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Abstract 
Genome-wide association studies (GWAS) have revolutionized human genetics, allowing 
researchers to identify thousands of disease-related genes and possible drug targets. However, 
case-control status does not account for the fact that not all controls may have lived through their 
period of risk for the disorder of interest. This can be quantified by examining the age-of-onset 
distribution and the age of the controls or the age-of-onset for cases. The age-of-onset distribution 
may also depend on information such as sex and birth year. In addition, family history is not 
routinely included in the assessment of control status. Here we present LT-FH++, an extension 
of the liability threshold model conditioned on family history (LT-FH), that jointly accounts for age-
of-onset and sex, as well as family history. Using simulations, we show that, when family history 
and the age-of-onset distribution are available, the proposed approach yields large power gains 
over both LT-FH and genome-wide association study by proxy (GWAX). We applied our method 
to four psychiatric disorders available in the iPSYCH data, and to mortality in the UK Biobank, 
finding 20 genome-wide significant associations with LT-FH++, compared to 10 for LT-FH and 8 
for a standard case-control GWAS. As more genetic data with linked electronic health records 
become available to researchers, we expect methods that account for additional health 
information, such as LT-FH++, to become even more beneficial.  
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Introduction 
Identifying the genetic variants underlying diseases and traits is a hallmark of human genetics. In 
recent years, large meta-analyses of genome-wide association studies (GWAS) have identified 
thousands of genetic variants for common diseases1–7 including psychiatric disorders8–12, 
revealing a remarkably complex and polygenic genetic architecture for most traits. International 
research collaboration where GWAS summary statistics have been shared in large consortia has 
been vital to this success, allowing researchers to obtain large sample sizes needed to study 
polygenic diseases. Novel advances in computational methods have also contributed to this 
success by enabling researchers to do more with less data13–17. Yet, for most of these traits and 
diseases only a small fraction of the estimated heritable variation has been identified in 
GWAS18,19, highlighting the need for even larger samples and more powerful analysis methods.  
 
Currently, most case-control GWAS studies are conducted using a regression model where the 
outcome is the case-control status, or occasionally, the age-of-onset of disease20. In this paper, 
we have opted for using the phrase age-of-onset over age-at-first-diagnosis, since they commonly 
refer to the same underlying thing, i.e. when a diagnosis is given. Recently, researchers have 
proposed several methods that leverage additional information to improve the power to detect 
genetic associations, without having to increase the number of genotyped individuals. These 
include multivariate methods that leverage shared environmental or genetic correlations between 
traits and diseases21–25, as well as methods that account for age-of-onset26,27. Perhaps the most 
fruitful development has come from methods that leverage family information to increase 
statistical power to identify associations, such as genome-wide association study by proxy 
(GWAX)28,29 and liability threshold model based approach30. The liability threshold model 
conditioned on family history (LT-FH)30 estimates the posterior mean genetic liability under the 
liability threshold model conditional on the case-control status of the individual, parents, and 
siblings. Here, family history refers to the case-control status of all family members, i.e. parents 
and siblings. As for GWAX, it considers any individual with a family member, who has the disorder 
being studied, as a case, increasing the number of cases. The GWAX phenotype remains a case-
control phenotype. Although both GWAX and LT-FH can lead to power increases over case-
control GWAS on real data, they achieve it in two different ways.  It has been shown that GWAX 
can lead to a reduction in power when compared to a case-control GWAS, if the in-sample disease 
prevalence is high. However, LT-FH consistently provides an increase in power compared to 
case-control GWAS and GWAX30. This power improvement in LT-FH stems from two main 
sources. First, it distils family information and the individual’s case-control status into a genetic 
liability estimate, resulting in a more informative outcome than the case-control status alone, to 
be used in GWAS. Second, it also allows researchers to include more individuals in their analysis. 
For instance when studying breast cancer we can derive the posterior genetic liability for 
genotyped males conditional on the family history for their mothers and sisters, and thus include 
them in the GWAS.  
 
