
1 
 

Highly task-specific and distributed 1 

neural connectivity in working memory 2 

revealed by single-trial decoding in 3 

mice and humans 4 

Daniel Strahnen1, Sampath K.T. Kapanaiah1, Alexei M. Bygrave2, Birgit Liss1,3, David M. 5 

Bannerman4, Thomas Akam4, Benjamin F. Grewe5, Elizabeth L. Johnson6,7, Dennis Kätzel1,* 6 

 7 

1Institute of Applied Physiology, Ulm University, Ulm, Germany 8 

2 Department of Neuroscience, Johns Hopkins University, USA 9 

3Linacre College and New College, University of Oxford, Oxford, UK 10 

4Department of Experimental Psychology, University of Oxford, Oxford, UK 11 

5Institute of Neuroinformatics, ETH Zürich, Zürich, Switzerland 12 

6Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA 13 

7Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State 14 

University, Detroit, MI, USA 15 

* Correspondence: dennis.kaetzel@uni-ulm.de; +49 731 500 33770; Fax +49 731 500 16 

33779; Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, 17 

Germany 18 

Words: 5580 (excluding Abstract, Methods, References, Figure legends) 19 

Figures: 8; Supplementary Figures: 14 20 

Supplementary Tables: 6  21 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440621
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract  22 

Working memory (WM), the capacity to briefly and intentionally maintain mental items, is key 23 

to successful goal-directed behaviour and impaired in a range of psychiatric disorders. To 24 

date, several brain regions, connections, and types of neural activity have been correlatively 25 

associated with WM performance. However, no unifying framework to integrate these 26 

findings exits, as the degree of their species- and task-specificity remains unclear. Here, we 27 

investigate WM correlates in three task paradigms each in mice and humans, with 28 

simultaneous multi-site electrophysiological recordings. We developed a machine learning-29 

based approach to decode WM-mediated choices in individual trials across subjects from 30 

hundreds of electrophysiological measures of neural connectivity with up to 90% prediction 31 

accuracy. Relying on predictive power as indicator of correlates of psychological functions, 32 

we unveiled a large number of task phase-specific WM-related connectivity from analysis of 33 

predictor weights in an unbiased manner. Only a few common connectivity patterns emerged 34 

across tasks. In rodents, these were thalamus-prefrontal cortex delta- and beta-frequency 35 

connectivity during memory encoding and maintenance, respectively, and hippocampal-36 

prefrontal delta- and theta-range coupling during retrieval, in rodents. In humans, task-37 

independent WM correlates were exclusively in the gamma-band. Mostly, however, the 38 

predictive activity patterns were unexpectedly specific to each task and always widely 39 

distributed across brain regions. Our results suggest that individual tasks cannot be used to 40 

uncover generic physiological correlates of the psychological construct termed WM and call 41 

for a new conceptualization of this cognitive domain in translational psychiatry.  42 

  43 
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Introduction 44 

Working memory (WM) refers to the capacity to store and manipulate contents of perception 45 

and thought at the forefront of attention over seconds to minutes1,2. Several psychiatric and 46 

neurological disorders are characterised by severe and pharmaco-resistant impairments of 47 

WM3. Studies in humans, non-human primates, and rodents4 have centrally implicated the 48 

prefrontal cortex (PFC)5–12, parietal cortex11,13, medio-dorsal thalamus (MD)14,15, and 49 

hippocampus8,16–21 in WM processes. In particular, connectivity between these brain 50 

structures correlates with the performance in specific tasks11,22–24 (see Supplementary Table 51 

1 for an overview of rodent studies). 52 

However, it remains elusive which kinds of neural connectivity actually mediate WM. Several 53 

- partially conflicting – reports suggest that specific brain regions, frequency bands25–27 and 54 

types of inter-regional coupling (or metrics to analyse) are essential for WM. Studies in 55 

rodents, for example, have implicated network oscillations in either the delta ()28, theta 56 

()27,29,30, beta ()14,26, or gamma ()25 frequency, in coupling between such frequency bands 57 

(esp. )31 or between oscillations and local spiking of neurons14,27,31–33, or in interactions 58 

between either the ventral (vHC)31,33 or dorsal hippocampus (dHC)26,29,34 and PFC. On a T-59 

maze rewarded-alternation task, both vHCPFC connectivity33 and dHC-PFC coupling via 60 

the thalamic nucleus reuniens34 have been claimed to mediate the encoding of WM-contents 61 

using optogenetic inhibition experiments. In addition to this diversity of findings in rodents - 62 

which mainly originate from recordings in spatial alternation tasks (Supplementary Table 1) - 63 

it remains largely unknown to what extent the discovered WM substrates generalize across 64 

different tasks and species.  65 

Moreover, it remains unclear if this diversity of reported associations between specific neural 66 

activities and WM performance implicates that, indeed, several types of connectivity and 67 

connections are engaged in WM simultaneously. Alternatively, it could be due to differences 68 

between task paradigms, species, specific rodent models, or analysis procedures. Several 69 

factors may explain the current uncertainty regarding the physiological correlates of WM. 70 
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This includes the difficulty of separating correlates of more basic functions like motivation, 71 

spatial processing, and attention from the actual WM component of the task - especially in 72 

rewarded-alternation assays that are mostly used in rodents (Supplementary Table 1)35. 73 

Further uncertainty arises from the typical analytical approach of correlating within-subject 74 

averages of performance (WM accuracy score)26,29,31, trial type (correct vs. incorrect)33, or 75 

trial phase (sample vs. choice phase)30,33 with within-subject averages of a select 76 

connectivity measure. Such correlations do not necessitate mechanistic causation but could 77 

be indirect or even epiphenomenal. Finally, the streetlight effect has recently been 78 

highlighted as a rather principal limitation of studies of physiological correlates of 79 

psychological function36. In this context, this term denotes the missing of neurophysiological 80 

correlates due to a biased selection of only few investigated brain regions, connections, or 81 

activity parameters. We recently showed that the rich plethora of widely used functional 82 

connectivity measures indeed contains a considerable number of non-redundant metrics37, 83 

which entails the possibility for seemingly contradictory findings and inconclusive null results. 84 

To identify inter-regional neural connectivity that is associated with WM in mice and humans, 85 

we addressed these issues in several ways: First, we comparatively assessed three distinct 86 

visual WM tasks in each species. In mice, we applied an operant 5-choice delayed-87 

matching-to-sample (DMTS) task as well as a T-maze-based and an operant 2-choice 88 

delayed-non-matching-to-sample (DNMTS) task. In humans, we analysed an existing 89 

dataset where three distinct task types which featured the same temporal structure and were 90 

inter-mixed within one session20. Therefore, in each species, the non-WM related differences 91 

between the applied tasks were relatively small, which benefits an optimal comparison of the 92 

neurophysiological basis of different types of WM. Second, during these tasks, local field 93 

potentials (LFPs) were simultaneously recorded from four sites (PFC, dHC, vHC, and MD 94 

thalamus) in rodents, and from three sites (PFC, medial temporal lobe, MTL, and 95 

orbitofrontal cortex, OFC) in humans. Third, to maximize connectivity-related information 96 

obtained from these multi-site recordings, we extracted a large set of measures of inter-97 
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regional neural coupling. The composition of this set was optimized based on our prior 98 

analysis of redundancies between the most commonly used LFP-based coupling metrics37. 99 

Each metric was determined in three or four task phases, four or five frequency bands, and 100 

as both absolute and relative measures. This yielded a total of 960 and 1344 connectivity 101 

measures in mice and humans, respectively, in addition to ~240 measures of local activity. 102 

Finally and most importantly, we applied machine learning (ML) to predict WM choices on a 103 

single-trial basis from these high-dimensional patterns of functional connectivity. Data-driven 104 

approaches have recently been deployed to reduce the streetlight effect36,38–40. These 105 

studies have applied unsupervised classification procedures to extract electrophysiological 106 

correlates of stress responses39, depression vulnerability38, and anxiety36 from connectivity 107 

patterns obtained from multi-site LFP-recordings in mice, collectively termed the electome. 108 

To establish a largely unbiased search for WM correlates within high-dimensional electome 109 

patterns, in contrast, we translated the supervised, trial-based nature of WM tasks (pre-110 

defining choices as correct or incorrect) into our analysis10,21,24,33,41,42. Implementing a 111 

supervised decoding analysis allowed us to harness the power of prediction to prove the 112 

presence of behaviourally relevant information in complex patterns of neural signals43. The 113 

possibility of trial-by-trial prediction of WM-based choices from the spiking activity of large 114 

ensembles of neurons in rodent PFC10,33, monkey inferior temporal cortex41, or human 115 

hippocampus21 has recently been demonstrated. In these attempts, however, prediction was 116 

done with classifiers that were trained specifically for a single animal and task session, since 117 

the predictor variables were individual neurons. In contrast, we applied ML across datasets 118 

from multiple subjects and sessions and used connectivity and activity metrics from multiple 119 

sites as predictor variables. In this way, subsequent quantification of the predictive power of 120 

each electrophysiological variable allowed a largely unbiased identification of connectivity 121 

patterns associated with WM in mice and humans as verified by trial-by-trial predictive 122 

power.  123 

 124 
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Results 125 

Correct choices in DMTS working memory are associated with distinct 126 

signatures of connectivity 127 

To evaluate associations between WM and electrophysiological measures of inter-regional 128 

connectivity, we first implanted mice with chronic field electrodes in PFC, MD, vHC, and dHC 129 

and tested them in three spatial working memory (SWM) tasks (Fig. 1a-f): first, an operant 130 

DMTS 5-choice SWM (5-CSWM) task, subsequently the T-maze rewarded alternation task, 131 

and finally an operant DNMTS 2-choice SWM (2-CSWM) task. To allow for simultaneous 132 

