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Abstract 15 

With the looming threat of abrupt ecological disruption due to a changing climate, predicting which 16 

species are most vulnerable to environmental change is critical. The life-history of a species is a 17 

promising candidate for explaining differences in climate-change responses, but we now need data 18 

linking population change, weather and life-history to explore these predictions. Here, we use long-19 

term abundance records from 157 species of terrestrial mammals to investigate the link between weather 20 

and annual population growth rates. Overall, we found no consistent effect of temperature or 21 

precipitation anomalies on annual population growth rates, but there was variability in weather 22 

responses for populations within a species. Crucially, however, long-lived mammals with smaller litter 23 

sizes had responses with a reduced absolute magnitude compared to their shorter-living counterparts 24 

with larger litters. These results highlight the role of species-level life-history in driving responses to 25 

the environment. 26 

 27 

Introduction 28 

Climate change is one of the greatest challenges we face in the twenty first century1. Although habitat 29 

loss and direct exploitation are currently the greatest drivers of extinction in the natural world1,2, changes 30 

to the climate are predicted to cause widespread declines to global biodiversity in the coming decades3–31 

5. For mammals and birds, temperature increases are already associated with declining population 32 

trends6 and many endangered species have already been negatively impacted by climate change in at 33 

least part of their range7. Perhaps more worryingly, abrupt ecological disruption due to runaway climate 34 

change has been predicted to have large negative impacts on biodiversity, with tropical ecosystems 35 

being affected as early as 20308. Furthermore, these future impacts will likely be exacerbated by 36 

synergism between the climate and other drivers of extinction such as habitat loss9,10. Research 37 

highlighting the species and ecosystems that are most vulnerable to climate change impacts will 38 

therefore provide crucial knowledge to prevent future losses to global biodiversity. 39 
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 Not all species are equally vulnerable to climate change. Species vary in their climatic niches 40 

and in their behavioural, physiological, and demographic responses to environmental change and we 41 

therefore expect there to be both climate ‘winners’ and ‘losers’11–13. At a macro-scale, species 42 

occupancy data highlight that geographic range shifts are the key response associated with climate 43 

change across taxa, resulting in changes to community composition, but not necessarily population 44 

decline14,15. Recent broad assessments of biodiversity change metrics from species assemblage and 45 

abundance records mirror this paradigm with both occupancy and abundance trend patterns suggesting 46 

a balanced frequency of winners and losers15,16. In the Marine realm, species richness increases were 47 

associated with warming temperatures, consistent with the expectation that warming marine ecosystems 48 

will receive an influx of species tracking suitable temperatures12. However, there was no consistent 49 

temperature-related biodiversity change effect on land12. Changes in species richness and other 50 

biodiversity metrics however do not necessarily equate to population declines. For birds and mammals 51 

average abundance trends were negatively associated with rates of climate warming6. Studies unpicking 52 

how changes in weather patterns cause population change are therefore vital17, and a growing body of 53 

literature is exploring the relationship between the climate and the demographic processes driving 54 

population decline18–22. Applying these concepts at a comparative scale and assessing finer-scale 55 

population changes with respect to changes in the weather, and their relationship to species traits, will 56 

aid in illuminating consistent or disparate climate change responses across the tree of life21,23. 57 

Variation in the demographic responses of organisms climate change suggests that life-history is 58 

a promising target for explaining responses to environmental change. The timing of demographic events 59 

relating to the key demographic rates of survival and recruitment are evolved responses to the 60 

environment, and characteristics relating to both ‘slow’ and ‘fast’ life-histories are therefore adaptive 61 

in different environmental contexts24. Indeed, Pacifici et al.7 concluded that intrinsic traits, including 62 

habitat specialisation and aspects of life-history, were associated with negative climate-mediated 63 

population effects reported in mammals and birds. Life-history differences between three amphibian 64 

species in Western Europe drove differences in survival and reproduction in response to the North 65 

Atlantic Oscillation25. Generally, we expect that organisms with slower life-histories are better-adapted 66 

to cope with fluctuations in the environment. Longer-lived organisms have a reduced relative effect of 67 

variability in vital rates, variability which is expected during environmental change, on population 68 

growth rates26 and long-lived plants have weaker absolute demographic responses to weather23. 69 