However, family members often span a large age-range, which can affect the expected disease 
prevalence due to changes in diagnostic methods and criteria over time. We refer to such 
differences in prevalence by birth year as cohort effects. For instance, in the iPSYCH data31, 
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where genotyped individuals are born after 1980, we expect severe right censoring for many 
diagnoses. Survival models are routinely used in epidemiology to model time-to-event data in 
order to account for right censoring, time at risk, and age-of-onset, as well as cohort effects32. 
They have also been shown to provide up to 10% increase in power to detect genetic variants in 
GWAS when compared to standard logistic regression26. More recently, computationally efficient 
random effect survival models (frailty models) that can control for population and family structure 
have been proposed for GWAS27. However, although powerful, survival model GWAS methods 
that account for family history as well have yet to be proposed. The survival model is based on a 
fundamentally different generative model than the liability threshold model and the posterior 
genetic liabilities derived with LT-FH cannot be used directly as an outcome in a survival analysis. 
Hujoel et al.30 proposed an approach to address this problem by accounting for age-of-onset in 
the genotyped individuals by linearly shifting the threshold for the genetic liabilities based on 
observed in-sample prevalence in different age groups, but did not observe any improvements in 
power. We believe that this approach was unsuccessful in part because the in-sample estimate 
of the prevalence is subject to both a survival and selection bias, and does not properly reflect 
prevalence in the population.  
 
In this paper we propose LT-FH++, a method that extends the model underlying LT-FH to account 
for information such as right censoring, age-of-onset, sex, and cohort effects. We achieve this by 
using a personalized threshold for each person (including family members), conditional on 
available information as well as general population incidence rates by age, sex, and birth year. 
LT-FH++ has been implemented into an R package (See Code Availability), which utilizes a Gibbs 
sampler implemented in C++ through the Rcpp R package33. The personalized thresholds are 
made possible by replacing the Monte Carlo sampling used by Hujoel et al. with a much more 
efficient Gibbs sampler. The Gibbs sampler allows us to estimate the posterior mean genetic 
liability for each individual independent of one another, thereby making it highly scalable. 
   First, we perform a GWAS with the standard case-control phenotype as well as GWAX, LT-FH, 
and LT-FH++ outcomes for simulated data with the liability threshold model as the generative 
model. For real-world application, we analysed mortality in the UK biobank and 4 psychiatric 
disorders in the iPSYCH cohort. Of the 4 psychiatric disorders, we will specifically highlight ADHD, 
since it had the highest number of genome-wide significant hits.  
 