LFP recordings during operant tasks, we developed a custom-designed operant box 133 

optimized for implanted and tethered animals (Fig. 1c) that is tightly integrated with 134 

electrophysiological recordings via pyControl software and microcontroller modules44. The 135 

set of three tasks (Fig. 1d-f) was chosen to retain comparability due to their shared visuo-136 

spatial nature and distinct individual differences (i.e., operant DMTS vs. DNMTS; maze-137 

based DNMTS vs. operant DNMTS). In addition, the T-maze task was included due to its 138 

wide usage (see e.g., Supplementary Table 1). The 5-CSWM was specifically designed to 139 

limit the usage non-WM mediation strategies by the animal - due the large number of choice 140 

configurations, requirement to shuttle between opposite walls of the box, and delay-periods 141 

in total darkness, as we described in detail recently45. Also, both operant tasks provide tight 142 

control over the timing of behavioural events and deliver intrinsic control variables for WM-143 

enabling psychological functions like attention, measured by sample phase (SP) accuracy, 144 

and motivational drive, measured by reward latency. In each task, we applied extensions of 145 

the delay between the SP and the choice phase (CP) across which the memorized 146 

information needed to be maintained in order to strongly engage WM capacity. As expected 147 

for WM assays2, such delay challenges significantly decreased WM choice accuracy of the 148 

mice (Fig. 1g-i).  149 

 150 

 151 
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 152 

Fig. 1 | Rodent SWM tasks. (a) Timeline of experiments in the analysed cohort (see 153 

Methods). (b) Illustration of electrode placements in the mouse brain (image taken from 154 

Allen Brain Atlas); pairs of electrodes were inserted into PFC and vHC. (c) Lack of 155 

obstruction of tethered mice with mounted headstage during poking of choice hole (top) and 156 

reward collection (bottom) in custom-made pyControl operant boxes. (d-f) Illustration of 157 

DMTS 5-CSWM45 (d), T-maze rewarded alternation (e), and DNMTS 2-CSWM (f) tasks; in 158 

(d,f), choices in SP and CP need to be made at the 5-choice wall (top), while rewards for 159 

correct responses in each phase are collected on the opposite wall (magenta, bottom). (e-i) 160 

WM performance measured as response accuracy in the CP (% correct choices relative to 161 

available indicated options) in 12 mice in each set of challenge conditions including their 162 

respective baseline with simultaneous electrophysiological recordings. Delay length 163 

determining the WM challenge stated on x-axes; for operant tasks (e,j) pre- + post-delay 164 
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(referring to set delays before and after SP-reward collection) are indicated. SP-SD, stimulus 165 

duration in sample phase. Asterisks indicate differences between challenge, Sidak-post-hoc 166 

tests conducted after significant main effect of challenge, RM-ANOVA. Orange line, chance 167 

level performance. * P < 0.05; ** P < 0.01; *** P ≤ 0.001.  168 

 169 

To initially explore possible WM correlates among measures of neural connectivity, we 170 

computed time-resolved spectrograms of four largely non-redundant37 connectivity metrics 171 

aligned to the time of correct and incorrect SP and CP responses for the distinct phases of 172 

the 5-CSWM task (non-directed: coherence, Coh; weighted Phase-Lag-index, wPLI; 173 

directed: Granger causality, GC; partial directed coherence, PDC; Supplementary Fig. 1-2). 174 

We subtracted spectra of correct SP responses or incorrect CP responses from those of 175 

correct CP responses to eliminate neural representations of poking action, execution of a 176 

reward-related response, and attention (Fig. 2a-d, Supplementary Fig. 3). This qualitative 177 

analysis suggested a complex pattern of connectivity associated with correct WM decisions, 178 

including elevated hippocampal-prefrontal connectivity in the low -range (30-48 Hz) 179 

immediately after the CP response (Fig. 2a-b) and sustained connectivity in the PFCMD 180 

and vHCdHC -range (5-12 Hz) during the delay (Fig. 2c-d). 181 
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 182 

Fig. 2 | Connectivity in the DMTS 5-CSWM task. (a-d) Spectrograms depicting min-max 183 

normalized coherence (Coh) and Granger causality (GC) for the connections stated above 184 

each triplet panel for the delay and CP of the 5-CSWM task, temporally aligned to the choice 185 

poke entry (p, vertical magenta lines) showing 6 s before until 1 s after the choice poke (x-186 

axes in (d)); the start and end of the post-delay shown by white stripes corresponding to 187 

mean±SD as determined by CP response latency. Each triplet shows the absolute value 188 

(left), the difference between the former and either the prior correct SP (middle), or incorrect 189 

CPs (right). Horizontal white lines show borders between analysed frequency bands, stated 190 

on the left. See Supplementary Fig. 1-2 for spectrograms of absolute values in correct and 191 

incorrect trials of the CP and SP, respectively, and Supplementary Fig. 3 for the same 192 

display as (a-d) for wPLI and PDC. 193 

 194 
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Trial-by-trial prediction of DMTS WM-mediated choices from local and long-195 

range neural activity 196 

The ability to predict behavioural choices from neural activity may be regarded as evidence 197 

that such activity encodes aspects of these choices33,43. We assessed individual connectivity 198 

variables as five separate connectivity metrics (Coh, wPLI, GC, PDC, and cross-regional  199 

phase-amplitude coupling, PAC) in four task phases (SP, pre-reward delay, post-reward 200 

delay, CP; see Fig. 1d), and four frequency bands (, 1-4 Hz, , 5-12 Hz, , 15-30 Hz, low-, 201 

30-48 Hz) along 4 connections (as shown in Fig. 2a-d). In the same way, indicators of local 202 

activity (power and local  PAC) were calculated within the four involved regions (dHC, 203 

vHC, PFC, MD). Additionally, all metrics were calculated in relative terms by dividing their 204 

obtained value by the value of that specific metric during the inter-trial-interval (ITI) before 205 

the start of the respective trial. This resulted in 240 variables for each inter-regional 206 

connection and 56 intra-regional activity variables for each area characterizing every 5-207 

CSWM trial. We trained subspace discriminant classifiers – which proved superior among 25 208 

different types of linear and non-linear classifiers (Supplementary Fig. 4) - to predict WM-209 

choice trial-by-trial using the parameters contributed by each connection or region separately 210 

for trials of the final 5-CSWM challenge (1 s SP stimulus duration, SP-SD, 5 s delay; Fig. 211 

3a). A single decoding model was generated across all subjects and its decoding accuracy 212 

was determined by predicting trials that were not part of the training dataset, i.e. by cross-213 

validation. 214 

We found that individual 5-CSWM choices could be decoded with 79.4% and 79.8% 215 

maximum average accuracy when using measures of neural connectivity along the PFC-MD 216 

or the PFC-dHC connection as predictors, respectively (Fig. 3b). Using one-way ANOVA and 217 

pairwise Tukey post-hoc tests, we established a hierarchy between decoding accuracies 218 

obtained from each of the four connections and four regions. Decoding accuracies obtained 219 

from PFC-MD, PFC-dHC, local dHC and MD activity did not differ from each other and were 220 

superior to the remainder (Fig. 3b). Even though decoding accuracies varied by connection 221 
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and region, they were always significantly better than those of control classifiers trained with 222 

shuffled labels (P < 10-17, t-tests) which, in turn, decoded indistinguishable from the 50% 223 

chance level on average (Fig. 3b). To evaluate the generality of the obtained classifiers, we 224 

assessed if they could also decode WM-based choices in data from other 5-CSWM 225 

challenge protocols. Even though the resulting decoding accuracies were generally lower 226 

compared to those achieved with data from the same protocol, they were still significantly 227 

higher than those of classifiers trained with shuffled labels (Supplementary Fig. 5). These 228 

analyses reveal that WM-based choice is encoded in LFP-based connectivity and activity 229 

measures in individual trials and that such information is widely distributed across multiple 230 

brain regions. 231 

 232 

Fig. 3 | Trial-by-trial decoding of WM-based choice. (a) Illustration of ML-based decoding 233 

analysis (see Methods). (b-c) Cross-subject decoding accuracies achieved on average when 234 

using connectivity or local activity parameters of the indicated individual connections (black) 235 

or areas (grey), respectively to predict WM-based correct vs. incorrect choices in the DMTS 236 
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5-CSWM task (combined 1 s SP-SD, 5+2 s delay challenge, 2 sessions; red, b), the DNMTS 237 

2-CSWM task (baseline, 2 sessions, green, b), the T-maze WM task with either 5s (solid 238 

blue, 4 sessions, c) or 30s (dashed blue, 4 sessions, c). Thinner dotted lines show decoding 239 

accuracies of corresponding classifiers trained with shuffled labels, remaining at chance 240 

level (50%, orange). Classifiers trained with real labels perform better than those trained with 241 

shuffled labels in all cases (P < 10-17, t-tests, not indicated). The accuracy of 80% is coloured 242 

in purple to aid comparison. Numbers in coloured ovals indicate the rank of the prediction 243 

accuracies achieved on average by using data from the respective connection or region. 244 

Ranks have been generated from pairwise comparisons with Tukey post-doc tests 245 

conducted after significant effects of connection/region in one-way ANOVAs (P < 0.0001 in 246 

all cases); connections/regions that were not significantly different from each other were 247 

assigned the same rank. Black stars in (b) indicate differences of accuracy values achieved 248 

in the two operant tasks (Tukey post-hoc tests after significant effect of task-type in ANOVA 249 

across all three tasks). Blue stars in (c) indicate pairwise differences between the two delays 250 