Furthermore, the recently developed concept of demographic resilience uses demographic rates 70 

characterising the life cycle of an organism to quantify their resilience to perturbations27. Comparative 71 

approaches linking life-history traits to climate change responses may therefore provide a crucial 72 

predictive link to improve our understanding of climate vulnerability. 73 

In this study, we investigated annual population responses to temperature and precipitation in 74 

populations of terrestrial mammals across the world’s ecosystems. Importantly, we tested whether life-75 

history predicts population responses to the weather, and therefore its utility in assessing vulnerability 76 
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to climate change. We addressed these questions using 486 long-term (≥10 years) abundance records 77 

from 157 species of terrestrial mammal obtained from the Living Planet Database4, by implementing a 78 

two-step meta-regression framework. First, for each abundance record, we assessed how observed 79 

annual population growth rates were influenced by weather anomalies (annual deviation from long-80 

term average weather patterns) using autoregressive additive models that accounted for temporal 81 

autocorrelation in abundance records and overall abundance trends. Then, we used a phylogenetically 82 

controlled Bayesian meta-regression with weather effect coefficients as the response variable to address 83 

three key questions: 1) Are there consistent temperature and precipitation effects on abundance change 84 

across the terrestrial mammals? 2) How are these patterns influenced by covariance both within and 85 

between species, and are there vulnerable biomes? 3) Can species-level life-history traits predict the 86 

magnitude of population responses to the weather? The terrestrial mammals are an ideal study system 87 

to explore the predictors of population responses to climate change because they are a well-studied 88 

group with a combination of intensive abundance monitoring across the globe4, detailed life-history 89 

information for hundreds of species28,29 and a highly-resolved phylogeny to facilitate phylogenetic 90 

comparative analyses30. Furthermore, there is growing evidence from the mammals of the mechanistic 91 

links between the climate, demography, and population dynamics17,20–22.  92 

In light of previous findings from studies exploring biodiversity change metrics and life-history 93 

theory in the context of environmental change, we make the following predictions related to our three 94 

key questions. First, reflecting the complexity of overall biodiversity change and the paradigm of 95 

climate winners and losers12,15,16, we predict that across the mammals there will be no consistent 96 

responses to temperature and precipitation. Second, recent evidence has highlighted phylogenetic 97 

covariance between demographic traits31, which may also scale to population responses. However, 98 

spatial variation between study sites, heterogeneity across a species range and the complex interaction 99 

of demographic traits to drive population dynamics may reduce phylogenetic covariance. Finally, we 100 

predict that organisms with slow life-histories will be more resilient to weather effects, reflecting an 101 

evolutionary adaptation to buffer against fluctuating environments26. We therefore expect responses to 102 

weather to have a higher magnitude in short-living organisms with larger reproductive output compared 103 

to their longer-lived counterparts.   104 

 105 

Results 106 

We assessed population responses to weather in 486 long-term abundance time-series records of 157 107 

species of terrestrial mammals from across the world’s ecosystems (Fig. S1). The time-series records 108 

ranged in duration from 10 years to 35 years, with mean and median record lengths across records of 109 

15.7 and 14 years, respectively (Fig. S1). The records were distributed across 13 terrestrial biomes, 110 

including both tropical and temperate regions, but were generally biased towards north western Europe 111 

and North America. We had records from 12 of 27 mammalian orders recognised by the IUCN Red 112 

List for threatened species32, but most densely in the Artiodactyla (n = 172), Carnivora (n = 127) and 113 
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Rodentia (n = 82) (Fig. S1). The number of records for each species ranged from 1-17, with a mean of 114 

3.1 and median of 2 records per species. 115 

 116 

No consistent population response to weather  117 

Overall, we found no consistent effect of either temperature or precipitation anomalies on annual 118 

population growth rates in the terrestrial mammals (Fig.1). The raw weather effects on population 119 

growth rates, 𝜔, varied across species and records but were centred close to 0, with a mean temperature 120 

coefficient of -0.08 (±0.73 SD; Fig. 1a) and mean precipitation coefficient of 0.02 (±0.36 SD; Fig. 1b). 121 

Furthermore, 95% of records had temperature and precipitation coefficients between -1.87-1.38 and -122 

