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Abstract10

Understanding the determinants of genomic base composition is fundamental to understanding genome11

evolution. GC biased gene conversion (gBGC) is a key driving force behind genomic GC content, through12

the preferential incorporation of GC alleles over AT alleles during recombination, driving them towards13

fixation. The majority of work on gBGC has focussed on its role in coding regions, largely to address how14

it confounds estimates of selection. Non-coding regions have received less attention, particularly in regard15

to the interaction of gBGC and the effective population size (Ne) within and between species. To address16

this, we investigate how the strength of gBGC (B = 4Neb, where b is the conversion bias) varies within17

the non-coding genome of two wild passerines. We use a dataset of published high coverage genomes (1018

great tits and 10 zebra finches) to estimate B, nucleotide diversity, changes in Ne, and crossover rates from19

linkage maps, in 1Mb homologous windows in each species. We demonstrate remarkable conservation of20

both B and crossover rate between species. We show that the mean strength of gBGC in the zebra finch21

is more than double that in the great tit, consistent with its twofold greater effective population size.22

B also correlates with both crossover rate and nucleotide diversity in each species. Finally, we estimate23

equilibrium GC content from both divergence and polymorphism data, which indicates that B has been24

increasing in both species, and provide support for population expansion explaining a large proportion of25

this increase in the zebra finch.26
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Significance statement28

Understanding the forces that change the nucleotide base composition of genomes is central to understanding their29

evolution. One such force is GC biased gene conversion, a process that during recombination converts some heterozy-30

gous base positions to homozygous. This process is more likely to convert adenine and thymine bases to guanine31

and cytosine bases than the other way around, hence is GC biased. This increases the frequency of GC alleles in a32

way similar to positive selection. This process has largely been studied within protein coding regions, and not often33

compared between species. We measure its strength in the non-coding areas of the genomes of two bird species,34

showing it to be stronger in the species with the larger population size.35

Introduction36

A large proportion of many organisms’ genomes are non-coding; 99% in humans, 80% in Drosophila melanogaster,37

73% in Caenorhabditis elegans and 71% in Arabidopsis thaliana (Halligan and Keightley, 2006; Rajic et al., 2005). The38

non-coding genome offers the opportunity to study evolutionary process away from the interference of the direct effects39

of natural selection. One such process is the evolution of genomic base composition. The evolution of base content40

and its variation within genomes has been the focus of intrigue for many years, such as the question of mammalian41

isochore evolution (Eyre-Walker and Hurst, 2001). Genomic GC content is predominately determined by the balance42

between the strong (G and C bases) to weak (A and T bases) substitution rate (S→W), in part underpinned by CpG43

hypermutabiliy (Hodgkinson and Eyre-Walker, 2011; Hwang and Green, 2004; Ségurel et al., 2014), and the weak to44

strong substitution rate (W→S), which is influenced by GC biased gene conversion (gBGC), which favours strong over45

weak bases, and is a major determinant of GC content evolution in a broad range of organisms (Boĺıvar et al., 2016,46

2018, 2019; Corcoran et al., 2017; Glémin et al., 2015; Gossmann et al., 2018; Jackson et al., 2017; Muyle et al., 2011;47

Ratnakumar et al., 2010; Wallberg et al., 2015). Although, recent experimental based measures of gene conversion in48

Saccharomyces cerevisiae, Neurospora crassa, Chlamydomonas reinhardtii and Arabidopsis thaliana, did not reveal a49

conversion bias (Liu et al., 2018).50

gBGC is the preferential incorporation of GC alleles over AT alleles during the resolution of heteroduplex DNA51

resulting from the repair of double stranded breaks during recombination (Chen et al., 2007; Duret and Galtier, 2009).52

This elevates the number of gametes containing GC alleles, as observed in humans (Williams et al., 2015) and birds53

(Smeds et al., 2016). As such, gBGC acts to increase the frequency of G and C alleles over A and T alleles, in a manner54

that mirrors positive selection (Duret and Galtier, 2009; Galtier and Duret, 2007; Gutz and Leslie, 1976; Nagylaki,55

1983). As a result, gBGC is an inconvenient complication when looking for signatures of selection in genomes. For56

example, over 20% of identified positively selected genes in the human lineage are possibly just the focus of elevated57

gBGC (Ratnakumar et al., 2010). Furthermore, a growing body of literature has demonstrated that gBGC confounds58

our ability to estimate parameters such as the rate of adaptation (ω = dN/dS) (Boĺıvar et al., 2018, 2019; Corcoran59

et al., 2017; Gossmann et al., 2018; Ratnakumar et al., 2010; Rousselle et al., 2019) and the proportion of substitutions60
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fixed by positive selection (α) (Boĺıvar et al., 2018; Corcoran et al., 2017; Rousselle et al., 2019). Equally, studying61

gBGC in coding regions is inconvenienced by the action of natural selection also acting on those regions, forcing62

studies to use putatively neutral sites like third codon positions (Rousselle et al., 2019; Weber et al., 2014) and 4-fold63

degenerate sites (Boĺıvar et al., 2016; Corcoran et al., 2017; Gossmann et al., 2018) reducing the amount of data64

available as well as potentially being confounded by codon usage bias (Chamary and Hurst, 2005; Galtier et al., 2018;65