(uncorrected t-tests). ** P < 0.01; *** P ≤ 0.001. Shaded regions around mean show s.e.m. 251 

across 100 classifiers generated for each task and connection or region. 252 

Specific connections and regions are engaged differently in distinct rodent 253 

WM tasks 254 

To investigate if this conclusion applies generally to rodent WM, we repeated the same 255 

analysis for the operant DNMTS data (final baseline sessions, 2 s delay). In this case, 256 

however, we obtained the maximum average prediction accuracy (86.1 %) from local dHC 257 

activity, rather than PFC-MD (66.1%, lowest rank of all classifiers) or PFC-dHC (73.5%) 258 

connections. Generally, in this task, local activities allowed relatively high decoding 259 

accuracies (72-77% for PFC, MD, and vHC), while coupling metrics were significantly less 260 

predictive (66-68%, P < 0.001, Tukey; except for dHC-PFC, Fig. 3b).  261 

In reverse, trial-by-trial decoding of T-maze data achieved the highest average accuracies 262 

(82-88%) when using connectivity data from either one of the four connections (with dHC-263 
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connections being most predictive), whereas local activities were significantly less predictive 264 

(62-79%; P < 0.001, Tukey, Fig. 3c). However, decoding accuracies for information from all 265 

4 connections decreased when analysing data from the 30 s delay challenge, in which these 266 

animals also showed lower behavioural performance (Fig. 1h, 3c), suggesting that not only 267 

task type but also task difficulty affect the information encoded in each connection.  268 

Specific connections and regions are engaged differently in distinct phases of 269 

the rodent DMTS 5-CSWM task 270 

The prior analyses entail at least two conclusions: Firstly, WM-related information in a single 271 

trial is not encoded in any single region or connection, although some of them bear higher 272 

predictive power regarding WM-choice than others. Secondly, the predictive power of a 273 

given region or connection is not uniform but strongly depends on the type of WM task, 274 

indicating that different mechanisms and regions are engaged to solve distinct behavioural 275 

demands. These conclusions re-emphasize the question as to what extent oscillatory 276 

processes in distinct frequency bands, of a distinct biological type, or in a specific task phase 277 

(encoding, delay, choice) can be regarded as correlates of WM (Supplementary Table 1). 278 

To answer this question, we took advantage of the fact that a linear classifier reveals the 279 

predictive power of each involved predictor variable according to its assigned weight. We 280 

performed Bonferroni-adjusted t-tests comparing the weights for each connectivity variable 281 

with the weights assigned by the classifiers trained on label-shuffled control data, and, 282 

additionally, conducted t-tests comparing the amplitudes of each variable between correct 283 

and incorrect trials that contributed to the classifiers. Variables for which both t-tests were 284 

significant were considered as bearing WM-related information (indicated by colour in Fig. 285 

4a). This analysis revealed a relatively small set of consistent WM-related feature-classes as 286 

correlates of DMTS 5-CSWM, a majority of them in the -range (Fig. 4b): (1) PFCMD - 287 

and -range connectivity in the SP, (2) MDPFC - and -range as well as dHC-vHC 288 

range connectivity in the delay, (3) dHCPFC and MD-PFC -range as well as vHC-PFC 289 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440621
http://creativecommons.org/licenses/by/4.0/


14 
 

-range coupling in the CP, and (4) intra-hippocampal -connectivity in all phases (Fig. 4c-290 

d; see also 5c).  291 

 292 

Fig. 4 | Individual connectivity measures predicting WM choice in mice. (a) Matrix 293 

showing all connectivity predictor variables that contributed to the connection-based 294 

classifiers shown in Fig. 3b,c. Variables that were significantly associated with WM-295 

performance according to both their prediction weight and differences between correct and 296 
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incorrect CP (t-tests, Bonferroni-adjusted for total number of variables, see (b)) in any of the 297 

three WM tasks are indicated by the corresponding colour, remainder in grey (white squares 298 

have no corresponding variable). Variables from the pre- and post-delay in the 5-CSWM are 299 

combined in single lines. For , mean amplitude (m), peak amplitude (p) and frequency of 300 

peak (f) are shown, while for all other frequency bands only the mean amplitude is used due 301 

to the absence of a clear singular peak. At the bottom, all task phases are combined and 302 

only connectivity metrics that are predictive in all three tasks (in at least one phase) are 303 

indicated in black. (b) Share of each connection (coded by colour) and frequency band 304 

(stated around pie chart with separations in blue) among all significant predictors (N stated in 305 

centre) for the indicated task. (c-d) Values of absolute (c) or relative (d) predictor variables 306 

for DMTS WM (extracted from (a)) in correct (blue) and incorrect (red) trials (left axes). Bars 307 

in the background, referenced to by right axis, show absolute values of average predictor 308 

weights normalized within each classifier (i.e., connection) coded by their colour. 309 

Significance is not indicated as it applies to all shown variables. Blue font, directional 310 

connectivity in the opposite direction compared to connection-name. Error bars, s.e.m. (e, f) 311 

Left: Number of variables identified as significant based on ML predictor weight (light green), 312 

difference between correct and incorrect trials (medium green), or both (dark green) in 313 

dependence on the P-value adjustment (y-axes) in the DNMTS (e) and T-maze (f) tasks. 314 

Right: Share of predictor variables as depicted in (b) for the P-levels indicated in green. 315 

 316 

Given the prominence and high predictor weights of CP parameters (Fig. 4c-d) - which align 317 

with the arising -band connectivity immediately after the CP-poke (Fig. 2a-d) - we wondered 318 

if the predictability of WM-choice (Fig. 3b) actually relied mainly on identifying a 319 

representation of anticipated reward. Therefore, we replicated the decoding analysis for SP 320 

choices for which animals also expect reward. For the SP, however, average decoding 321 

accuracies were – although still above the 50% chance level - considerably smaller, namely 322 

64-68 % and 54-59 % for predictions based on connectivity and local activity, respectively 323 
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(Supplementary Fig. 6a). While this result shows that the attentional element of the task is 324 

more difficult to predict from the available parameters than WM choice, it also demonstrates 325 

that the obtained CP prediction accuracy was not simply based on representations of motor-326 

action (hole-poking), attention, or reward anticipation. We also repeated the decoding 327 

analysis for CP choice with complete omission of all CP parameters. Even though average 328 

decoding accuracies decreased significantly for some connections, including the most 329 

predictive ones (PFC-dHC, 72%, PFC-MD, 73.9%) - but not for vHC-dHC (72%) - overall 330 

accuracies remained far above those obtained from classifiers trained on shuffled labels, 331 

and hence above chance level (P < 10-30 and P < 0.002 for classifiers trained on connectivity 332 

or local data, respectively; Supplementary Fig. 6b). Overall, these analyses demonstrate that 333 

activities along distinct connections and in distinct frequency bands represent encoding (SP), 334 

maintenance (delay), and recall (CP) of WM contents in the 5-CSWM task. 335 

WM-related functional connectivity is highly task-specific in mice 336 

To investigate if such phase-specific connectivity generalizes across tasks, we performed 337 

the same analysis for the classifiers predicting performance in the operant DNMTS and the 338 

T-maze assays. In both cases, considerably more parameters carried WM-related 339 

information than in the 5-CSWM task (Fig. 4a-b). Compared to DMTS WM, T-maze 340 

rewarded alternation choice was predicted by a much larger number of predictors, with a 341 

prominence of - and -range (as opposed to -range) variables, and a considerable 342 

proportion of SP-parameters (Fig. 4a-b). This pattern is reflective of the diversity of 343 

connectivity parameters that have been associated with T-maze performance in prior studies 344 

(Supplementary Table 1), and the relatively detrimental effects of optogenetic manipulations 345 

in the SP and delay, as compared to the CP33,34,46.  346 

Most astonishingly, the combined analysis of all three tasks revealed that none of the 347 

specific connectivity parameters identified in one task bore significant predictive power in the 348 

other two tasks, revealing a remarkable task-specificity of such parameters (Fig. 4a). It is, 349 

however, possible that this finding is simply caused by a very conservative Bonferroni-350 
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adjustment of the P-value used as significance threshold (0.05/number of all connectivity 351 

and activity variables combined; 0.05/1184 for the 5-CSWM, 0.05/888 for the T-maze and 2-352 

CSWM). To test this possibility, we repeated the above analysis while relaxing this 353 

adjustment incrementally over four orders of magnitude (Fig. 4e-f). However, the number of 354 

identified significant parameters, the relative contribution of different frequency bands, and 355 

especially the extreme sparseness of overlap between task-specific predictors changed 356 

relatively little (Fig. 4e-f, Supplementary Fig. 7-8). This analysis also revealed that far more 357 

connectivity parameters are identified according to their prediction weight than according to 358 

their amplitude difference between correct and incorrect trials (Fig. 4e-f). This suggests that 359 

the classical approach of correlating behavioural performance with the amplitude of a given 360 

metric (Supplementary Table 1) likely misses a sizable proportion of WM-related functional 361 

connectivity. 362 

To investigate potential differences or similarities between the time-course of individual 363 

parameters during the task, we extracted those spectral connectivity parameters that were 364 

predictive across all three assays albeit in different phases: directed dHCPFC -365 

connectivity and intra-hippocampal -range coupling (Fig. 4a). Inspection of the time-course 366 

of these parameters over the delay and CP revealed that they behaved rather differently in 367 

the individual tasks: dHCPFC -connectivity showed a transient increase during the delay 368 

of all three tasks, but only in the operant tasks a second increase occurred immediately after 369 

correct choices (but not after incorrect choices; Fig. 5a-b). Intra-hippocampal -coupling 370 

even showed a different time course in every task, including a correct choice-specific 371 

decrease in the 2-CSWM delay which contrasted sharply with a steady rise during the T-372 

maze delay (Fig. 5a-b). Thus, even within the few predictor variables that are relevant across 373 

all tasks, the actual physiological activity relating to the behaviour differed markedly. 374 