0.59-0.83, respectively. Nevertheless, approximately 10% (n = 51) of temperature effects and 3% of 123 

precipitation were greater than 1 or less than -1, indicating that small clusters of populations experienced 124 

more extreme annual responses to the weather (Fig.1). Our Bayesian meta-regression, controlling for 125 

both within species variance, phylogenetic covariance and differences in sample size (number of years) 126 

between records, mirrored the lack of consistent weather effects on population growth. The posterior 127 

mean global intercept, �̅�, for temperature effects was 0.07 [-0.17-0.33] (95% credible intervals) and for 128 

precipitation effects was -0.06 [-0.28-0.14] (Fig.1a and Fig.1b). There was, however, a small positive 129 

effect of the number of years of population data for a record and the response to temperature, with a 130 

linear slope, 𝛽𝑁 of 0.09 [0.0-0.18]. Together with the results of the global intercept �̅�, this suggests that 131 

shorter records were associated with more negative temperature effects. Overall, these results highlight 132 

the paradigm of the existence of both winners and losers in weather responses, but no clear effect across 133 

the Mammalia. 134 

 135 

Spatial effects and variation between species 136 

We tested whether there were differences in weather responses among ecological biomes because biome 137 

effects may be indicative of more extreme responses to weather in some habitats. Using leave-one-out 138 

cross-validation, we compared the predictive performance of the model including the effect of biome 139 

relative to the base model, and we found no evidence for an influence of biome on either temperature 140 

(Δelpd = -0.67 relative to base model) or precipitation (Δelpd = -0.73) effects (see Fig. S15-16 for more 141 

information). Furthermore, we explored the role of spatial autocorrelation at driving differences in 142 

weather coefficients across records using Morans I tests and spatially explicit meta-regressions but did 143 

not find evidence for spatial autocorrelation in weather effects (Figs. S18-S20). We also incorporated 144 

both phylogenetic covariance (𝜎𝑃𝐻𝑌𝐿𝑂
2 ) and species-level variance (𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆) to capture both among- 145 

and within-species variation. Interestingly, we found far greater levels of within-species variation in 146 

temperature responses compared to among-species variance (Fig. 1c). The posterior mean for species-147 

level variance in temperature effects was 0.2 [0.01-0.4] which was 20 times greater than the posterior 148 

estimate of 0.01 [0.0-0.03] for phylogenetic covariance (Fig. 1c). Similarly, for precipitation the 149 
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posterior mean for species-level variance was five times greater than for phylogenetic covariance, with 150 

a value 0.05 [0.0-0.15] compared to 0.01 [0.0-0.02] (Fig. 1c). These patterns are reflected in the 151 

temperature and precipitation coefficients, for which large variation can be seen among records of the 152 

same species. For example, Myodes glareolus (bank vole) in the Rodentia had 9 population records, 153 

and a range of temperature/precipitation effects of -1.64-3.59 and -1.27-1.44 respectively, compared to 154 

-3.32-5.67 and -1.27-1.44 across Rodentia as a whole (Fig.1). This result highlights the potential 155 

importance of within-species variability in population responses to environmental change. 156 

 157 

Life-history predicts population responses to weather 158 

Across the terrestrial mammals, we found that both maximum longevity and mean litter size at the 159 

species-level predicted the magnitude of population responses to weather. We tested a set of Gamma 160 

models incorporating univariate, multivariate and 2-way interactions between maximum longevity, 161 

litter size, and adult body mass and their influence on the absolute magnitude of 162 

temperature/precipitation effects using model selection and leave-one-out cross-validation (Table S1 & 163 

S2). As with our Gaussian models of overall weather effects, we found that the sample size of a record 164 

had strong negative impact on the absolute temperature and precipitation responses, with posterior 165 

estimates on the linear predictor scale of 𝛽𝑁 = -0.26 [-0.35- -0.16] and 𝛽𝑁 = -0.35 [-0.46- -0.24], 166 

respectively (Fig. S17). Namely, shorter records were associated with temperature and precipitation 167 

responses of a larger magnitude. We found no association between adult body mass and either 168 

temperature (𝛽𝐵𝑂𝐷𝑌𝑀𝐴𝑆𝑆 = -0.01 [-0.19-0.16]) or precipitation responses (𝛽𝐵𝑂𝐷𝑌𝑀𝐴𝑆𝑆 = 0.03 [-0.20-169 

0.25]). Furthermore, we found no strong evidence for any two-way interactions between life-history 170 

variables (Table S1 & S2). For both temperature and precipitation effects, the most competitive model 171 

was the univariate model including mean litter size (Δelpd = 3.03 and Δelpd = 3.00, compared to the 172 

base model for temperature and precipitation, respectively; Table S1 & S2). However, univariate 173 

models including maximum longevity alone also had a higher predictive performance than the base 174 

model (Δelpd = 0.94 and Δelpd = 1.67 for temperature and precipitation, respectively). In both cases 175 

the second-best predictive model was the one that included univariate effects for longevity, bodymass 176 

and litter size (Δelpd = 2.88 and Δelpd = 2.94; Table S1 & S2). Therefore, we selected the models 177 

including all univariate life-history effects. 178 

 For both temperature and precipitation, our results highlight that shorter-living mammals with 179 

greater litter sizes experienced weather effects of a significantly greater magnitude than longer-living, 180 

slowly reproducing mammals (Fig. 2). The magnitude of weather responses was negatively associated 181 

with longevity, with posterior means on the linear predictor scale of 𝛽𝐿𝑂𝑁𝐺𝐸𝑉𝐼𝑇𝑌 = -0.19 [-0.44-0.07] 182 

and 𝛽𝐿𝑂𝑁𝐺𝐸𝑉𝐼𝑇𝑌 = -0.24 [-0.57-0.07] for temperature and precipitation, respectively (Fig. 2a & 2c). 183 