Hayes et al., 2020; Jackson et al., 2017; Kunstner et al., 2011).66

As gBGC is a recombination mediated process, it should co-vary in strength with crossover rate, at different67

genomic scales and between species. This is seen in a large body of literature, demonstrating correlations between68

recombination rate and GC content (Boĺıvar et al., 2016; Glémin et al., 2015; Rousselle et al., 2019; Wallberg et al.,69

2015; Weber et al., 2014), recombination rate and equilibrium GC content (GC∗) (Duret and Arndt, 2008; Muyle70

et al., 2011; Singhal et al., 2015), and recombination rate and the population scaled strength of gBGC, B = 4Neb,71

where Ne is the effective population size and b is the raw strength of conversion bias (Glémin et al., 2015; Wallberg72

et al., 2015). However, notably, in Dropshophila gene conversion rate does not positively correlate with crossover rate73

(Comeron et al., 2012). With recombination varying greatly between organisms (Stapley et al., 2017), gBGC can also74

be expected to have similar variation in strength and impact. For example, in mammals the recombination landscape75

is largely determined by the location of recombination hotspots, determined by the PRDM9 gene (Baudat et al.,76

2010; Parvanov et al., 2010). This results in areas of greatly elevated recombination rate, and thus strength of gene77

conversion relative to background levels, for example, in humans mean B is estimated at ∼ 0.4 (Glémin et al., 2015),78

while inside recombination hotspots it reaches as high as ∼ 18 (Glémin et al., 2015). In birds, the combination of a79

karyotype consisting of a few long macro-chromosomes and many smaller micro-chromosomes (Hansson et al., 2010;80

Stapley et al., 2008; van Oers et al., 2014; Zhang et al., 2014) and obligate crossing over causes large chromosomal81

differences in recombination rate (Backström et al., 2010; Stapley et al., 2008; van Oers et al., 2014). Additionally,82

it has been suggested that birds’ lack of PRDM9, has resulted in stable recombination hotspots and conserved83

recombination characteristics between species (Singhal et al., 2015). Together this is suggested to allow strong gBGC84

to act on the same region of the genome over a longer time period than in mammals (Rousselle et al., 2019; Singhal85

et al., 2015), driving GC content increases, with studies reporting that GC content is below GC∗ content in most86

avian lineages (Boĺıvar et al., 2016; Mugal et al., 2013; Rousselle et al., 2019; Weber et al., 2014). Furthermore,87

some organisms, such as the honey bee Apis mellifera, lack pronounced recombination hotspots, yet have very high88

genome-wide recombination rate with 5 crossovers per arm and correspondingly elevated mean B estimates of ∼ 589

(Wallberg et al., 2015). Overall, gBGC is seemingly an ubiquitous force with mean B estimates varying from 0.4 to90

5 across the tree of life (Long et al., 2018).91

As B is defined as 4Neb, not only is its strength modulated by recombination rate increasing b (the strength of92

conversion) as outlined above but also by the effective population size (Ne). As such species with larger Ne should93

have larger B and a reduced confounding impact of genetic drift. This has been reported in a few studies, with94

correlations between Ne and GC content at 3rd codon positions (GC3) in birds, largely driven by increased GC in95

smaller bodied, larger Ne species, as well as correlations between Ne and GC∗ (Weber et al., 2014). More recently96
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B at fourfold degenerate sites (4-fold sites) has been shown to correlate with Ne in great apes (Borges et al., 2019).97

However, an analysis of B more broadly across animal taxa, failed to yield a relationship with Ne (Galtier et al.,98

2018). Furthermore, to date the role of Ne is a less well empirically studied aspect of gBGC and little work has looked99

at fine scale variation in the strength of gBGC between species of differing Ne.100

The avian system has been the model of choice for many studies addressing GC evolution and biased gene101

conversion (Boĺıvar et al., 2016, 2018, 2019; Corcoran et al., 2017; Gossmann et al., 2018; Rousselle et al., 2019;102

Weber et al., 2014). The suitability of avian genomes for addressing these topics stems from their variable intra103

genomic recombination landscapes (Backström et al., 2010; Stapley et al., 2008; van Oers et al., 2014) and conserved104

recombination hotspots (Singhal et al., 2015) providing a natural experiment for addressing the role of recombination105

and Ne in gBGC and GC content evolution. In addition, birds’ conserved karyotype and synteny (Hansson et al.,106

2010; Stapley et al., 2008; van Oers et al., 2014; Zhang et al., 2014) aids between species comparisons.107

Of the work on gBGC to date, much has focused on exploring its impact and interaction within genes and108

coding regions, largely addressing how it confounds signatures of selection (Boĺıvar et al., 2019; Corcoran et al.,109

2017; Gossmann et al., 2018; Ratnakumar et al., 2010; Rousselle et al., 2019). Of those studies that have considered110

the action of gene conversion in the non-coding genome (Duret and Arndt, 2008; Glémin et al., 2015; Haddrill and111

Charlesworth, 2008; Jackson et al., 2017; Muyle et al., 2011; Wallberg et al., 2015), little work has investigated fine112

scale variation within the genome and how this compares between species. Here we investigate variation in the113

strength of gBGC within the non-coding genomes of two passerines, the great tit (Parus major) and the zebra finch114