Given these results, we directly tested the hypothesis that distinct activity patterns underlie 375 

the different rodent WM tasks by rendering task-type a dependent variable: we trained 376 

classifiers to decode which one of the three tasks a subject is currently conducting using 377 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440621
http://creativecommons.org/licenses/by/4.0/


18 
 

connectivity or local activity parameters from correct trials as input. Based on connectivity 378 

data, task-type could be decoded with average accuracies of 97-99% when discriminating 379 

between the two operant tasks (50% chance level) and with an accuracy >90-95% when 380 

discriminating between all three tasks simultaneously (33.3% chance level; Supplementary 381 

Fig. 9). 382 

 383 

Fig. 5 | Individual connectivity measures predicting WM choice in all tasks in ice. (a) 384 

Spectrograms for metrics (stated on the left) that were predictive in all three tasks (albeit in 385 
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different phases; named at the top) are shown as absolute values and as difference between 386 

correct and incorrect CP responses, -6s until +1s around the choice; relevant frequency 387 

bands are  (top) and  (bottom). (b) Average temporal evolution of those metrics in units of 388 

their value during the preceding ITI aligned to the choice point in each task (vertical grey 389 

line, poke or exit from decision zone) during correct (blue) and incorrect (red) trials. (c-e) 390 

Depictions of directed connectivity (arrows, derived from GC or PDC) or non-directed 391 

coupling (round-ended arcs, coherence or wPLI) during the three phases of each task 392 

identified on the left, derived from significant predictor variables shown in Fig. 4a. For 393 

connections where there is a directed connectivity metric of the same frequency, a non-394 

directed metric in the same frequency band is not depicted. Line weights indicate the change 395 

in connectivity amplitude in the stated phase relative to the preceding ITI (irrespective if the 396 

indicated metric was significant as absolute or relative measure). Measures that are 397 

significant but where the amplitude in the indicated phase is identical or smaller than in the 398 

ITI are shown as dotted lines. P, -PAC. (f) Average decoding accuracies obtained with 399 

classifiers calculated with a reduced number of predictor variables are shown as a function 400 

of the number of added predictors, whereby the addition was done in order of normalized 401 

prediction weight obtained with all variables (Fig. 3b,c) for DMTS (red) and T-maze (blue) 402 

and the named connections. Chance level (50%) and 80% accuracy are indicated by 403 

coloured lines. Shaded area, s.e.m. 404 

Common WM-related connectivity patterns shared across rodent tasks 405 

To extract commonalities of connectivity between the three tasks, we aggregated predictive 406 

non-directed (coherence, wPLI) and directed (GC, PDC) metrics (extracted from Fig. 4a) and 407 

depicted their amplitude increases relative to the preceding ITI for each task phase (Fig. 5c-408 

e). For the T-maze (the only task for which prior reference data exists), this revealed several 409 

connectivity patterns associated before with rewarded alternation performance, including 410 

vHC-PFC33 and dHC-PFC34 coupling during encoding and MDPFC -range activity during 411 

maintenance across the delay14,46. Importantly, MD-PFC -range delay activity was also 412 
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seen in the other two WM tasks, although their directionality differed (MDPFC in the DMTS 413 

task; PFCMD in the DNMTS task; Fig. 5c-e). Likewise, further task-independent 414 

connectivity patterns emerged in this analysis: prominent vHC-PFC /coupling and vHC-415 

dHC coupling in the CP, and MD-PFC  coupling in the SP (but with task-dependent 416 

directionality; Fig. 5c-e). Some further patterns were shared only by the two DNMTS tasks, 417 

e.g., directed PFC-dHC - and -connectivities in the SP and delay (Fig. 5d-e). At the same 418 

time, this analysis also confirmed that the vast majority of WM-related connectivity was task-419 

specific, especially when comparing the 5-CSWM DMTS to the other two tasks (Fig. 5c-e). 420 

An important aspect of this analytical approach is that none of these individually highlighted 421 

connectivity measures (Fig. 4a, 5c-e) is particularly predictive on its own: When performing 422 

decoding analysis with reduced sets of predictor variables – starting with the parameter with 423 

the single highest weight and adding variables incrementally – the inclusion of several dozen 424 

predictor variables was necessary to achieve maximum decoding accuracy (Fig. 5f).  425 

Predictive power of local activity in a single area varies by task phase and type 426 

Local oscillatory activity in the four analysed regions also allowed considerable prediction 427 

accuracy in all three tasks - sometimes even exceeding that obtained from connectivity 428 

metrics (Fig. 3b-c). Therefore, to reveal WM-related local activity metrics, we repeated the 429 

prior weight-based analysis for the respective variables (power, local PAC). In the 5-CSWM 430 

DMTS task only CP parameters, mostly in the /-range, were significantly associated with 431 

WM (Fig. 6a). For the two other tasks, in contrast, significant predictors came from all three 432 

phases and were somewhat less frequency-specific; the power of dHC-oscillations across all 433 

frequency bands and phases constituted the most prominent cluster of choice-predictors in 434 

both assays (Fig. 6a). In agreement with the high decoding accuracy obtained with local 435 

activity (as opposed to connectivity) in the DNMTS 2-CSWM (Fig. 3b), many more significant 436 

local predictor variables were found for this task compared to the other two, irrespective of 437 

P-value threshold (Fig. 6b). Importantly, however, there was again hardly any overlap 438 

between significant predictors from the three tasks. Also, while in DMTS WM all predictive 439 
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activity parameters had higher amplitudes in correct trials compared to incorrect trials, this 440 

was not the case for the T-maze, where virtually all predictive hippocampal activity was 441 

lower in correct trials compared to incorrect trials – only PFC and MD power were higher in 442 

correct trials (Fig. 6c-d). Hence, as observed in inter-regional connectivity, local activities 443 

related to WM-choice were highly task-specific in multiple respects. 444 

 445 

Fig. 6 | Local activity measures predicting WM choice in all tasks. (a) Display and 446 

analysis as in Fig. 4a, but for all local activity parameters that contributed to the region-447 

based classifiers shown in Fig. 3b,c. Variables that were significantly associated with WM-448 

performance according to both their prediction weight and differences between correct and 449 

incorrect CP (t-tests, Bonferroni-adjusted for total number of variables) in any of the three 450 

WM tasks are indicated by the corresponding colour, remainder in grey (white squares have 451 

no corresponding variable). (b) Number of variables identified as significant based on ML 452 

predictor weight (light green), difference between correct and incorrect trials (medium 453 
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green), or both (dark green) in dependence on the P-value adjustment (x-axes) in the named 454 

tasks. (d-e) Values of absolute (left) or relative (right) predictor variables for DMTS (e) or T-455 

maze (f) WM (extracted from (a)) in correct (blue) and incorrect (red) trials (left axes). Bars in 456 

the background, referenced to by right axis, show absolute values of average predictor 457 

weights normalized within each classifier (i.e., connection) coded by their colour. 458 

Significance is not indicated as it applies to all shown variables. Error bars, s.e.m. 459 

Trial-by-trial decoding of WM-mediated choices from local and long-range 460 

neural activity in humans 461 

It remains unclear if highly task-specific and widely distributed WM correlates are only found 462 

in rodents or also in human WM. To clarify this question, we used a dataset of intracranial 463 

LFP (iEEG) recordings made in 8 human subjects from three sites -  PFC, OFC, and MTL – 464 

during three types of WM assays whose trials were intermixed within a single test session: 465 

identity-related WM (differentiating between identical and novel shapes), spatial WM, and 466 

temporal WM (remembering the temporal order of two stimuli; Fig. 7a-b)20. For each of the 467 

three tasks, we applied the same ML-approach as in mice, generating classifiers that use 468 

activity data from four phases (SP, pre-cue- and post-cue delay phases, CP; see task 469 

schedule in Fig. 7a) from only a single connection or region at a time.  470 

Average decoding accuracies for trial-by-trial prediction of WM-choices were higher than 471 

those achieved in mice, ranging consistently between 87-90% for predictions based on 472 

connectivity and between 72-82% for predictions based on local activity, whereas 473 

“predictions” based on shuffled control data remained significantly lower (P < 10-40, t-tests) 474 

and were not different from chance level (50%; Fig. 7c). We also trained classifiers on the 475 

combined data from all three inter-regional connections and three regions – either separately 476 

for each task-type or combining all types of trials indiscriminately. For task-specific 477 

classifiers, average decoding accuracies reached 87.6%, 90.8%, and 89.8% for identity-478 

related, spatial, and temporal WM, respectively, i.e., no higher than what could be achieved 479 

by connectivity data from the single best connection in each task (Fig. 7d). However, 480 
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decoding accuracy dropped to 79.4% if task-paradigms were intermixed (Fig. 7e) suggesting 481 

that functional connectivity is, at least partially, task-specific. Task-specific prediction 482 

accuracies of up to 91% could also be obtained without including CP connectivity measures 483 

(Supplementary Fig. 10). Furthermore, in two cases, an average prediction accuracy of up to 484 

81% could even be achieved if using connectivity data from only a single task phase – either 485 

the SP in temporal WM or the post-cue delay in spatial WM (Fig. 7f; Supplementary Fig. 10). 486 