Thus, a maximum longevity change from 10 months (Akodon azarae) to 80 years (Loxodonta africana) 184 

was associated with a 2.3-fold and 2.9-fold decrease in the predicted magnitude of responses to 185 
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temperature and precipitation. So, for every additional 5 years of life, there was a 14% decrease in the 186 

magnitude of responses to temperature and 18% decrease in the magnitude of responses to precipitation. 187 

An organism’s longevity is strongly correlated to their body mass, but the effect of longevity held 188 

irrespective of whether adult body mass was also included in the model. In contrast, but also following 189 

key predictions from life-history theory, the magnitude of weather responses had a strong positive 190 

association with litter size, with posterior means of 𝛽𝐿𝐼𝑇𝑇𝐸𝑅 = 0.33 [0.13-0.52] and 𝛽𝐿𝐼𝑇𝑇𝐸𝑅 = 0.30 [0.06-191 

0.54] for temperature and precipitation, respectively (Fig. 2b & 2d). In other words, mammals bearing 192 

more offspring in a single litter had greater responses to temperature and precipitation. A change in 193 

litter size from 1 (monotocous species, various) to 17 (Thylamys elegans) was associated with a 4.17-194 

fold and 3.71-fold increase in the predicted magnitude of temperature and precipitation responses. For 195 

every additional offspring invested into at the litter stage, there is a 24% increase in the magnitude of 196 

temperature responses and 22% increase in the magnitude of precipitation responses.  197 

 198 

Discussion 199 

Our results provide an important empirical link between a species’ life-history and its population 200 

responses to environmental change. While we found no consistent patterns of responses to temperature 201 

and precipitation anomalies across the mammals, life-history traits relating to the pace of life were 202 

associated responses to weather. Namely, shorter-living species with increased litters sizes, or species 203 

characterised with ‘fast’ life-history traits, responded with a greater magnitude compared to those with 204 

‘slow’ life-history traits. While it has long been theorised that an organism’s life-history traits evolve 205 

in response to, and as an adaptation to, environmental conditions24, rarely has this theory been tested at 206 

a global scale. We find strong support for the hypothesis that longevity, and ‘slow’ life-history 207 

characteristics more generally, buffer organisms against variability in the environment26 and add to a 208 

small number of studies linking population demography and the climate21,23. Critically, our results 209 

highlight the potential utility of life-history traits for predicting species vulnerability to climate change. 210 

Based on our findings, abrupt ecological disruption from climate change will disproportionately impact 211 

shorter-lived species with higher reproductive output. 212 

 Demography has a vital role to play in predicting population declines in the Anthropocene and 213 

in highlighting targets for conservation management28,33. Our study emphasises this role, demonstrating 214 

the predictive power of demographic life-history traits when investigating responses to environmental 215 

change. However, there are limitations and barriers to the utility of demography in conservation. Only 216 

1.3% of tetrapods globally have sufficient demographic information with which to estimate population 217 

dynamics28. Here, we used summary traits that are available for many species (maximum longevity and 218 

mean litter size), but in particular maximum recorded longevity, while sufficient as a broad indicator, 219 

is strongly influenced by sampling variance and a flawed measure of longevity differences between 220 

taxa34. Ideally, lifetables with mortality and reproduction trajectories across the lifecycle can be 221 

combined data on external drivers to investigate detailed patterns in population dynamics35,36. The 222 
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recent development of the demographic resilience framework, which uses demographic data across the 223 

lifecycle to simulate how a population may respond to perturbations27, has excellent potential in 224 

extending these findings to explore demographic relationships with climate responses in detail. 225 