Results 

Overview of methods 
The LT-FH++ method proposed here extends the LT-FH method to account for additional 
information for family members, such as age, sex, and cohort effects for case-control outcomes. 
LT-FH assumes a liability threshold model, where every individual has an underlying liability for 
the outcome, but only becomes a case if the liability exceeds a given threshold, which is 
determined by the sample or population prevalence34. It further assumes that the covariance 
structure depends on the heritability and relatedness coefficient between each individual, which 
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is a reasonable assumption for polygenic case-control diseases35,36. Under these assumptions, 
LT-FH estimates the posterior mean genetic liability conditional on the case-control status of the 
genotyped individual and their family members using a Monte Carlo sampling. The posterior mean 
genetic liability is then used as the continuous outcome in a GWAS, e.g. using BOLT-LMM37.  
   In LT-FH++ we introduce an age-dependent liability threshold model to capture the effect of 
age, and replace the Monte Carlo sampling with a much more computationally efficient Gibbs 
sampler. Illustrated in Figure 1A, the age-dependent liability threshold model extends the liability 
threshold model by assuming that the threshold for becoming a case at a given age corresponds 
to the prevalence of the disease at that age. Interestingly, this model can be viewed as a type of 
survival analysis (see methods). We can then account for additional information, such as birth 
year and sex, by further conditioning the disase prevalence on this information. This leads to an 
individualized disease liability threshold for each person, including family members, which in 
practice requires us to be able to estimate separate genetic liabilities for each individual. This is 
made possible by replacing the Monte Carlo strategy of LT-FH with the computationally efficient 
Gibbs sampler that can sample from multivariate truncated Gaussian distributions to obtain 
personalized genetic liability estimates. As illustrated in Figure 1B this results in more precise 
genetic liability estimates for LT-FH++ under the model compared to LT-FH, which for a 
population translates also into more variable genetic liability estimates (see Figure S1). Thus, in 
order to reap the full benefit of LT-FH++ it requires prevalence information to be available by age, 
sex, and birth year. Fortunately, such information is often partially or fully available on a 
population-level, e.g. in the Danish registers38. Using population prevalence information also 
allows LT-FH++ to estimate the genetic liability on a population-scale, which may also reduce the 
risk of ascertainment and selection bias39–41. We summarize the information that LT-FH++ can 
account for and the two step procedure of estimating individual genetic liabilities and performing 
GWAS on these in Figure 1C.  
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Figure 1: Illustration of the differences between LT-FH and LT-FH++. In A), an age-dependent liability 
threshold model with different thresholds marked. The marks correspond to the prevalence at the age of 
80y (10%), 50y (6%), 35y (3.5%), 25y (2%), and 15y (1%). B) The posterior mean estimate of the liability 
is obtained by integrating over the liability space spanned by the genotyped individual and its family 
members. Here, we consider a brother and a mother, where the contour lines indicate the joint multivariate 
liability density of the mother and the brother (assuming a heritability of 0.5). Using fixed population 
prevalence for males and females (dashed lines), and assuming mother and brother are cases, LT-FH 
integrates over the blue shaded area to estimate the genetic liability. In contrast LT-FH++ considers the 
age-of-onset, sex, and birth year for family members to obtain a more precise genetic liability estimate 
highlighted by the red dot. C) An overview of how LT-FH++ GWAS works, and what information it accounts 
for. In contrast to LT-FH, which accounts for the case-control status of the genotyped individual and family 
history, LT-FH++ also uses population prevalence information to account for gender, age, and birth year of 
family members. As with LT-FH, the predicted liabilities are then used as a continuous outcome in a GWAS 
using BOLT-LMM37. 
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Simulation Results 
We examined the performance of LT-FH++ using both simulated and real data. We simulated 
100,000 unrelated individuals each with 100,000 independent single-nucleotide polymorphisms 
(SNPs), and their family (two parents and 0-2 siblings). We generated case-control outcomes 
under the liability threshold model, and assigned age-of-onset by assuming the prevalence 
followed a logistic curve as a function of age (see Methods section for simulation details).  
 

 
 
Figure 2: Simulation results for a 5% prevalence, with and without downsampling of controls. 
Linear regression was used to perform the GWAS for LT-FH and LT-FH++, while a 1-df chisq test 
was used for case-control status. We assessed the power of each method by considering the 
fraction of causal SNPs with a p-value below 5 ⨯ 10−8. Here GWAS refers to case-control status 
and LT-FH and LT-FH++ are both without siblings. Downsampling refers to downsampling the 
controls such that we have equal proportions of cases and controls, i.e. we have 10,000 
individuals total for a 5% prevalence and 20,000 individuals for a 10% prevalence.  
 
We first considered the simulations for families with no siblings. We benchmarked LT-FH++ 
against case-control status and LT-FH. The results for 5% prevalence are shown in Figure 2, and 
the results for 10% prevalence can be found in Figure S2. We simulated sample ascertainment 
by downsampling controls such that cases and controls had equal proportions (50% each), which 
translated into a total of 10.000 individuals for a 5% prevalence and 20.000 individuals for a 10% 
prevalence. The simulation results confirmed the increase in power (number of causal SNPs 
detected) of LT-FH over standard GWAS when accounting for family history30. When also 
accounting for sex differences and age in LT-FH++, we observed a further increase in power, 
especially when the cases were ascertained (downsampling controls). Averaging over 10 
simulations, LT-FH had a power improvement over standard GWAS between 13.9% and 54.4%, 
where less power improvement was observed when downsampling controls. In contrast, the 
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average power increase for LT-FH++ and standard GWAS was between 34.2% and 60.6%. 
Without downsampling controls, the relative improvements of LT-FH++ over LT-FH for a 5% and 
10% prevalence were 3.98% and 4.81%, respectively. However, when downsampling controls, 
we observed an improvement of 17.8% for a 5% prevalence and 14.8% for a 10% prevalence. 
Similar results are obtained when simulating two siblings in families (results not shown). 
 