Strikingly, in both cases, prediction accuracies – and hence information contents - of all 487 

three connections were always similar to each other, suggesting a broad presence of WM-488 

related neural substrates across the brain. 489 

 490 

Fig. 7 | Single-trial based prediction of WM choice in humans. (a) Display of the 491 

structure of the three human WM tasks, according to ref. 20 (see Methods). (b) Placements 492 

of electrodes as projected onto the left hemisphere, irrespective of actual hemisphere of 493 

each electrode. (c) Cross-subject decoding accuracies achieved on average when using 494 

connectivity or local activity parameters of the indicated connections (black) or areas (grey), 495 
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respectively, to predict WM-based correct vs. incorrect choices in the tasks coded by colour 496 

on the left. Accuracies achieved by classifiers trained with randomly shuffled labels are 497 

shown as coloured dotted lines; they are consistently lower than accuracies achieved by 498 

classifiers trained with real labels in all tasks and connections/regions (P < 10-40, t-tests, not 499 

indicated) and assume chance level (50%, orange). Accuracies of 80% (yellow line) and 500 

90% (black dotted line) are indicated to aid comparison. Shaded area represents s.e.m. 501 

Numbers in circles colour-coded for the respective paradigm indicate the rank of the average 502 

decoding accuracies achieved using data from the respective connection or region. Ranks 503 

have been generated from pairwise comparisons with Tukey post-doc tests conducted after 504 

significant effects of connection/region in one-way ANOVAs (P < 0.0001 in all cases); 505 

connections/regions that were not significantly different from each other were assigned the 506 

same rank. (d) Decoding accuracies achieved when using the classifiers trained on 507 

predictors from all connections/regions combined (e) Similar analysis as (d) but with trials 508 

from all three paradigms inter-mixed. Blue and grey in (d-e) depicts performance of 509 

classifiers trained on trials with correct or incorrect (shuffled) labels (stars indicate t-test 510 

comparisons between them). Error bars, data range without identified outliers which are 511 

highlighted in red; boxes, range between 25th-75th percentile; dot, median. (f) Similar 512 

analysis as in (d) but using only SP variables from the connection indicated by colour as 513 

predictors. Red lines indicate mean, boxes the 25th and 75th percentile, whiskers indicate 514 

data range without outliers, and red crosses indicate outliers. See also Supplementary Fig. 515 

10 for analysis but using only predictors from single task-phases.  516 

WM-related functional connectivity is highly task-specific and broadly 517 

distributed in humans 518 

In order to identify possible correlates of WM in humans, we analysed the prediction weights 519 

of the individual connectivity metrics similarly as for the mouse dataset, again extracting 520 

WM-related metrics based on the two criteria of prediction weight and a different amplitude 521 

of the metric in correct trials compared to incorrect trials (Bonferroni-adjusted t-tests). As in 522 

mice, WM-related measures (185 out of 1344 connectivity predictor variables) were widely 523 
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distributed across connections, frequency bands, and metric types. When inspecting the 524 

matrix of significant predictors more closely, some regularities emerged (Fig. 8a): First, WM-525 

related activity was highly task-specific with 88% of significantly WM-related connectivity 526 

metrics being relevant in only a single paradigm. Only a single metric was predictive in all 527 

three paradigms – OFCPFC post-cue delay -PDC. The principle task-specificity was 528 

maintained also with relaxed P-value thresholds (Supplementary Fig. 11-12). Second, by far 529 

the most – and the most common - predictors emerged in the -band, irrespective of 530 

significance threshold (Fig. 8a-b, Supplementary Fig. 11, 13-14). The -band - in contrast to 531 

mice - contributed almost no WM-related variables (only one each in spatial and temporal 532 

WM, confined to the OFC-MTL connection). Also, the -band bore relatively few WM-related 533 

connectivity parameters, and these were mostly relevant for spatial WM and to a lesser 534 

extent for identity WM, but hardly for temporal WM. Furthermore, --PAC appeared rather 535 

relevant (as found in the same data before20) in all three types of tasks, especially identity-536 

related WM. Third, changes of a metric relative to the ITI before each trial were rarely 537 

predictive. Finally, despite the relatively high decoding accuracy achieved for temporal WM 538 

(Fig. 7c-d), the number of connectivity metrics related to this WM-type was considerably 539 

smaller (18 out of 1344 measures) than for the other two (72 and 95) and there was hardly 540 

any overlap between these metrics and those relevant for the other two WM-paradigms (only 541 

3 each, mostly in the -band; Fig. 8a-b). In summary, the analysis in humans confirms the 542 

high task-specificity, and broad anatomical and frequency-range distribution of WM-related 543 

neural activity already seen in mice.  544 
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 545 

Fig. 8 | Highly task-specific and broadly distributed correlates of human WM. (a) Matrix 546 

showing all connectivity predictor variables that contributed to the classifiers shown in (8d) 547 

and were significantly associated with WM-performance according to their weight and 548 
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differences between correct and incorrect CP (see Results) in the paradigms coded by 549 

colour (see legend on the right). For , mean amplitude (m), peak amplitude (p), and 550 

frequency of peak (f) are shown, while for all other variables only the mean amplitude is 551 

used. The -band contributed three predictors each as this frequency was split into a high- 552 

and low--range in addition to using the whole range (30-100 Hz). See Supplementary Fig. 553 

11 for the same analysis with relaxed P-value correction and Supplementary Fig. 13-14 for 554 

prediction weights of the same variables. (b-d) Share of each connection (coded by colour) 555 

and frequency band (stated around pie chart with separations in blue) among all significant 556 

predictors (N stated in centre) for the indicated task. The significance threshold has been 557 

Bonferroni-adjusted either by the total number of predictor variables from all connections and 558 

regions (1548, corresponding to analysis in panel (a); b), or by the number of connectivity 559 

variables for a single connection (448; c), or a standard threshold of 0.01 was chosen (d). (e-560 

g) Depictions of directed connectivity (arrows, derived from GC or PDC) or non-directed 561 

coupling (round-ended arcs, coherence or wPLI) during the four phases of each task 562 

identified on the left, derived from significant predictor variables shown in (a). Line weights 563 

indicate the increase of connectivity in the stated phase relative to the preceding ITI. 564 

Measures that are significant but decrease in the respective phase relative to the ITI are 565 

shown as dashed lines. Significant coupling metrics are not depicted if directed measures 566 

are represented in both directions. P, -PAC. 567 

Common -band connectivity across human WM tasks 568 

To scrutinize this conclusion, we searched for commonalities between tasks by aggregating 569 

predictive non-directed (coherence, wPLI) and directed (GC, PDC) metrics and the multiple 570 

measures within the - and -bands (extracted from Fig. 8a), and depicted their amplitude 571 

change relative to the preceding ITI for each task phase (Fig. 8e-g), as previously done for 572 

the mouse dataset (Fig. 5c-e). In this analysis, OFC-PFC -coupling during encoding and 573 

directed OFCPFC/MTL -connectivity during the post-cue delay emerged as common 574 

patterns present in every task. There were also more commonalities between spatial and 575 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440621
http://creativecommons.org/licenses/by/4.0/


28 
 

identity WM, namely -coupling between all three regions that was elevated throughout 576 

encoding and delay phases and then decreased below ITI-levels in the CP (Fig. 8e-f). 577 

Strikingly in fact, all significant predictors from the -range in these tasks showed 578 

elevated amplitudes during encoding and delay, but decreased amplitudes during the CP, 579 

compared to their amplitude in the preceding ITI (Fig. 8e-g). Only  and -PAC predictor 580 

variables increased in amplitude during the CP in spatial WM (Fig. 8f). Finally, even with this 581 

aggregated analysis, not a single connectivity pattern that was shared between any two 582 

tasks emerged outside the -band in any task phase (Fig. 8e-g). This analysis suggests that 583 

human WM generally relies on anatomically broad, task phase-specific modulation of -584 

connectivity between several brain regions irrespective of task, while the engagement of 585 

oscillatory coupling in other frequency bands is task-specific. 586 

 587 

Discussion 588 

Here we demonstrate that WM-related choices can be predicted trial-by-trial in mice and 589 

humans using linear decoding of high-dimensional arrays of LFP-based measures of inter-590 

regional connectivity or local activity (the electome). The high decoding accuracies of around 591 

90% (compared to a chance level of 50%) achieved in both species are remarkable 592 

considering the spatially coarse nature of the extracted neural signal, the short – often sub-593 

second – data traces used to calculate predictors, the intrinsic variability caused by merging 594 

data from all analysed individuals with varying electrode placements, and the lack of precise 595 

neuronal information as encoded in spike trains of individual neurons10,21,33,41,47. Using the 596 

trial-by-trial predictive power of physiological activity as the indicator for its association with 597 