(Taeniopygia guttata), using previously published whole genome resequencing data (Corcoran et al., 2017; Singhal115

et al., 2015). We seek to address how conserved the gBGC landscape is between these species and how the strength116

of gBGC has been modulated by the recombination rate and Ne within and between the species.117

Materials and methods118

The dataset119

The dataset consisted of 10 European great tits from across the sampling locations in Laine et al. (2016), sequenced to120

a mean coverage of 44X in Corcoran et al. (2017) and 10 zebra finches sequenced to a mean coverage of 22X, a subset121

of individuals from the Fowlers Gap population in Australia from the dataset published in Singhal et al. (2015). The122

dataset is as described in Corcoran et al. (2017), but for clarity we will reiterate the main calling pipeline here.123

SNP calling was performed using GATK v3.4 (Van der Auwera et al., 2013). Raw genotypes were initially called124

using the GenotypeGVCF and HaplotypeCaller tools and hard filtered according to the GATK best practice (Van der125

Auwera et al., 2013). This call set was used as a training set to perform base quality score recalibration (BQSR).126

Variants were then recalled from the recalibrated BAM files both with GATK as above and also using Freebayes v1.02127

(Garrison and Marth, 2012). The intersection of the programs’ calls was taken and SNPs with less than half, or more128

than double the mean depth, and SNPs with a QUAL score less than 20 were removed. This filtered intersection of129
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SNPs was used as a training set to perform variant quality score recalibration (VQSR) on the GATK called variants.130

Tranche level thresholds were set at 99% for the zebra finch and 99.9% for the great tit. For both species we obtained131

VCF files for SNPs and monomorphic sites from Corcoran et al. (2017).132

Additionally, a three species whole genome alignment between zebra finch (v3.2.4; Warren et al., 2010), great tit133

(v1.0.4; Laine et al., 2016) and collared flycatcher (Ficedula albicollis) (v1.5; Ellegren et al., 2012) was obtained from134

Barton and Zeng (2019), and a three species alignment between chicken (Gallus gallus) (v5.0; Hillier et al., 2004),135

zebra finch and great tit from Corcoran et al. (2017). The former alignment was used to infer the ancestral states of136

SNPs, and the latter, with the more distant chicken out-group was used to infer substitution rates and ancestral base137

composition (described later). Both of these alignments were generated as follows. Firstly pairwise alignments were138

generated with LASTZ (Harris, 2007) between each species and the zebra finch genome, which was used as reference.139

These alignments were then chained and netted with axtChain and chainNet respectively (Kent et al., 2003). Single140

coverage was ensured for the zebra finch reference genome using single cov2.v11 from the MULTIZ package, and141

multiple alignments were created from the pairwise alignments using MULTIZ (Blanchette et al., 2004).142

Annotation and filtering143

We assigned the ancestral states for the SNPs using the whole genome alignment (with collared flycatcher) and144

parsimony based approach, where for each species either the reference allele or the alternate allele had to supported145

by both out-groups to be assigned as ancestral.146

We downloaded the great tit genome annotation (version 1.03) from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/147

GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz (last148

accessed 05/03/19) and the zebra finch annotation from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/149

805/GCF_000151805.1_Taeniopygia_guttata-3.2.4 (last accessed on 05/03/19). We used the annotations to re-150

move variants falling within exons. Additionally coordinates for ultra-conserved non-coding elements (UCNEs) in the151

zebra finch genome (taeGut1) were obtained from ftp://ccg.vital-it.ch/UCNEbase/custom_tracks_UCSC/UCNEs_152

taeGut1.bed (last accessed 05/03/19). We identified the corresponding positions in the great tit in the whole genome153

alignment, before removing any variants falling within UCNEs. Additionally we restricted our analysis to the auto-154

somes, removing the Z chromosome. This left non-coding datasets of putatively neutral variants, numbering 9,800,315155

SNPs for great tit, and 29,973,954 SNPs for zebra finch.156

From our non-coding SNP dataset we generated an additional subset, with CpG sites excluded, where a CpG site157

was defined as any site where at least one of the alleles of the site was in a 5’ → 3’ CpG dinucleotide or in a 3’ → 5’158

GpC dinucleotide.159

Orthologous window preparation160

The zebra finch genome was divided into 1Mb non-overlapping windows and we used the three species whole genome161

alignment (zebra finch, great tit, collared flycatcher) to identify the aligned sequence and coordinates in the great tit162
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genome and extracted variants and numbers of callable sites from our VCF files. For each window in each species163

we calculated the GC content using the respective reference genomes. GC content was calculated for all sites in the164

window, and for non-CpG sites. Secondly, we calculated crossover rate for each window, using the available linkage165

map data for each species (Stapley et al., 2008; van Oers et al., 2014, for zebra finch and great tit respectively) and166

the pipeline outlined in Corcoran et al. (2017).167

Estimating the strength of gene conversion168

We extracted the number of callable sites for weak bases (A and T nucleotides) and strong bases (G and C nucleotides)169

along with the site frequency spectra for weak to strong mutations (WS), strong to weak mutations (SW ) and weak170

to weak and strong to strong mutations (WWSS) in all windows and datasets. We then applied the M1∗ model of171

Glémin et al. (2015), implemented in the anavar package (Barton and Zeng, 2018), to all windows with at least 1, 000172