Unfortunately, however, detailed (st)age-specific demographic information is not currently available 226 

for a majority of species, but growing in availability rapidly37. Therefore, there is a need to continue to 227 

increase the collection of demographic data (and other traits) for many more species than are currently 228 

available28, so that we may predict population changes with respect to environmental change. Achieving 229 

this target may revolutionise the way we quantify species vulnerability to climate change12,15,16,21, 230 

helping to prevent extinctions before they occur. 231 

 In line with recent global assessments of biodiversity in the face of climatic change21, we did 232 

not find an overall consistent effect of weather anomalies on population growth rates. This may in part 233 

reflect the fact that abundance changes are a higher-order process determined by complex interactions 234 

between demographic processes that counteract each other16,21. However, our results contrast with 235 

findings of linear associations between mammal abundance and temperature change6. These differences 236 

may reflect our approach to investigate annual changes, rather than long-term trends. Significant 237 

population trends from long time-series are detectable from smaller component time-series even when 238 

sampling is incomplete38, and thus responses detected in trends may reflect broader changes in response 239 

to the climate that are not detected in models of annual change. Furthermore, we estimated linear, annual 240 

effects of weather on population growth rates, where population responses may actually be more 241 

complex non-linear patterns or lagged effects. However, the detection of climate effects on average 242 

trends may also be confounded by effects of other (sometimes more dominant) drivers (e.g. habitat 243 

loss)2. Nevertheless, our findings can be explained in light of recent studies from the Living Planet 244 

Database that have found that the large majority of records do not exhibit population declines16.  245 

Interestingly, we did not find evidence for phylogenetic covariance in weather responses 246 

between species. Recent evidence from birds indicated strong phylogenetic covariance in vital rates, 247 

particularly in adult survival, and the incorporation of phylogenetic information greatly improved 248 

predictive performance when imputing vital rates31. Therefore, as with overall patterns, our findings 249 

may reflect the trade-offs between vital rates, which cancel one another out when scaling up to 250 

population-level processes such as population growth rates in response to the weather21. Furthermore, 251 

for long-term time-series, there may also be temporal trade-offs in vital rates, where for example 252 

investing heavily into survival in one year (in response to climate) may impact subsequent reproduction 253 

for several years, decreasing the magnitude of population growth rates. The extent of phylogenetic 254 

covariance in vital rate responses and trade-offs remains unknown, understanding how the climate 255 

impacts demographic rates across species may provide a useful tool for imputing population responses 256 

to the climate across the tree of life31. 257 

We highlight the importance of variation in population responses to climate within a species 258 

range. Sampling heterogeneity has recently been shown to have broad implications for metrics of 259 
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population dynamics, where demographic rates are poorly correlated among sampling sites for the same 260 

species39,40. Therefore, inferences obtained from monitoring single populations or studies may not 261 

accurately portray species-level variability. This has broad implications for macroecology, particularly 262 

for population viability assessments (PVA) and species-distribution modelling. First, as well as 263 

suffering from data quality issues in their parameterisation41, our findings suggest that PVAs based on 264 

data from a single population may not accurately reflect population viability across a species’ 265 

geographic range. Therefore, incorporating detailed demographic data, and investigating differences in 266 

population responses across a range, could greatly improve our perspective on population viability36. 267 

Second, presence-only models of species distributions that do not account for the fact that responses to 268 

the environment within a species range do not accurately represent species distributions42. Moving 269 

towards trait-based monitoring and explicitly including demographic processes with mechanistic links 270 

to appropriate drivers into species distribution models could greatly improve predictions of climate 271 

change impacts on the biosphere8. 272 

 Ultimately, improving our predictions of how humans are influencing the natural world is 273 

paramount to prevent rapid declines to global biodiversity43. This however requires a large shift towards 274 

both broad and detailed monitoring of global biodiversity. We show that linking species traits such as 275 

life-history to changes in the environment may equip us with tools to predict and prevent future losses.  276 

 277 

Methods 278 

To assess the effects of weather on population growth rates we collated information on global weather 279 

and the abundance, life-history and phylogeny of the terrestrial mammals. All analyses were carried out 280 

using R version 4.0.444. For all data on the terrestrial mammals, taxonomies were resolved using the 281 

taxize package version 0.9.9845 and matched using the Global Biodiversity Information Facility 282 

database (https://www.gbif.org/). All code used in the current study and full descriptions of the analyses 283 

are archived in the Zenodo repository (doi:10.5281/zenodo.4707232), which was created from the 284 

following GitHub repository https://github.com/jjackson-eco/mammal_weather_lifehistory. 285 

 286 

Time-series abundance data 287 

Annual time-series abundance data from across the terrestrial mammals were obtained from the Living 288 

Planet Database found at https://livingplanetindex.org/data_portal. This database was developed by the 289 