WM42, this approach enabled a largely unbiased top-down analysis to reveal an 598 

unexpectedly rich pattern of frequency-specific connectivity changes during individual 599 

phases of distinct WM assays in mice and humans.  600 
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The comparative analysis of multiple WM assays - including those that allow control over 601 

basic motivational and attentional parameters - provides a unique advantage in that 602 

neurophysiological activity patterns which might be truly relevant to WM may be isolated. In 603 

this way, we could reveal MD-PFC  and -range coupling during memory encoding and 604 

maintenance, respectively, as well as vHC-PFC and vHC-dHC -coupling during retrieval 605 

as common connectivity patterns across all three rodent tasks - although the vast majority of 606 

connectivity proved to be task-specific (Fig. 5c-e). In humans, -band connectivity across all 607 

analysed connections was commonly linked to WM-choice across tasks, while WM-related 608 

connectivity in other frequency bands was mostly task-specific (Fig. 8). 609 

Against a backdrop of widely varying assumptions about which kind of neural connectivity 610 

underlies WM (see Introduction), our analysis was initially motivated by the possibility to 611 

extract “true” anatomical and frequency-related WM-correlates using the predictor weights 612 

generated by the linear classifiers that decode WM-based choices with high accuracy. Our 613 

results, however, refute some implicit key assumptions of this endeavour – and, by 614 

extension, of many prior investigations of WM-correlates: First, there is no single – or small 615 

set of – anatomical regions or connections, types of directional information transmission, or 616 

frequency bands that can be regarded as a unique WM correlate. Indeed, previously 617 

suggested “correlates”, especially in the rodent literature (Supplementary Table 1), could 618 

appear as such only because the sum total of connections and measures investigated in 619 

each study was small (streetlight effect), as opposed to the 1184 and 1584 metrics analysed 620 

here in mice and humans, respectively. In our study, virtually every analysed frequency 621 

band, metric, connection and region bore some predictive power regarding WM-mediated 622 

choice.  623 

Second, there is no single behavioural WM-task that could be regarded as representative of 624 

the generic psychological construct termed “working memory” in order to allow the 625 

identification of the neurophysiological correlate of that construct. The latter is illustrated by 626 

the enormous variability in the patterns of predictive connections and metrics across task-627 
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paradigms in both species. In other words, a physiological variable that correlates with 628 

choice accuracy in the T-maze represents a neurophysiological correlate of T-maze 629 

performance, but not necessarily of WM. The same principle applies to our cross-species 630 

comparison, as the uncovered candidates for a generic (task-independent) WM correlate 631 

originated from different frequency bands in humans () than in rodents (). A 632 

translational implication of these findings is that it is likely impossible to define 633 

neurophysiological underpinnings of “working memory” as a uniform psychological construct. 634 

However, the existence of certain tasks that represent such a psychological function (i.e., 635 

that engages a physiological mechanism that is central to all WM tasks across species) is an 636 

implicit key assumption of the Research Domain Criteria (RDoC) approach, which envisions 637 

to use those representative paradigms in search of WM-enhancing cellular and molecular 638 

targets48. Our data suggest that the key target variable in the preclinical discovery of WM-639 

enhancing compounds might be the appropriate regulation of -range connectivity (given its 640 

importance for human WM) rather than behavioural performance in any particular rodent 641 

task.  642 

The analysis of the human dataset, in particular, paints a rather different picture of what a 643 

correlate of WM could be – at least when searched for in LFP-data. In all three tasks, 644 

prediction accuracy calculated from connectivity (as opposed to local activity) metrics was 645 

not only very high, but it was also roughly equal between the three analysed connections, 646 

even though these are anatomically quite distinct. This was the case even with the limited 647 

analysis incorporating only SP or post-cue delay connectivity as predictors of spatial WM. 648 

These findings may be taken as an indication that WM-related information is extremely 649 

broadly distributed, and - rather than specific activity located in a certain connection or 650 

region - it is the ability to manipulate information flow across brain regions as such, that 651 

determines task performance49,50. This model is in line with the ever growing list of brain 652 

areas that are implicated in WM, including the superior frontal51, anterior cingulate52,53 and 653 

sensory cortex54,55, ventral tegmental area28, and the nuclei of the midline and anterior 654 
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thalamus4,9,34, and the concept that different areas may be involved depending on the 655 

strategy used to solve the task54. An unexpectedly broad anatomical representation of 656 

sensory and behavioural information across the brain has recently been uncovered by 657 

decoding activity of individual neurons in multiple cortical areas56,57, and our decoding 658 

analysis of LFP-based connectivity in cognition underscores this phenomenon. 659 

In conclusion, our multi-area decoding approach and cross-task cross-species comparative 660 

analysis revealed not only a rich functional connectivity supporting WM, exceeding the WM-661 

associated connectivity described before. It also demonstrated an unexpected task- and 662 

species-specificity of WM-related neural coupling that raises substantial caution regarding 663 

the predictive translational value of each assay and demands to re-think our search for 664 

physiological WM-correlates. 665 

  666 
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Methods 667 

Animals and surgery 668 

All experiments were performed in accordance to the German Animal Rights Law 669 

(Tierschutzgesetz) 2013 and were approved by the Federal Ethical Review Committee 670 

(Regierungsprädsidium Tübingen) of Baden-Württemberg, Germany (licence number 671 

TV1399). The rodent cohort, surgery and histology details have been described in our prior 672 

publication of the open-field data from the same cohort37. Briefly, 12 C57BL/6N wildtype 673 

mice, including 8 males, were selected from offsprings of an in-house colony (heterozygous 674 

Gria1tm1Rsp mice; MGI:2178057)58, group-housed in Type II-Long individually ventilated 675 

cages (Greenline, Tecniplast, G), enriched with sawdust, sizzle-nestTM, and cardboard 676 

houses (Datesand, UK), and subjected to a 13 h light / 11 h dark cycle. The mice were 677 

implanted with electrodes at ca. 9 months of age, after 2 months of training in the DMTS-WM 678 

task and prior habituation training (see below). Single polyimide-insulated tungsten wires of 679 

50 µm diameter (WireTronic Inc., CA, US) were implanted, with reference to Bregma (in 680 

mm), into the PFC (AP +1.8-1.9, ML 0.3-0.35; 1.8-1.9 below pia), MD (AP -1.2, ML 0.3, 2.7 681 

below pia), dHC (AP -1.9-2.0, ML 1.5, 1.4 below pia), and vHC (AP -3.1-3.2, ML 2.9-3.0, 682 

3.4 mm for single and 3.8-3.9 mm for dual electrodes below pia). In most mice, dual 683 

electrodes were used for PFC and vHC, whereby the second electrode was placed about 684 

0.5 mm higher than the stated distance from pia. Both hemispheres were implanted at 685 

roughly equal proportion. Stainless steel screws (1.2 mm diameter, Precision Technologies, 686 

UK) were implanted in the contralateral hemisphere ca. 1 mm from the midline above the 687 

cerebellum (AP -5.5) for ground and above the anterior frontal cortex (AP +4.0) for additional 688 

reference (used for the analysis in the open-field test, but not for the present analysis), and 689 

where connected with a 120 µm PTFE-insulated stainless steel wire (Advent Research 690 

Materials Ltd., UK; Fig. 1b). All electrode wires were connected to pins in a dual-row 6-pin or 691 

8-pin connector (Mill-Max, UK). Electrode placements were determined post-mortem from 692 

electrolytic lesions made under terminal ketamine/medetomidine anaesthesia followed by 693 
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perfusion-fixation. Misplaced electrodes were excluded, leaving the following number of 694 

used electrodes per region; PFC: 12; dHC: 7; vHC: 9; MD: 4. The resulting number of 695 

contributing connections were PFC-dHC: 7; PFC-vHC: 9; vHC-dHC: 6; MD-PFC: 4. 696 

Operant DMTS 5-CSWM task 697 

The principal schedule of the task was as previously described45 and emulates the combined 698 

attention and memory (CAM) task previously developed in rats59. In the present study, the 699 

task was conducted in custom-designed pyControl-based operant boxes that were optimized 700 

for both simultaneous electrophysiological recordings and the acquisition of the 5-CSWM 701 

task (operant box design-files and task-scripts implementing all task paradigms used in this 702 

study available from https://github.com/KaetzelLab)44. The latter was done by using a 5-703 

choice poke-wall with a larger distance between the holes (3 cm edge-to-edge; 4.5 cm 704 

centre-to-centre), which we chose because of the long learning time in our standard 705 

commercial boxes used before45. Briefly, each trial of the task is divided into a sample phase 706 

(SP), a delay-phase (delay) - which is further sub-divided into a pre-delay and a post-delay 707 

by the time point of reward collection - the choice phase (CP), and the inter-trial interval (ITI). 708 

In the default state, the task is conducted in the dark (house-light off) with the only 709 

illumination deriving from the poke- and receptacle holes in certain task phases. The SP is 710 

identical to that of the 5-choice-serial-reaction-time task (5-CSRTT), except that premature 711 

responses are not punished: one of the 5 holes in the 5-choice wall is illuminated for a 712 

certain stimulus duration (SP-SD) and mice need to poke into that hole within the limited 713 

hole time (SP-SD plus 1 s) in order to obtain a small reward (20 l or, in stages 2 and 714 

onwards, 10 l strawberry milk) at the receptacle at the opposite end of the wall during the 715 

pre-delay time. The reward-collection (receptacle exit) starts the post-delay (2 s in all cases) 716 

after which the originally presented hole and one randomly assigned other hole is illuminated 717 

(thereby starting the CP) for a certain stimulus duration (CP-SD, 5 s for all protocols shown 718 

in Fig. 1). Mice have to poke into the same hole as in the SP, realizing a DMTS-rule, in order 719 

to obtain a large reward (60 l). After a 5 s ITI a new trial starts with the SP. Incorrect pokes 720 
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or omissions in the SP or CP lead to a 5 s time-out period (house-light illuminated; reward 721 

omitted) and the start of a new trial after an ITI of 5 s. Before training, mice were habituated 722 

to the operant box, to consuming the strawberry milk (Müller®, Germany) reward from the 723 

receptacle, and to poking into the 5-choice wall to obtain a reward (acquisition of the basic 724 

operant cycle).  725 

Subsequently, training was conducted through multiple stages across which the task 726 

became incrementally more difficult due to a shortening of SDs and an increase in the 727 

number of CP-stimulus configurations (see Supplementary Table 5). During pre-surgery 728 

training – in order to compare performance between groups – no performance-based staging 729 

was applied, but instead all mice were trained on the stage 1 for the same number of 21 730 

days, and then transitioned through the remaining three training stages (2-4) with 2-3 d of 731 

training per stage. Parameters defining the stages are found in Supplementary Table 5. 732 