SNPs. Briefly, the model estimates the population scaled mutation rate (θ = 4Neµ), the population scaled strength of173

gBGC (B = 4Neb) and estimates and controls for polarisation error for both SW and WS mutations using WWSS174

sites as a neutral reference unaffected by gBGC. Demography is controlled for using the method of Eyre-Walker et al.175

(2006), which has been shown previously to obtain similar results to a method that explicitly model recent changes176

in population size (Jackson et al., 2017).177

We performed multiple regressions in R (R Core Team, 2015) to estimate the relative contributions of crossover178

rate and local Ne (using nucleotide diversity [π] as a measure of Ne) in determining B, we ran these analysis using179

crossover rate and separately, GC content as measures of recombination rate. We estimated the relative importance of180

the predictors (as a proportion of the total variance explained) using the ‘pmvd’ method implemented in the relaimpo181

package (Groemping, 2006).182

Equilibrium GC content183

We estimated the ancestral GC content per window for the lineage leading to great tits and zebra finches using the184

whole genome alignment (containing chicken, zebra finch and great tit) and the GTR-NHb model in baseml within185

PAML (Yang, 2007). The model allows for non-stationary base content and for independent substitution rates on each186

branch. From the model we obtained the posterior probabilities of the ancestral states and weighted each ancestral187

nucleotide by this probability (as in Matsumoto et al., 2015) to reconstruct ancestral GC content with uncertainty188

incorporated. We then estimated the rate of WS substitutions189

rWS =
nWS

nW
(1)

where nWS is the number of WS substitutions and nW is the number of weak bases (As and Ts) in the ancestral190

sequence. Similarly we estimated the rate of SW substitutions191

rSW =
nSW
nS

(2)
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where nSW is the number of SW substitutions and nS is the number of strong (Gs and Cs) bases in the ancestral192

sequence. Finally we estimated the equilibrium GC content193

GC∗ =
rWS

rWS + rSW
(3)

The GTR-NHb model was a better fit then the GTR model, which assumes base composition is at equilibrium, for194

all but five windows as judged by likelihood ratio tests (data not shown). Additionally, the model estimates of GC∗
div195

correlated strongly with those derived from parsimony estimates of the substitution rates for both great tit (Pearson’s196

r = 0.94, p < 2.2× 10−16) and zebra finch (Pearson’s r = 0.96, p < 2.2× 10−16), although the mean GC∗
div was lower197

for the model estimates than the parsimony estimates in both species (0.39 versus 0.43 respectively for great tit and198

0.38 versus 0.42 respectively for zebra finch).199

To obtain a more recent view of the base composition evolution and gBGC we also calculated GC∗
pol from our200

application of the Glémin et al. (2015) model to our polymorphism dataset. In order to do so we took the estimates201

of B (B = 4Neb) and mutation rates (θ = 4Neµ) estimated per window by anavar and substituted them into202

rij = θij
Bij

1− e−Bij
(4)

where rij is the fixation rate of mutations from i to j and where BWS = −BSW = B. The resulting fixation rates203

were then substituted into equation 3 to obtain GC∗.204

Demographic analysis205

To investigate the demographic history in the zebra finch and the great tit we fitted demographic models to the data206

using the VarNe package Zeng et al. (2019). The package performs maximum likelihood estimation of a number of207

population genetic parameters, including θ (4Neµ), the magnitude of a population size change (g), the timing of208

the event (τ , in units of 2Ne) and the rate of ancestral state misidentification (ε), allowing population size changes209

between a specified number of time points, or epochs, from the site frequency spectrum of a target locus. We applied210

1 epoch and 2 epoch models to the summed site frequency spectra for WWSS (GC conservative) non-coding SNPs211

from our window dataset. We tested whether the 2 epoch model (variable population size) was a better fit than the212

1 epoch model (constant size), using likelihood ratio tests. We performed 100 rounds of bootstrapping by resampling213

windows from our window dataset with replacement.214

We also applied the 2 epoch model above individually to each window in our dataset to obtain local estimates of215

the magnitude of Ne change. For these analyses we required windows to have a minimum of 1000 SNPs and windows216

that failed to return reliable parameter estimates were excluded (67 windows in the great tit, 4 windows in the zebra217

finch).218

In order to infer how much our polymorphism based estimate of the equilibrium GC content (GC∗
pol) might differ219

prior to the inferred population size change in each species, we divided our estimates of BWS , θWS , BSW and θSW220

by a correction factor C, as a function of g and τ estimates per window:221
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C = g + (1− g)e−τ/g (5)