World Wildlife Fund and the Zoological Society of London as a tool to monitor global biodiversity, 290 

and contains over 20,000 population records for over 4000 species of vertebrate4. The records measure 291 

annual abundance in a variety of ways (e.g. full population counts, density, indices), and contain 292 

information on the location, realm, biome and taxonomy of the species in the record. First, we included 293 

only data for the terrestrial mammals that had species-level life-history information and coordinate 294 

locations, which referred to either specific or more general locations for each population (accounted for 295 

using weather data from a buffered radius around each location). We natural-log-transformed the raw 296 
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abundance data to ensure that weather coefficients were comparable across records and abundance 297 

measure types. Because our analyses were focussed on estimating weather effects on annual population 298 

growth rates using regression models with several variables, we included only long-term records with 299 

10 or more consecutive years of abundance data, and only for years in which there was also weather 300 

data (1979-2013). In one record (for Bettongia penicillata), there were two blocks with ≥10 years of 301 

data, which were analysed separately. We also removed records with a high proportion (>32%) and 302 

consecutive occurrences of 0 in the raw abundance time-series. Our final dataset contained 486 records 303 

from 157 terrestrial mammal species, which was used in all subsequent analyses (Fig. S1). 304 

 305 

Global weather data 306 

We used version 1.2.1 of the CHELSA monthly gridded temperature and precipitation timeseries 307 

dataset, which is at a spatial resolution of 30 arc seconds (~ 1km2) for all months between 1979-2013 308 

across the globe’s land surface. The CHELSA datasets can be obtained from Karger et al.46. Raster files 309 

of the raw monthly mean temperature and total precipitation data were processed using the raster, rgeos, 310 

and sf packages47–49. Using the Living Planet Database record coordinate locations as a centroid, we 311 

averaged the monthly weather data for a buffered radius of 5km around each record location to account 312 

for the lack of specificity in record locations using the exactextractr package50. Averaged weather 313 

variables and weather effects for alternate buffer radii (50m and 50km) were highly correlated (Fig. S2; 314 

Fig. S7). Generally, we expect that organisms will respond to deviations in the weather compared to the 315 

average values, as opposed to raw weather variables. Furthermore, across the globes surface the 316 

variance in weather variables changes substantially, which may influence population responses. Thus, 317 

we explored population responses for the key weather variable of standardised annual anomalies, and 318 

then validated our approach using annual weather variance. For the anomalies, we decomposed z-319 

transformed averaged monthly weather data for each location for the full timeseries (1979-2013) using 320 

a Seasonal-Trend Decomposition by Loess (STL). We used a seasonal window of 7 and trend window 321 

of 1000 for the decomposition and extracted the anomaly component, which describes the remainder 322 

when accounting for the trend and seasonal components of the timeseries. We then used annual mean 323 

temperature and precipitation anomalies as the key weather variables in subsequent analyses. These 324 

weather anomalies are the average deviation of the temperature and precipitation from expected values 325 

in a given year. We also investigated population responses to weather using annual weather variance, 326 

which was calculated as the annual variance of monthly mean temperature and total precipitation values. 327 

 328 

 Species-level life-history and phylogeny 329 

We used three key traits that broadly characterise species-level life-history that are available for a large 330 

number of species: maximum longevity, litter size and adult body mass. We collected these traits from 331 

the compendium developed by Conde et al.28, combining information from three primary database 332 

sources: The Amniote Life-History Database29, PanTHERIA51 and AnAge52 databases. Adult body 333 
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mass data was obtained exclusively from the Amniote Life-History Database29. Where multiple records 334 

were available for a single species, we took the largest maximum longevity value and the mean litter 335 

size/adult body mass. We removed erroneous raw litter size data for Hydrochoerus hydrochaeris and 336 

Marmota broweri. For analysis, we z-transformed the natural-logarithm of raw life-history trait data, 337 

and verified that the life-history variables were represented across the range of weather anomaly 338 

variables in the raw data (Fig. S3). The mammal phylogeny was obtained from Upham et al.30, which 339 

uses a ‘backbone-and-patch’ Bayesian approach for a newly assembled 31-gene supermatrix and is part 340 

of the Vertlife project (https://vertlife.org/). We used the maximum clade credibility tree in analysis, 341 

which was processed using the ape package53. Loxodonta cyclotis (African forest elephant) was 342 

considered as Loxodonta Africana (African elephant) for analysis so that the abundance record and 343 

phylogenetic data matched. 344 

 345 

Weather effects on annual population growth rates 346 

To assess comparative population responses to weather in the terrestrial mammals we used a two-step 347 

meta-regression approach. First, for each record we estimated the effect of annual weather anomalies 348 