Sessions lasted 30 min throughout, and were conducted on 5 d/week. Training was 733 

continued ~4-5 weeks after surgery on the baseline stage (4) for 5 weeks to allow the mice 734 

to approach asymptotic performance. Subsequently, mice were trained further for 3 weeks in 735 

a tethered mode, with the headstage (see below) mounted on their heads, in a baseline 736 

protocol with shorter SD in SP (10 s) and CP (5 s; stage 5) to increase the number of 737 

obtained trials and better standardize the encoding time. Subsequently, mice were taken 738 

through three series of challenge protocols with intermittent training on the baseline stage 5. 739 

The same challenge was conducted on 2-3 consecutive days in order to obtain sufficient 740 

trials for later analysis. The three series were (a) pure delay challenges, where the pre-delay 741 

was extended from 0 to 5 and 10 s, (b) a distraction challenge with an illumination of the 742 

house-light for 0.5 s starting randomly timed between 0.8-1.3 s of the 2 s post-delay phase, 743 

and (c) a combined attention (SP) and working memory challenge with an SP-SD of 1 s 744 

(instead of the 2 s of the specific baseline stage 6 of this challenge) and a pre-delay of 5 s, 745 

which was preceded by a sole attention challenge (1 s SP-SD, 0 s pre-delay). Most of the 746 

analysis shown uses the data from the final (combined) challenge, although decoding 747 
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analysis was also conducted for the other challenges in order to replicate the analysis and, 748 

additionally, to assess the capacity of cross-prediction between classifiers from entirely 749 

different challenge-conditions (Supplementary Fig. 5). The post-delay remained 2 s, starting 750 

with the exit from the reward receptacle and spent in darkness, throughout all challenge and 751 

baseline protocols. 752 

Operant DNMTS 2-CSWM task 753 

The operant DNMTS task followed the same principal trial-schedule as the 5-CSWM task 754 

except for two modifications: the implementation of a non-match-to-position rule (i.e. animals 755 

are rewarded for choosing the illuminated CP poke-hole that is not the one, that they poked 756 

in the SP) and a simplified set of choice options using always only holes 2 and 4 of the 5-757 

choice wall (making it similar to a task developed by Goto & Ito60). Mice were trained in this 758 

task only after the T-maze (see below) in order to ease the switching from the prior, opposite 759 

task-rule. All mice were trained for 30 training sessions on the 2-choice DNMTS task, then 760 

were tested in two delay challenges, in which the pre-delay was extended to 5 and then 10 s 761 

(2 d each). A subset was then trained in a 5-choice version of the same task (i.e. the 762 

DNMTS-version of the 5-CSWM task) for 12 d without and for 3 d with headstage mounted, 763 

but performance in many mice was not sufficient, and hence mice were returned to the 2-764 

choice version and trained for a further 5 d with mounted headstage. The other subset 765 

moved directly to 5 d of training with mounted headstage. Then, recordings were conducted 766 

on two days with baseline training and two days each for two delay challenges, in which the 767 

pre-delay was extended to 5 and then 10 s. Given the relatively low performance in the delay 768 

challenges, the data from the two baseline days was used for further analysis of 769 

electrophysiology data. In all protocols, the SP-SD was 8 s, the CP-SD was 5 s, the limited 770 

hold time exceeded the SD by 1 s, ITI and time-out were each 5 s, the post-reward delay 771 

was 2 s (spent in darkness), the SP reward was 10 l, and the CP reward 60 l. 772 
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Non-matching-to-position T-maze rewarded alternation SWM task 773 

Rewarded alternation-based SWM was tested in a T-Maze with transparent walls (10 cm 774 

high), intransparent floor (red PVC), and food wells (made from white Teflon®) placed in the 775 

end of all three arms. Sliding doors could be used to block off either of the two choice arms 776 

in the SP and the initial 10cm partition (containing the food-well) of the start arm during the 777 

delay and ITI. Before testing mice were habituated to the surroundings and to the condensed 778 

milk reward (10% Ja!-Kondensmilch®, Germany, diluted 1:1 with drinking water) at first 779 

cage-wise and later independently. The task schedule was identical to what we previously 780 

described26,  involving ten trials per day each consisting of an SP and a CP. During the SP, 781 

mice were placed at the beginning of the start arm facing the experimenter, and were left to 782 

run into the pseudo-randomly assigned goal arm that was not blocked to obtain a reward. 783 

Subsequently, mice returned to the end of the start arm to obtain another, small reward while 784 

being enclosed for a 5 s delay period, during which the door from the previously blocked 785 

goal arm was removed. Once the delay had passed, the CP started in which the mouse was 786 

allowed to choose between one of the goal arms of which the previously unvisited one was 787 

rewarded (correct choice), while the other one was not (incorrect choice). Once the CP was 788 

completed, mice were motivated to return to the start arm to obtain another small reward 789 

there while being enclosed for an ITI of 20 s before the next trial commenced. 10 790 

consecutive trials were conducted per day; testing was conducted over 8 d with a delay of 791 

5 s and for another 4 d with a delay of 30 s – all 12 sessions were conducted with 792 

simultaneous recording of LFP-activity, i.e. a headstage was mounted and tethered through 793 

an SPI-cable. In each session, a new sequence of open arms in the SP was used whereby 794 

half of the 10 trials were always assigned to the left arm, and the sample arm was not the 795 

same for more than three consecutive trials. 796 

Acquisition and pre-processing of mouse data 797 

Prior to testing, a 32-channel RHD2132 headstage (Intan Technologies, CA, US) was 798 

plugged into the implanted connector via a custom-built adaptor that interfaced a 36-pin 799 

Omnetics connector (A79022-001, MSA components, G) with another 6-pin or 8-pin Mill-Max 800 
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connector. The headstage was connected to an Open-Ephys acquisition board (https://open-801 

ephys.org, US; obtained through the Open-EPhys store at Champalimaud, Portugal) via two 802 

light-weight flexible SPI-cables (Intan Technologies), sometimes daisy-chained through a 803 

custom-connected miniature slip-ring (Adafruit, NY, US). The adaptor was wired so that all 804 

signals were referenced to the ground-signal obtained from above the contralateral 805 

cerebellum. Data were amplified and digitized, sampled at 20 kHz and band-pass filtered at 806 

0.1 – 250 Hz for all subsequent analysis of LFP signals. In operant tasks, all individual task- 807 

and behavioural events were recorded by pyControl. Additionally, all events relevant to time-808 

locked electrophysiological analysis of WM task-phases and choices (e.g., correct SP and 809 

CP responses) were encoded as patterns of transistor-transistor logic (TTL) signals by 810 

pyControl and recorded as time-stamps with the electrophysiological data by the Open-811 

EPhys acquisition software using the 8 analogue inputs of the acquisition board and a 812 

dedicated BNC-HDMI interface board (Open-EPhys). For the T-maze task, ANY-maze 813 

(Stoelting) was used to track the position of the animal in the different subdivisions of the 814 

maze, and this positional information was encoded in patterns of TTL-signals recorded via 815 

an AMi-interface board and a BNC-HDMI interface board as time-stamps with the 816 

electrophysiological signals in the Open-EPhys acquisition software.  817 

 818 

Human intracranial electrophysiology data during WM 819 

A publicly available dataset of multi-site intracranial recordings during three WM tasks 20 was 820 

downloaded from http://dx.doi.org/10.6080/K0VX0DQD. It includes data from 10 adult 821 

human subjects (mean ± SD [range]: 37 ± 13 [22–69] y; 7 males) who were implanted with 822 

intracranial electrodes to identify epileptic foci for surgical resection. Electrode placements 823 

were in the medial temporal lobe (MTL, i.e., CA1; CA3/dentate gyrus; subiculum; or 824 

parahippocampal, perirhinal, or entorhinal area), lateral PFC (inferior, middle, or superior 825 

frontal area), and OFC (orbitofrontal, frontal polar, or medial prefrontal area). Only subjects 826 

with electrodes localized in all three regions were included in the present analyses (N = 8). 827 
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Details of behavioural testing, data acquisition, and pre-processing have been described 828 

previously20. In brief, three different WM tasks were conducted, whereby subjects had to 829 

either identify a previously indicated object identity, location, or temporal order of two visual 830 

stimuli. Trials from all these three tasks were pseudo-randomly mixed from trial to trial in a 831 

single test session. Each trial started with a 1 s pre-trial fixation interval, after which a screen 832 

indicated whether in the respective trial would be tested for object identity or spatiotemporal 833 

position (800 ms). Subsequently, the SP started in which two shapes were presented 834 

subsequently for 200 ms each, separated by 200 ms. After a subsequent pre-cue delay (900 835 

or 1150 ms, varied pseudo-randomly), a cue appeared for 800 ms that specified which of the 836 

two shapes would need to be identified in the later CP according to a rule of identity 837 

(same/different), spatial location (top/bottom) or temporal order (first/second). After a post-838 

cue delay (900 or 1150 ms, varied pseudo-randomly), the CP started as two shapes were 839 

presented, of which the participant had to choose the one that was correct according to the 840 

prior cue. All trials from all patients were merged for subsequent analyses, just as was done 841 

for the mouse WM data. The fully pre-processed data (as described20) was used for the 842 

current analysis. 843 

Data analysis 844 

All signal analyses were done in MatLab (MathWorks). Mouse electrophysiology data were 845 

exported to MatLab and, for all LFP analyses, down-sampled to 1 kHz and analysed with 846 

custom-written scripts. To reduce low frequency drift, signals were first detrended using the 847 

locdetrend function of the Chronux signal processing toolbox (http://chronux.org/) with 1 s of 848 

data and a sliding window of 0.5 s. Trials were excluded from further analyses if the 849 

amplitude exceeded the 5th standard deviation within each channel for more than 10% of the 850 

trial duration. In mice, PFC and vHC were recorded with dual electrodes. In case both 851 

electrodes were located in the intended target area (PrL/Cg1 for PFC and fissure for vHC), 852 

as inferred from lesion sites, all metrics were calculated for both electrodes and the result 853 

was averaged to obtain the final value. For the human dataset, the number of electrodes per 854 
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site varied between 1 and 28 per area. Therefore, for connectivity measures, each single 855 

metric was calculated for every possible inter-regional pair of electrodes and the resulting 856 

value was averaged across all combinations of a single connections. Analogously, for local 857 

activity measures, each single metric was calculated for every electrode and the resulting 858 

value was averaged across all electrodes of a given area for each subject. 859 

 860 

Power and non-directional synchrony 861 

Power and coherence spectra were calculated with Chronux routines implemented in the 862 