We then substituted the rescaled values into equation 4, to calculate the fixation probabilities for WS and SW222

polymorphisms under the reduced B scenario. The fixation probabilities were then substituted into equation 3 to223

calculate GC∗.224

Data availability225

All scripts and command lines used in the analysis pipeline can be found at: https://github.com/henryjuho/biased_226

gene_conversion. The VCF files, whole genome alignments and orthologous window coordinates are accessible at:227

link.228

Results229

Summary of the window dataset230

We used a whole genome alignment between zebra finch, great tit and collared fly catcher (Ficedula albicollis) to231

identify 1Mb orthologous windows between the zebra finch and great tit. This resulted in 904 1Mb windows in zebra232

finch genome and 898 orthologous windows in the great tit genome (table 1). The lower number of great tit windows233

is due to gaps in the whole genome alignment. We used the respective genome annotations to identify non-coding234

regions within these windows, in which we identified single nucleotide polymorphisms (SNPs) using a resequencing235

dataset of 10 zebra finches (from Singhal et al., 2015) and 10 great tits (from Corcoran et al., 2017). This resulted236

in similar numbers of callable sites in both species, roughly 500,000 bp per 1 Mb window; this drop is a result of our237

focus on non-coding regions (excluding ultra-conserved non-coding elements [UCNEs]), and our maximum parsimony238

approach to assigning ancestral states, which is dependant on coverage of all species in our whole genome alignment239

and no ambiguity between out-groups. When considering variants per window, we see that the mean number of240

variants is higher in the zebra finch, consistent with a larger effective population size in the zebra finch (Corcoran241

et al., 2017). We see very similar mean GC content and mean crossover rates in both species, with strong correlations242

between the two species’ GC content (Pearson’s r = 0.83, p = 1.6×10−230, figure S1a) and crossover rate (Spearman’s243

ρ = 0.72, p = 2.6 × 10−140, figure S1b) across the dataset, as well as positive correlations between GC content and244

crossover rate within each species (great tit: Spearman’s ρ = 0.57, p = 3.8× 10−79, zebra finch: Spearman’s ρ = 0.53,245

p = 4.2× 10−67, figure S2).246

The strength of gene conversion correlates with crossover rate and Ne247

To estimate the population scaled strength of gBGC (B), we applied the Glémin et al. (2015) model to each window248

in our dataset. The resulting estimates of B positively correlate with both crossover rate and π (as a proxy for local249
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Table 1: Summary of the window dataset, showing means and the 2.5 and 97.5 percentiles in brackets.
Crossover rates are log10 transformed.
Measure great tit zebra finch
windows 898 904
callable sites 523858 (21580, 726488) 498785 (79743, 711346)
nSNP 5895 (239, 9766) 21321 (989, 37847)
GC content 0.41 (0.34, 0.51) 0.41 (0.35, 0.51)
Crossover rate (cM/Mb) 0.48 (0, 0.97) 0.41 (0, 0.96)

Table 2: Results of multiple regression analysis of the strength of gene conversion (B) against GC content
and π, and against crossover rate and π, separately, for both species. Importance is the relative importance
(as a proportion of the total variance explained) as estimated using the pmvd method implemented in the
relaimpo package (Groemping, 2006).
model species variable estimate importance p value R2

B ∼ log10(crossover rate + 1) + π great tit crossover rate 0.652 0.94 < 2 × 10−16 0.264
π 59.2 0.06 5.86 × 10−5

zebra finch crossover rate 1.46 0.81 < 2 × 10−16 0.505
π 78.6 0.19 < 2 × 10−16

B ∼ GC content + π great tit GC content 4.90 0.88 < 2 × 10−16 0.371
π 105 0.12 9.73 × 10−15

zebra finch GC content 13.0 0.94 < 2 × 10−16 0.656
π 50.0 0.06 3.86 × 10−16

Ne, allowing us to separate the contributions of Ne to the compound parameter B = 4Neb) in both the great tit250

and the zebra finch (table 2, figure 1). The relationships are stronger when using mean GC content as a proxy for251

recombination rate in both species (table 2, figure S3) and all relationships are maintained when performed on a252

dataset filtered for CpG sites (table S1). Crossover rate or mean GC content explains a larger proportion of the total253

variance (80− 95%) than π within both species (table 2, table S1).254

B is correlated between the species255

Comparison of the model estimates of B between zebra finch and great tit show a significantly larger mean B value256

in zebra finch (B̄ = 0.90) than great tit (B̄ = 0.40) (Wilcoxon rank sum, W = 491903, p = 2.5 × 10−49 ; figure257

2a), inline with the species’ twofold difference in Ne (Corcoran et al., 2017). However, when we standardise our B258

estimates by π as a measure of Ne, the difference between the two species is greatly reduced and the distributions259

of B/π are similar in both species (figure 2b). However, B/π is slightly, but significantly larger in the great tit260

( ¯B/π = 118.2 and 80.8 for great tit and zebra finch respectively, Wilcoxon rank sum, W = 305880, p = 6.1× 10−10).261

We also see a positive correlation between the ratio of the species’ nucleotide diversity (πzf/πgt) and the ratio of262

the species’ B (Bzf/Bgt) (Spearman’s ρ = 0.44, p < 2.2 × 10−16), supporting the idea that Ne drives the between263

species differences in B. Furthermore, we see a strong correlation between B in the great tit and B in the zebra finch264

(Pearson’s r = 0.50, p < 2.2× 10−16, figure 3) as well as between B/π in great tit and B/π in zebra finch (Pearson’s265

r = 0.38, p < 2.2 × 10−16), in keeping with the conserved crossover rate and GC content between species reported266

above.267
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Figure 1: The relationship between nucleotide diversity (π) and the strength of gene conversion (B) (left
panel) and mean window crossover rate and B (right panel) in the great tit (purple) and zebra finch
(turquoise). Multiple regression results can be seen in table 2.