We also assessed the robustness of LT-FH++ by misspecifying model hyper-parameters, i.e. the 
heritability and prevalence parameters. Simulated heritability was 50% and when misspecifying it 
we used 25% and 75%. For the prevalence, we used simulated values of either 5% or 10%, and 
used either half or double of the true value to assess the impact of misspecifying this parameter. 
This resulted in e.g. a prevalence of 5% or 20% when the true prevalence was 10%. In Figures 
S3-6, when misspecifying the heritability and prevalence, we see similar results as in Figure 2 
with nearly identical mean null  statistics, mean causal  statistics, and power. LT-FH++ is 
therefore robust to misspecification of heritability and prevalence. 

Analysis of mortality in the UK biobank 
To evaluate the performance of LT-FH++ on real data we chose mortality in the UK biobank, as 
this is the only outcome available where we have age information for family members, i.e. we 
have age or age-of-death for mothers and fathers. We then obtained population prevalence 
information from the Office for National Statistics (ONS), which provides mortality rates for 
England and Wales by sex and birth year (since 1841), and for the United Kingdom (UK) since 
1950. This allowed us to obtain individualized prevalence thresholds for LT-FH++ for each 
genotyped individual and their parents (see Methods for details). The mortality rates by age and 
sex are shown for each decade in Figure S7. 
  
The Manhattan plots for standard case-control, LT-FH, and LT-FH++ GWAS , can be found in 
Figure 3 (see Methods for analysis details). When using the case-control phenotype as the 
outcome in GWAS, we did not observe any genome-wide significant SNPs. For LT-FH, we found 
two genome-wide significant loci, including a well known association with mortality in the APOE 
gene42 and in the HYKK gene, which is strongly associated with smoking behavior6. These were 
also the two strongest associations found with LT-FH++, which additionally found 8 other 
independent associated variants, where independence was assessed using GCTA-COJO43. The 
10 identified variants are shown in Table S1, of which three variants have not previously been 
identified as associated with mortality or aging. One of these is near the HLA-B gene, which is 
involved in immune response and has been found to be associated with white blood cell count44 
and Psoriasis45. The second association is near the MYCBP2 gene, which has previously been 
identified as being associated with chronotype46, and the expression of this gene was recently 
found to increase with age and interact with the SARS-CoV-2 proteome47. The third association 
was near the ZBBX gene, which has been found to be associated with changes in DNA 
methylation with age48. 
 
The power increase between two GWAS outcomes can be assessed by plotting the Z-scores 
against each other. For LT-FH++, it leads to an estimated power increase of 49% over LT-FH. 
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Since the Z-scores squared are the  statistics, we opted to illustrate the power improvement of 
LT-FH++ over LT-FH, through the  statistics. We plotted the  statistic for variants with a p-
value below 5 ⨯ 10−6 in Figure 4. LT-FH and LT-FH++ both had a large increase in power over 
case-control status, resulting in an estimated relative power increase of 75% and 187%, 
respectively. The  statistics and Z-scores plots compared to case-control status can be found 
in Figures S8 and S9.  

 
Figure 3: Manhattan plots for LT-FH++, LT-FH, and case-control GWAS of mortality in the UK 
Biobank. The Manhattan plots display a Bonferroni corrected significance level of 5 ⨯ 10−8, and 
a suggestive threshold of 5 ⨯ 10−6. The genome-wide significant SNPs are colored in red and the 
suggestive SNPs are colored in orange. The squares correspond to top SNPs in a window of size 
300k base pairs.  
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Figure 4: The statistics for LT-FH++ versus the ones for LT-FH for the GWAS of mortality in 
the UK Biobank. We restricted to variants with a p-value below 5 × 10−6 for at least one of the 
compared outcomes. The red dots are variants identified as genome-wide significantly associated 
by only one of the outcomes. The black dots are suggestive associations identified by either 
method, or genome-wide significant associations identified by both methods. The black line 
indicates the identity line and the blue line is the best fitted line using linear regression. The black 
dashed lines correspond to the threshold for genome-wide significance.  
 