Chronux toolbox using the multi-taper method61. Power values were expressed as 10*log10 863 

values for all analyses and the range of frequencies was set from 0.1 to 48 Hz. A time-864 

bandwidth product of 9 and 17 tapers were used to calculate power and coherence during 865 

defined time-periods during ITI, sample phase, delay (if applicable) and choice phase. To 866 

address the issue of volume conduction, we calculated the weighted phase lag index 867 

(wPLI)62 using routines implemented in the FieldTrip toolbox63. The original trials were further 868 

divided into 99% overlapping “pseudo trials” with a length of 600 ms and padded to the next 869 

power of two. The complex cross-spectrum was computed using a Hann taper with a 870 

spectral smoothing of 2 Hz. Time-frequency spectral analyses were performed with routines 871 

from the FieldTrip toolbox using Morlet wavelets with a width of 3 cycles steps of 10 ms63. 872 

Time periods before and after the time frame of interest were padded with real data to avoid 873 

artifacts of too long wavelets at low frequencies. 874 

Directional Synchrony 875 

Non-parametric Granger Causality (npGC)64 and partial directed coherence (PDC)65 were 876 

calculated using the FieldTrip toolbox63. The original trials were further divided into 50% 877 

overlapping “pseudo trials” with a length of 1s and padded to the next power of two, differing 878 

from power and non-directional synchrony measures because 99% overlap did not provide 879 

substantially different results but came with a much higher computational effort. The complex 880 

cross-spectrum was computed using a Hann taper with a spectral smoothing of 2 Hz. The 881 
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noise covariance matrix and transfer function were obtained by applying Wilson’s spectral 882 

matrix factorization to complex Fourier-spectra. This non-parametric approach was shown to 883 

be better at capturing all spectral features, less error prone because no model order had to 884 

be chosen, computationally faster than applying autoregressive modelling66,67, and to deliver 885 

virtually same results when used on our LFP data37. Time-frequency representations of 886 

npGC and PDC were obtained by Morlet wavelets using the same configurations as 887 

described above. 888 

Phase-amplitude coupling (PAC) 889 

Cross-frequency coupling (CFC)68 was assessed using the measure of phase-amplitude 890 

coupling (PAC), the statistical relationship between the phase of a low-frequency and the 891 

amplitude of a high-frequency component, in a cross-regional analysis69,70. Time series data 892 

were first band-pass filtered in the desired frequency ranges, followed by a Hilbert transform 893 

using the MatLab function hilbert to calculate the real and imaginary parts of the signal to 894 

obtain the instantaneous amplitude and phase. For each trial, intra- and inter-regional PAC 895 

were determined by calculating the modulation of -amplitude by -phase using the phase-896 

locking technique proposed by Voytek et al. with routines described in71. 897 

Supervised Machine Learning 898 

To validate the calculated measures of neural connectivity and to identify predictive variables 899 

we employed supervised machine learning algorithms. Spectrally resolved parameters (e.g., 900 

-coherence, -power) from each inter-regional connection (e.g., dHC-PFC) and local brain 901 

region (e.g., dHC) were analysed separately using different classifiers. For classification, we 902 

used the absolute parameter values as well as the ratio of each parameter relative to the 903 

preceding ITI. In mice, 240 connectivity metrics per connection and 56 local activity metrics 904 

per region were used in the 5-CSWM DMTS task (1184 for all connections and regions 905 

combined; 296 per task-phase), and 180 connectivity metrics and 42 local activity metrics 906 

were used on the operant 2-CSWM DNMTS task and the T-maze (888 combined). The 907 

difference originates from the usage of 4 task phases, including pre- and post-delay phases, 908 
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in the 5-CSWM task, but only 3 phases (one delay phase) in the two DNMTS tasks, which 909 

was the post-delay in the 2-CSWM task. For all predictor matrices, the pre- and post-delay 910 

phases were combined to allow uniform comparisons between all three tasks. In humans, 911 

448 connectivity metrics per connection and 80 local activity metrics were generated for the 912 

analysis shown in Fig. 7, using all 4 task phases including SP, pre-cue delay, post-cue 913 

delay, and CP (classifiers omitting the CP were also calculated, see Supplementary Fig. 10). 914 

Note that, in humans more predictors arise because frequency bands have been determined 915 

additionally in the alpha-band (8-12 Hz), and in a higher -band (50-100 Hz) in addition to 916 

the low -band (30-49 Hz) used in rodent analysis. We also included the combined band (30-917 

100 Hz) as separate predictor. To ensure a sufficient number of trials for classification and 918 

the general validity of the identified predicting variables, we merged data from all subjects of 919 

one group, i.e., from all mice provided correct electrode placement (see Supplementary 920 

Table 6) or from the subset of human subjects with coverage of all three regions, 921 

respectively.  922 

Since rodent and human subjects performed proficiently above chance level resulting in 923 

more correct than incorrect trials20, we used a synthetic minority over-sampling technique 924 

(SMOTE) to construct a balanced dataset with five nearest neighbours to consider72. All 925 

electrophysiological predictor variables of a classifier were normalized between 0 and 1, 926 

setting the maximum empirical value for each metric to 1. We used 90% of the data as a 927 

training set and the remaining 10% for testing. Allocation to the training and test set was 928 

done randomly and repeated 100 times to obtain a mean and its variance for the achieved 929 

decoding accuracy the predictor weights. To identify the classification algorithm which fits 930 

our data best we assessed the 25 most used classifiers implemented in MATLAB 931 

(Supplementary Fig. 4). Focussing on easy interpretability and high predictive accuracy we 932 

chose random subspace ensembles on a linear discriminant analysis (LDA) template 933 

(subspace discriminant classifier) for our further analysis, which achieved the highest 934 

prediction accuracies compared to all other tested linear classifiers. Briefly, LDA aims to 935 
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identify a hyperplane that maximizes the mean distance between the mean of the two 936 

classes while minimizing variance between them. Since the sample size of our data was 937 

relatively small compared to the number of features, we used the random subspace method, 938 

which is a valid approach to resolve this issue and has been shown to be superior to single 939 

classification algorithms73,74. It operates by creating a classifier ensemble where each 940 

classifier is trained with a reduced, randomly sampled number of input features, e.g., they 941 

are projected into a new subspace which leads to a relative increase of the number of 942 

samples. The number of features to sample in each classifier and the number of learning 943 

cycles were set to half of the total number of features and 30, respectively. The coefficient 944 

magnitudes of each feature obtained by each subspace LDA classifier were averaged 945 

across learning cycles to get a solid quantification of its predictive value. As measures of 946 

classification performance, we used the prediction accuracy, the AUC of the receiver 947 

operating characteristic (ROC) and the F1-score which is defined as follows: F1 = 948 

(2*class1precision * class1recall / (class2precision + class1recall)). Precision is defined as 949 

the True positives / True Positive + False Positive for class 1 and as the True negatives / 950 

True Negative + False Negative for class 2. Recall is defined as True Positive / True Positive 951 

+ False Negative which is equivalent to the sensitivity for class1 and specificity for class2. 952 

Since it has been shown that the theoretical chance level of 50% should not be expected 953 

and it is favourable to obtain an empirical chance level, we randomly shuffled the data labels 954 

(e.g. correct / incorrect) and repeated the analysis described above to create an empiric null 955 

distribution75. 956 

Statistical analysis 957 

Behavioural training and challenge data were analysed with repeated-measures ANOVA and 958 

pairwise Sidak post-hoc tests for simple main effects. To determine the importance of 959 

individual connectivity or activity measures (predictors), we used a two-step procedure: First, 960 

pre-classification, we performed a paired t-test for each feature comparing its value in 961 

correct vs. incorrect trials. Second, post-classification, we used the magnitude of the weight 962 
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of each predictor as delivered by the subspace discriminant classifiers to perform a paired t-963 

test between the obtained magnitudes and the magnitudes from the shuffled dataset. 964 

Features were only recognized as significantly important if both criteria were met. P-values 965 

were Bonferroni-corrected within-species for the total number of used features across all 966 

classifiers calculated in mice (1184; P < 0.05/1184) and humans (1584; P < 0.05/1584) in 967 

the most conservative analysis; additional analysis was conducted to evaluate the 968 

dependency of the number of obtained significant predictors with less stringent adjustments. 969 

 970 

Data and protocol availability 971 

All source data for behavioural performance in mice can be obtained from the corresponding 972 

author upon reasonable request. All electrophysiological data from mice will be made 973 

publicly available at https://gin.g-node.org/KaetzelLab76. Human data are available at 974 

http://dx.doi.org/10.6080/K0VX0DQD. All MATLAB analysis scripts for spectral analysis are 975 

publicly available on GitHub (https://github.com/KaetzelLab/LFP_analysis)77. Design files of 976 

custom-made operant boxes (https://github.com/KaetzelLab/Operant-Box-Design-Files) and 977 

task-files for operant WM tasks (https://github.com/KaetzelLab/Operant-Box-Code) are 978 

available on GitHub. 979 

  980 
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