Equilibrium GC content268

To assess the longer term GC dynamics of both the great tit and zebra finch genomes, we calculated the equilibrium269

GC content (GC∗), which is the GC content that when reached will result in equal numbers of GC alleles fixed as270

lost.271

Firstly, we calculated GC∗ using divergence data (GC∗
div) for each lineage, using the WS and SW substitution272

rates estimated in PAML (see methods). This provides a long term average of GC∗ since the two species diverged.273

This gave a mean GC∗
div of 0.39 for great tit and 0.38 for zebra finch, both of which are similar to, but significantly274

below, the mean GC contents in our alignment datasets of 0.40 for both great tit (Wilcoxon rank sum, W = 282790,275

p = 1.1 × 10−8) and zebra finch (Wilcoxon rank sum, W = 241190, p < 2.2 × 10−16) (figure 4). Note the alignment276

dataset is a subset of the main dataset (as coverage is required across all species in the chicken/zebra finch/great277

tit alignment) and yields slightly lower mean GC than reported in table 1. B positively correlates with GC∗
div in278

both great tit (Pearson’s r = 0.54, p < 2.28 × 10−55) and zebra finch (Pearson’s r = 0.81, p < 8.22 × 10−181).279

Similar relationships are seen between GC∗
div and crossover rate (Spearman’s ρ = 0.55, p = 6.02× 10−62 for great tit280

and Spearman’s ρ = 0.66, p = 3.85 × 10−98 for zebra finch) and between GC∗
div and current GC content (Pearson’s281

r = 0.56, p = 9.32× 10−65 for great tit and Pearson’s r = 0.77, p = 1.49× 10−148 for zebra finch).282

Secondly, to look at base composition evolution over a more recent time scale we also calculated GC∗ from283

polymorphism data, using our θ and B estimates derived from the Glémin et al. (2015) model (see methods), henceforth284

GC∗
pol. This approach yielded markedly higher equilibrium GC content estimates than the substitution rate based285

approach, for both great tit (Wilcoxon rank sum, W = 518421, p = 1.48 × 10−225, ¯GC∗
pol = 0.63) and zebra finch286

(Wilcoxon rank sum, W = 575196, p = 1.24× 10−245, ¯GC∗
pol = 0.72).287
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Figure 2: Comparison of the distribution of B values (population scaled strength of biased gene conversion)
(a) and B standardised by π as a proxy for the effective population size Ne (b) between the great tit (GT)
and zebra finch (ZF). The y axis for b has been cropped for clarity.

Evidence of population expansions288

In order to understand the effects of recent demographic changes on the difference between our longer term measures289

of GC∗
div and our more recent GC∗

pol estimates, we fitted demographic models to each species using the VarNe package290

(Zeng et al., 2019). The models estimate the magnitude (g) and timing of population size changes (τ , in units of 2Ne)291

between different time points or ‘epochs’. In both the zebra finch and the great tit a 2 epoch model (table S3) fit the292

data significantly better than a 1 epoch model (i.e. a model with constant population size) as judged by likelihood293

ratio tests. For the zebra finch we estimate a g of 12.3 and τ of 1.25, suggesting a large population expansion ∼ 495294

thousand years ago (table S3). In the great tit we see lower values with a g of 1.89 and τ of 0.208, characterising a295

smaller, more recent population expansion ∼ 140 thousand years ago (table S3).296

Local Ne increase correlates with increases in equilibrium GC content in the zebra297

finch298

Nucleotide diversity is positively correlated with recombination rate in both the great tit and zebra finch (Corcoran299

et al., 2017), showing Ne varies locally within their genomes. As loci with differing Ne can respond differently to300

a shared demographic change (see Zeng et al., 2019), we sort to investigate how historical changes in local Ne have301

impacted equilibrium GC content, and the difference between our GC∗
div and GC∗

pol estimates. In each species, we302

refitted the ‘2 epoch’ model in VarNe, to each window in our orthologous window dataset. The mean maximum303

likelihood parameter estimates across all windows agreed with those from the model fitted to the dataset as a whole,304

although were slightly higher, probably a result of our requirement of a minimum of 1000 SNPs per window to provide305
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Figure 3: The strength of biased gene conversion (B)
in the zebra finch positively correlates with B in the
great tit.
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Figure 4: Per window estimates of current GC con-
tent, equilibrium GC content from both divergence
data (div) and polymorphism data (pol) and esti-
mates of equilibrium GC content before expansion
(pre expansion) for both species.

sufficient power, excluding the lowest Ne windows (table S4).306

For each window, we divided our estimates of θ and B from the Glémin et al. (2015) model by a rescaling factor C307

(C̄gt = 1.18 and C̄zf = 2.32), a function of the window’s g and τ estimates (see equation 5) to control for the effects308

of recent population expansion. We used these rescaled values to obtain per window estimates of GC∗, prior to the309

inferred local Ne increases. This approach yielded a mean pre-expansion GC∗ of 0.62 in both the zebra finch and the310

great tit (figure 4), demonstrating the transient effect of recent population size changes on equilibrium GC content.311

These GC∗ estimates are still high relative to GC∗
div, potentially due to population expansions taking place before312

the most recent common ancestor of the polymorphism samples.313

Additionally, we compared the per window values of C (a measure of the impact of Ne increase on B) with the314

difference between our two GC∗ estimates. This returned a significant positive correlation between GC∗ increase315