(and weather variance) on population growth rates. We calculated the realised, proportional population 349 

growth rate in year 𝑡 as 350 

𝜆𝑡 =  
𝑋𝑡+1

𝑋𝑡
,       (1) 351 

where 𝑋 is the natural logarithm of abundance in year 𝑡. Then, with 𝜆𝑡 as the response variable, we 352 

estimated the effect of temperature and precipitation anomalies on population growth using generalised 353 

additive mixed models (GAMMs) fit using the gamm function of the mgcv package54. Changes in 354 

abundance are influenced by several drivers of population dynamics including habitat loss2 and 355 

population processes such as density dependence55, which may confound any influence of the weather 356 

on abundance. Therefore, because we aimed to assess the isolated impact of weather anomalies, 357 

accounting for these trends in abundance and temporal autocorrelation was crucial. We initially 358 

explored the extent of autocorrelation in abundance patterns using timeseries analysis and found 359 

evidence for lag 1 autocorrelation in abundance, but not for greater lags (Fig. S4-5). Furthermore, we 360 

tested the potential impact of density dependence on estimating environmental effects using an 361 

autoregressive timeseries simulation and found that environmental effects were robust to density 362 

dependence even for short timeseries (Fig. S6). Thus, for each record, we model population growth rate 363 

in each year as 364 

𝜆𝑡 =  𝛽0 +  𝜔𝑊𝑡 + 𝑓(𝑦𝑡),       (2) 365 

where 𝛽0 is the intercept and 𝜔𝑊𝑡 is a linear parametric term with coefficient 𝜔 for the weather 𝑊 366 

(temperature or precipitation anomaly) in year 𝑡. Here, positive coefficients indicate that positive 367 

weather anomalies i.e. hotter/wetter years, were associated with population increases, and vice versa. 368 

Identical additive regression models were run using weather variances as the weather variable 𝑊. The 369 
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term 𝑓(𝑦𝑡) captures the effect of year 𝑦𝑡 as a non-linear trend, where the function 𝑓 is a thin plate 370 

regression spline with a basis dimension of five56. The function 𝑓 was also fitted with an order 1 371 

autoregressive (AR(1)) correlation structure, as specified in the nlme package57. Thus, the term 𝑓(𝑦𝑡) 372 

incorporates both the non-linear trend in abundance and temporal autocorrelation. Finally, we validated 373 

our additive model approach by testing other models to calculate weather effects, including linear 374 

regressions both including and excluding temporal trends or density dependence, and a temporally 375 

autocorrelated model fit using the glmmTMB package58 (Fig. S8-S9). Weather coefficients 𝜔  generated 376 

using linear year effects were positively correlated to those from additive models (Fig. S10). 377 

 378 

Bayesian meta-regression 379 

Second, with the weather effects 𝜔 from each record as the response variable, we explored comparative 380 

patterns in population responses to weather using a Bayesian meta-regression framework implemented 381 

in the brms package59. Separate models were fit for temperature and precipitation. Bayesian meta-382 

regression was used to address three key questions: 1) Were there consistent population responses to 383 

weather across the terrestrial mammals? 2) How did population responses vary within and between 384 

species and were there spatial patterns across biomes? 3) Does life-history predict the magnitude of 385 

population responses? To address questions 1 and 2, we used Gaussian models controlling for both 386 

phylogenetic and species-level covariance. The full model for record 𝑖 and species 𝑗 is given by equation 387 

3 388 

  389 

 390 

 391 

 392 

                                                                                                                                 393 

 394 

 395 

 396 

 397 

 398 

where the weather effect 𝜔 (z-transformed for analyses), is given by a multivariate normal distribution 399 

with mean 𝜇 and phylogenetic covariance matrix 𝑺. The global intercept is given by �̅�, which estimates 400 

overall patterns in weather effects across records, addressing question 1. We incorporated phylogenetic 401 

covariance using a Brownian motion model, with the correlation matrix given by 𝑽 (calculated from 402 

the maximum clade-credibility tree) and variance factor 𝜎𝑃𝐻𝑌𝐿𝑂
2 , from which between-species variance 403 

was estimated. We incorporated an intercept-only varying effect for species with the term 𝛼𝑆𝑃𝐸𝐶𝐼𝐸𝑆[𝑗], 404 

from which within-species variance was estimated with 𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆. The term 𝛽𝐵𝐼𝑂𝑀𝐸 gives the spatial 405 
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effect of biome on weather responses. Thus, estimating within (𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆) species variance, between 406 