Application to four psychiatric disorders in iPSYCH 
The iPSYCH data31 with linked Danish registers has age and age-of-onset information for all close 
family members of genotyped individuals. We considered four psychiatric disorders in the iPSYCH 
data, ADHD, Autism Spectrum Disorder (ASD), Depression, and Schizophrenia. For each of these 
we obtained prevalences by birth-year, age, and sex using the same diagnostic criteria (see 
Methods for details). As shown in Figures S10-13 the prevalence of psychiatric disorders strongly 
depend on birth year and sex, making it an appealing application of LT-FH++. We performed a 
GWAS of the three outcomes, case-control GWAS, LT-FH, and LT-FH++ for the four psychiatric 
disorders (see Methods for analysis details). Across the four psychiatric disorders we found 10 
genome-wide significant variants using LT-FH++ compared to 8 for LT-FH and case-control. For 
ADHD, LT-FH++ found 7 genome-wide significant loci, he two additional identified variants were 
for ADHD, on chromosome 11 near the LINC02758 gene which was found to be associated with 
ADHD in a meta-analysis10, and another on chromosome 14 in the AKAP6 gene, which has 
previously been identified as being associated with cognitive traits49,50. The Manhattan plots for 
ADHD can be seen in Figure 5 for all three outcomes, i.e. case-control, LT-FH and LT-FH++ (see 
Methods for details). Manhattan plots for all three outcomes are very similar, with no one outcome 
clearly outperforming the others. However, LT-FH++ does have two genome-wide significant 
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SNPs that were close to genome-wide significance with both LT-FH and case-control analysis, 
but did not pass the significance threshold. Similarly, LT-FH++ and case-control have one SNP 
that is not found by LT-FH, however it is also close to the genome-wide significance threshold for 
LT-FH. In Figure 6 we show the  statistics plot restricting to LD clumped SNPs with a p-value 
threshold of 5 ⨯ 10−6 for the index SNP and the clumped SNPs from the largest external meta 
analysed ADHD summary statistics (see Methods for details). If one method had clearly 
performed better than another, we would have expected to see a slope different from one, 
however this is not the case here. Overall, there is little power improvement by using either LT-
FH or LT-FH++ over case-control GWAS for ADHD.  
 

 
Figure 5: Manhattan plots for LT-FH++, LT-FH, and case-control GWAS of ADHD in the iPSYCH 
data. The dashed line indicate a suggestive p-value of 5 ⨯ 10−6 and the fully drawn line at 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440585doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440585
http://creativecommons.org/licenses/by/4.0/


12 

5 ⨯ 10−8 indicates genome-wide significance threshold. The suggestive SNPs are colored in 
orange, while the genome-wide significant SNPs are colored in red.  The squares correspond to 
top SNPs in a window of size 300k base pairs. 
 

 
Figure 6: The statistics from the GWAS of ADHD for each of the three methods (LT-FH++, LT-
FH, and case-control GWAS), plotted against each other. The dots correspond to LD clumped 
SNPs that have a p-value below 5 ⨯ 10−6 in the largest published meta analysis and present in 
the iPSYCH cohort (see Methods for details). The blue line indicates the linear regression line 
between two methods and the black line indicates the identity line. The slopes of the regression 
lines are not significantly different from one for any pair of methods. 
 
We performed a similar analysis for the three other iPSYCH disorders analyzed, namely ASD, 
Depression, and Schizophrenia. The Manhattan, Z-scores, and  statistics plots can be found in 
Figures S14-S19. For depression and schizophrenia, we found no genome-wide significant hits 
for any method used, and the Z-scores and statistics indicate no difference in power between 
standard GWAS, LT-FH, and LT-FH++. For autism, we do see genome-wide significant hits, 3 for 
case-control GWAS and LT-FH++ and 4 for LT-FH. The SNP that is unique to LT-FH is also highly 
suggestive for case-control GWAS and LT-FH++. A table containing the COJO independent SNPs 
can be found in Table S2 & S3 for ADHD and ASD. 
 