(GC∗
pol − GC∗

div) and C in the zebra finch (Spearman’s ρ = 0.46, p < 2.2 × 10−16) and a weak positive correlation316

in the great tit (Spearman’s ρ = 0.081, p = 0.036). The stronger correlation in the zebra finch is consistent with an317

older and larger expansion in this species providing more time for evolution to influence C and GC∗.318
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Discussion319

Most contemporary studies on the role of GC biased gene conversion (gBGC) in genome evolution have focused on320

coding regions where gBGC is confounded by selection, (Boĺıvar et al., 2019; Corcoran et al., 2017; Gossmann et al.,321

2018; Ratnakumar et al., 2010; Rousselle et al., 2019) and processes like codon usage bias (Haddrill et al., 2008;322

Jackson et al., 2017). Additionally few of these studies have looked at the impact of Ne on the strength of gBGC.323

Here we analyse re-sequencing data for 10 great tits (Corcoran et al., 2017), and 10 zebra finches (Singhal et al.,324

2015). Using non-overlapping 1Mb orthologous windows, we investigate how the strength and impact of gBGC varies325

both within and between the non-coding genomes of these birds.326

The strength of gene conversion is modulated by Ne327

Our mean estimates of B in the great tit and the zebra finch of 0.40 and 0.90 respectively, are similar to mean genome328

wide estimates of B in humans of 0.38 (Glémin et al., 2015), and fall at the lower end of the B range of 0.4 to 5329

reported by Long et al. (2018) in a comparative study with taxa from across the tree of life. Mutations with Nes < 1330

(here B = 4Neb < 4) are considered effectively neutral, our mean B estimates fall below 1, suggesting gBGC in the331

non-coding regions of these species is operating at low efficiency.332

B correlates with both recombination rate and π in these species (table 2) suggesting both parameters are mod-333

ulating B in their genomes, although recombination rate has the larger impact (when measured by crossover rate or334

mean GC content), particularly in the great tit. This is consistent with elevated gBGC in regions with higher recom-335

bination rate in humans (Glémin et al., 2015) and correlations between GC content at 4-fold sites and recombination336

rate in flycatchers (Boĺıvar et al., 2016), although these analyses did not control for local Ne. When using GC content337

as a measure of recombination rate instead of crossover rate these relationships are strengthened. This may reflect338

that GC content is a better measure of long term recombination rate, that our crossover rate estimates are constrained339

by the density of the linkage maps available (Stapley et al., 2008; van Oers et al., 2014), lower variance in our GC340

estimates (table 1), or a mixture of the three.341

The conservation of the biased gene conversion landscape between the zebra finch and great tit, as seen by the342

strong correlation of window B estimates between the species, is relatively intuitive with GC content and crossover343

rate also correlating well between the species and likely a result of birds’ conserved recombination hotspots (Singhal344

et al., 2015), karyotype and synteny (Hansson et al., 2010; Stapley et al., 2008; van Oers et al., 2014; Zhang et al.,345

2014). Consistently, we also see similar mean crossover rates in each species (table 1).346

Nonetheless, mean B is approximately twofold higher in the zebra finch. As B is the product of b (the strength347

of biased gene conversion) and Ne, either parameter could be driving this increase. When we standardise B by π348

(as a measure of Ne), the between species difference is greatly reduced. This, combined with the correlation of the349

ratios of between species B (Bzf/Bgt) and π (πzf/πgt), suggests the twofold larger Ne in the zebra finch (Corcoran350

et al., 2017) is elevating its B. This also implies that b is comparable between the species and has remained relatively351

stable since their divergence. Consistently, GC3 content correlates with Ne (using life history traits as proxies) across352
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the avian phylogeny (Weber et al., 2014). More broadly, it fits with findings in great apes, where B at 4-fold sites353

correlates with Ne (Borges et al., 2019) and amongst rice species (Oryza spp.), where selfing species (with reduced354

Ne) also have lower B estimates (Muyle et al., 2011). However, a recent analysis by Galtier et al. (2018) between355

more diverged species failed to find a relationship between B and Ne, with the authors suggesting that b may be356

inversely related to Ne between distant taxa, and only remain homogenous within groups, such as birds, suggesting357

that B only responds to Ne over small time-scales.358

Non-coding equilibrium GC content359

Our two measures of equilibrium GC content (GC∗, the theoretical GC content at which the same number of GC360

alleles are fixed as AT alleles, and thus stable GC content is reached), from divergence data (GC∗
div) and polymorphism361

data (GC∗
pol), respectively provide a longer term and more recent insight into GC∗.362

GC∗
div is similar to, albeit significantly lower than, current GC content in both species. This is at odds with previous363

avian studies where GC content is below GC∗ in most lineages (Boĺıvar et al., 2016; Rousselle et al., 2019; Weber364

et al., 2014). However, these studies focus on coding regions, which are have elevated GC content and recombination365

rates over non-coding regions in birds (Singhal et al., 2015; Weber et al., 2014); in our dataset, GC content is ∼ 10%366

higher in coding regions than non-coding regions (table S2). Consequently, gBGC is likely stronger in coding regions,367

as suggested by GC∗
div estimates of 0.6− 0.8 at fourfold sites in collared flycatcher (Boĺıvar et al., 2016) and a median368