(𝜎𝑃𝐻𝑌𝐿𝑂
2 ) species variance and the spatial effect of biome (𝛽𝐵𝐼𝑂𝑀𝐸), we explored question 2. All meta-407 

regression models also included the linear effect of record length 𝑁 (scaled number of years in the 408 

record) on weather effects, which was estimated using 𝛽𝑁. For all meta-regression models, we used 409 

regularising priors obtained from prior predictive simulations of the slope, intercept and exponential 410 

variance terms60,61, to reflect the constraints in the raw data across species (see S1 and Fig. S11-14 for 411 

details). Gaussian meta-regression models were also fit for weather effects calculated using the annual 412 

weather variance, and the results obtained were largely identical to those obtained for weather anomalies 413 

(Fig. S21).  414 

 415 

For question 3, although on average we expect that species life-history influences the magnitude of 416 

responses to the environment, we have little evidence to suggest that life-history per se influences the 417 

directionality of responses26. Thus, to address this question we explored how maximum longevity, litter 418 

size and adult body mass influenced the absolute magnitude of weather responses, |𝜔|, using Gamma 419 

regression models with a log link. The full model for record 𝑖 and species 𝑗 is given by equation 4  420 

 421 

 422 

where 𝜂 is a shape parameter that was fit with a Gamma prior, and 𝐿𝐻 refers to a set of linear life-423 

history terms (𝛽1𝑥1 + ⋯ 𝛽𝑘𝑥𝑘) that were explored using model selection. Specifically, for the three life-424 

history traits, we explored a set of models incorporating univariate, multivariate and 2-way interaction 425 

terms, as well as a base model excluding all life-history effects. For the full set of ten candidate models 426 

please refer to the supplementary information (table S1 & S2). All life-history effects were fit with the 427 

same Normal prior, with mean 0 and standard deviation 0.3 (S1; Fig. S13). We assessed the predictive 428 

performance of candidate models using leave-one-out cross-validation implemented in the loo 429 

package62. Models were compared using the Bayesian LOO estimate of out-of-sample predictive 430 

performance, or the expected log pointwise predictive density (elpd)62. All final meta-regression models 431 
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were run over 3 Markov chains, with 4000 total iterations and 2000 warmup iterations per chain. Model 432 

convergence was assessed by inspecting Markov chains, and the degree of mixing between chains using 433 

�̂�. 434 
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Figure 1. Global population responses to weather in the terrestrial mammals. Heatmaps for 563 

population responses to temperature (a) and precipitation (b) for 157 species of terrestrial mammal. 564 

Each row of the heatmap is a species, and coloured rectangles are the population records. The colour 565 

denotes the coefficient of temperature/precipitation effects derived from autoregressive additive 566 

models. Here, positive numbers indicate that positive temperature/precipitation anomalies 567 

(hotter/wetter than average in a given year) were associated with increases in population size, and vice 568 

versa. The distribution half-eye plots in (a) and (b) (top) are summaries of the posterior distribution for 569 

the global intercept (�̅�) of temperature and precipitation responses across records, fit with a Gaussian 570 

Bayesian meta-regression. The points give the approximate posterior mean and the error bar is 571 

calculated using a cumulative distribution function. Bayesian models were fit incorporating 572 

phylogenetic covariance using the maximum clade credibility tree from Upham et al.59, which is plotted 573 

on the right with annotations indicating the mammal order60. The distribution half-eye plots in (c) are 574 

the posterior distribution summaries for phylogenetic covariance and within-species variance from the 575 

Gaussian Bayesian meta-regression. 576 
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 577 

Figure 2. Life-history predicts population responses to weather in the terrestrial mammals. Each 578 

panel presents the mean absolute effect of temperature (a & b) and precipitation on population growth 579 

rates, |𝜔|, for standardised maximum longevity (a & c) and standardised mean litter size (b &d). 580 

Standardisation was performed using a z-transformation of natural-log of the raw life-history trait. The 581 

values on each x-axis are split into equal bins of 0.2 from the minimum to the maximum life-history 582 

value. Points are coefficient means, with standard error bars. The black lines are the mean posterior 583 

predictions from the best predictive model, where predictions were calculated averaging over all other 584 

covariates and varying effects in the model. The shaded intervals are the 80% prediction intervals 585 

calculated in the rethinking package60. Panel insets give posterior distribution summaries for the slope 586 

terms presented in each panel. Two points are omitted from the plotting panel due to large mean 587 

coefficient values and high standard errors, which are visible on the plot. 588 

 589 
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