most impacting network control align with the facial affect processing network and 
distributions of neuromodulatory receptors 
 
We sought to understand the impact of different brain regions in driving brain state transitions 
associated with emotion processing, expecting that regions of high importance would align with 
the distributed network associated with facial affect processing14–16. In partial support of this 
hypothesis, we found that brain regions with high control impact during emotion identification and 
memory were primarily in the fusiform and occipital cortices. Fusiform and visual brain regions 
are core components of the classical network associated with facial affect processing14,15,66,67. Our 
mathematical model suggests that the direct and indirect connectivity of these regions with the 
whole brain structural network facilitates efficient coordination of neural dynamics associated with 
performance of face processing behavior, providing novel intuition regarding their role as the “face 
areas” of the brain. 
 
Our analysis also showed that limbic and sub-cortical regions such as amygdala, hippocampus and 
insula did not have high control impact in any emotion category. These regions have been 
classically associated with emotion processing16,68, and their low prominence in our network 
control model is therefore somewhat surprising. Our results may suggest that primary sensory 
areas associated with visual processing exert top-down control on whole-brain activation during 
facial affect processing, while subcortical regions including the amygdala are circumscribed to a 
bottom-up role with limited impact on the rest of the brain. Further, the high prominence of 
fusiform and occipital regions and low prominence of subcortical regions is also consistent with a 
constructive view of emotion69 – the perception of faces constructs a multi-modal explanation of 
the sensory stimuli and context, triggering an emotion reflected in the instance of emotion depicted 
in the face stimuli. 
 
Finally, we sought to understand the underlying biology of alprazolam action during facial affect 
processing by evaluating correlations between drug-induced differences in control input and 
neurotransmitter receptor maps obtained through PET/SPECT imaging. Due to alprazolam’s 
known mechanism of action as a positive allosteric modulator of GABAA receptors27, we expected 
drug-induced differences in control input to align spatially with GABAA receptors. We found that 
these correlations, although trending positive, were not statistically significant. However, drug 
difference maps were positively correlated with serotonergic receptors and negatively correlated 
with dopamine receptors. These results indicate that the effect of alprazolam may manifest 
primarily through driving complementary serotonergic and dopaminergic neuromodulatory 
systems70–72, perhaps shedding light on a possible mechanistic basis of its well-documented 
sedative and anxiolytic effects. Our results align with previous studies which have shown that 
benzodiazepines like most drugs do not act in isolation, and their clinical effects likely result from 
affecting multiple interacting neurotransmitter systems72. Overall, our findings and approach 
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highlight the utility of network control theory in understanding the neurobiological basis of drug 
action in the brain. 
 
Limitations 
 
This study has a number of limitations. The first relates to the sample under study. As discussed 
previously34, the sample studied did not include patients with schizophrenia. The use of control 
energy measures as a schizophrenia endophenotype remains to be tested in larger samples, and 
control energy abnormalities found here in family members will need to be tested in patients with 
frank illness. Further, this particular sample of relatives did not exhibit marked emotion processing 
abnormalities assessed by behavioral performance (Supplementary Data Files 6), unlike previous 
results with larger cohorts8. It is possible that the lack of more pronounced differences in control 
energy parameters between relatives and controls reflects the relative normality of this sample. 
Further, we did not find significant associations between schizotypy scores and control energy 
measures, perhaps reflecting the lack of significant variation in clinical risk for psychosis in this 
sample. Second, while GLM parameter estimates provide a reliable indicator of brain activation 
patterns at the group level in response to task stimuli, this approach fails to account for dynamic 
variations in activation, including latencies in interactions among different brain regions. Recently 
developed network approaches could prove useful in studying the effect of drug and schizophrenia 
status on these dynamics73,74. Lastly, we were able to analyze neuroimaging data only from a 
limited slab that was chosen for high-resolution coverage of a specific set of emotion processing 
areas including fusiform and orbitofrontal cortex in addition to subcortical and limbic regions. The 
power of the network control approach in uncovering whole-brain network dynamics was thus 
limited to regions covered within the slab. Future studies could extend the network control 
approach to whole-brain imaging data obtained during facial affect processing. 
 
Conclusion 
 
In summary, the network control approach described here is a powerful mechanistic framework to 
uncover endophenotypes of psychiatric disease and to investigate the effect of pharmacologic 
manipulation on the brain. Brain regions identified by the network control approach can be used 
to inform more targeted drug development for neuropsychiatric disorders, in addition to informing 
novel regions for stimulation through paradigms such as rTMS75. Further, control energy measures 
represent a readout of brain function and can be used to investigate abnormalities in various 
cognitive domains such as working memory43 and sensorimotor function76. 
 
Code availability 
 
All analysis code is available at https://github.com/arunsm/alpraz-project.git  
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databases may not, in every case, be indicative of gender identity and b) it cannot account for 
intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic category 
of the first and last author of each reference by databases that store the probability of a first and 
last name being carried by an author of color83,84. By this measure (and excluding self-citations), 
our references contain 12.63% author of color (first)/author of color(last), 13.13% white 
author/author of color, 19.37% author of color/white author, and 54.87% white author/white 
author. This method is limited in that a) names and Florida Voter Data to make the predictions 
may not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-
race authors, or those who may face differential biases due to the ambiguous racialization or 
ethnicization of their names. We look forward to future work that could help us to better understand 
how to support equitable practices in science. 
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