GC∗
div of 0.6 at 3rd codon positions across 48 bird species (Weber et al., 2014), compared to our non-coding GC∗

div of369

0.39 in the great tit and 0.38 in the zebra finch. These differing dynamics may be contributed to by the avian micro-370

chromosomes which are characterised by high gene density, and high recombination rates stemming from obligate371

crossing over and their short length (Burt, 2002; Stapley et al., 2008; van Oers et al., 2014). Equally, if codon usage372

bias (CUB) is operating in addition to gBGC (de Procé et al., 2012; Galtier et al., 2018) and favours G and C ending373

codons (de Procé et al., 2012) this could elevate avian coding GC over non-coding GC, and also inflate estimates of374

gBGC in coding regions, however, evidence for CUB in birds is lacking. Overall, it seems these regions have been375

evolving towards different equilibria, similar to some species of rice (Muyle et al., 2011), with weak gBGC allowing376

for more AT biased fixation patterns (see McVean and Charlesworth, 1999) and a slightly decreasing GC content in377

non-coding regions since the great tit zebra finch split.378

The effect of demography on B and GC∗
379

Our mean GC∗
pol estimates are higher than our GC∗

div values, 0.63 versus 0.39 for great tit and 0.72 versus 0.38 for380

zebra finch. GC∗
div represents a long term average of GC∗ since the divergence of the great tit and zebra finch lineages381

40 to 45 million years ago (Barker et al., 2004), whereas GC∗
pol provides a more recent snapshot, of the order of 4Ne382

generations ago, around ∼ 3.5 and ∼ 4.3 million years ago for the great tit and zebra finch respectively (estimated383

using the current Ne estimates and generation times in table S5). Consequently, our higher GC∗
pol estimates suggests384

B is currently higher than the long term average for the species, this is the opposite to what is seen in Drosophila385
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melanogaster, where longer term estimates of B are higher than those from the Glémin et al. (2015) model (Jackson386

et al., 2017). As B is the product of b (the underlying strength of conversion bias) and Ne, this increase could be387

driven by increases in the population size and/or b through changing recombination rates. As recombination rates388

are relatively stable and conserved in these species (Singhal et al., 2015; van Oers et al., 2014, this study), it seems389

more probable the current elevation of B is driven by changes in Ne.390

Here, we estimate ∼ 12-fold and ∼ 2-fold population expansions for the zebra finch and great tit respectively, in391

agreement with previous evidence for expansions in both species (Balakrishnan and Edwards, 2008; Corcoran et al.,392

2017; Laine et al., 2016). The magnitude of the great tit expansion is similar to reported values of 2.75 (Laine et al.,393

2016), 2.31 (Corcoran et al., 2017) and 1.68 (Hayes et al., 2020). The zebra finch expansion magnitude of 12.3 is close394

to the estimate of 10 from Corcoran et al. (2017), the upper limit of the method used. The larger increase in Ne for395

the zebra finch is consistent with the greater difference in GC∗ measures in this species (figure 4). Furthermore, our396

estimates of GC∗
pol corrected for the inferred population expansions are 0.62 in both species, suggesting each species’397

average Ne have remained similar since they diverged. The difference between GC∗
pol and GC∗

div is reduced by 29%398

after correction in the zebra finch, but only by 4% in the great tit. Concordantly, the difference between GC∗
pol and399

GC∗
div correlates well with our correction factor C, a measure of the impact of Ne increase, in zebra finch only. As the400

polymorphism data spans at most 10% of the species divergence time, most of the demographic history since the their401

split is not captured in our analysis, thus the modest impact of the recent expansions on GC∗ is perhaps unsurprising.402

Conclusion403

We show that the underlying strength of gene conversion b is conserved between the great tit and zebra finch, with404

the zebra finch’s larger population scaled strength of gBGC, B, due to its larger effective population size. Within405

each species’ genome, variation in B is driven by variation in both recombination rate and local Ne, with the former406

having the larger impact.407

When considering the equilibrium GC content, we see that GC∗
div and GC∗ prior to the inferred population408

expansions are similar between the great tit and zebra finch, suggesting that they have had similar average Ne since409

their divergence. Our higher GC∗
pol estimates are likely explained by the short timescale covered by the polymorphism410

data relative to the divergence data.411
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Nadachowska-Brzyska, K., Qvarnström, A., Uebbing, S., and Wolf, J. B. W. 2012. The genomic landscape of463

species divergence in Ficedula flycatchers. Nature, 491(7426): 756–760.464

Eyre-Walker, A. and Hurst, L. D. 2001. The evolution of isochores. Nature Reviews Genetics, 2(7): 549.465

Eyre-Walker, A., Woolfit, M., and Phelps, T. 2006. The distribution of fitness effects of new deleterious amino acid466

mutations in humans. Genetics, 173(2): 891–900.467

Galtier, N. and Duret, L. 2007. Adaptation or biased gene conversion? Extending the null hypothesis of molecular468

evolution. Trends in Genetics, 23(6): 273–277.469

Galtier, N., Roux, C., Rousselle, M., Romiguier, J., Figuet, E., Glémin, S., Bierne, N., and Duret, L. 2018. Codon470
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