Discussion 
Several large genetic datasets with linked electronic health registries (EHR) have emerged in 
recent years, e.g. the UK biobank data51, the iPSYCH data31, FinnGen52, deCODE, and many 
more. As more genetic data is linked to EHR, it is essential to develop statistical methods that 
make best use of all this information to decipher the genetics of common diseases. Here we 
present a new and scalable method LT-FH++ for improving power in GWAS when family history 
and an age-of-onset distribution is available, which is typically the case in EHR. We demonstrated 
the feasibility and relevance of the approach using both simulations and real data applications. 
Using simulated case-control outcomes with a prevalence of 5% and 10%, we observed power 
gains of up to 17.8% compared to LT-FH and up to 60.6% compared to using standard case-
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control status. We found that LT-FH++ provided the largest relative improvements when cases 
were ascertained (such that in-sample case-control ratio becomes larger than prevalence) , and 
when prevalence was high.  
   We acknowledge that not everyone has access to the same level of detailed health records. 
Therefore, we would like to point out that it is not a requirement to estimate prevalence curves in 
the population that you are performing the analysis in. The curves can be estimated in an external 
population, and subsequently used to assign the personalized thresholds in the internal 
population provided information, such as sex, age-of-onset, and birth year, is available in the 
internal and external data. 
   We applied LT-FH++ to study mortality in UK biobank and 4 common psychiatric disorders in 
iPSYCH, all prevalent outcomes for which we had both family history available as well as age-of-
onset distributions. This includes age, age-of-onset (for cases), cohort effects, and sex for both 
the genotyped individuals and family members. We also had access to public data for mortality 
incidence rates by age, sex and birth year for England and Wales from 1840s to the present day. 
We compiled similar information for the 4 psychiatric disorders using the full Danish register data 
(see Methods). For mortality in the UK biobank data, we found 10 independent genome-wide 
significant associations when applying LT-FH++, compared to 2 with LT-FH and none with the 
case-control status. This result further underlines the importance of including other information in 
GWAS. The power increase of LT-FH over case-control status highlights the importance of family 
history, and the power increase of LT-FH++ over LT-FH highlights the importance of accounting 
for age-of-onset. The most significant association was found in the APOE gene, which also 
harbored the only significant association in a recent survival model (frailty model) GWAS of 
mortality in the UK biobank data27. All of the identified associations were in or near well known 
disease-related genes and were largely concordant with the genome-wide associations found by 
Pilling et al.53 when performing a GWAS of combined mothers' and fathers' attained age.  
   We further applied LT-FH++ to the 4 common psychiatric disorders in the iPSYCH data. 
Combined, we found 10 independent genome-wide significant associations with LT-FH++, 
compared to 8 for LT-FH and case-control status. Compared to mortality, the observed power 
gain for the iPSYCH disorders was small, despite having access to more information per 
individual. The discrepancy in performance when applied to the mortality in the UK biobank and 
4 common psychiatric disorders may have several reasons. First, case-control, LT-FH and LT-
FH++ performed similarly for each of the 4 common psychiatric disorders, and in the simulations, 
we saw a relative power increase when cases were ascertained through downsampling of 
controls, however, due to the lower overall sample size, the absolute power to detect causal SNPs 
also decreased significantly with sample size. We suspect a similar situation might be happening 
in the iPSYCH data. Second, since simulations showed the power improvement was larger when 
prevalence was higher and cases were ascertained, the difference may be explained by the large 
lifetime prevalence difference between death and the psychiatric disorders. Third, it is possible 
that the multivariate liability threshold model (underlying LT-FH and LT-FH++) may better fit 
mortality than the psychiatric disorders. More specifically, the model makes several key 
assumptions. First, both LT-FH and LT-FH++ assumes that the heritability is known and that there 
is no environmental covariance between family members. In practice, one can often estimate the 
heritability in the sample or rely on published estimates. Second, it assumes that the population 
disease prevalence is known, and (if relevant) provided for subgroups defined by age, birth year, 
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and sex. However, simulations using LT-FH and LT-FH++ indicate that it is relatively robust to 
misspecification of these parameters30. Third, the model assumes that the genetic architecture of 
the disease or trait in question does not vary by age of diagnosis, birth year, or differ between 
sexes. Some research suggests that this assumption is reasonable for many outcomes, including 
the four psychiatric disorders analysed here54,55, but these will generally not hold in practice. We 
note that case-control GWAS also assume this unless the analysis is stratified by these 
subgroups. Fourth, LT-FH++ assumes that the threshold always decreases with age. The intuition 
behind this is that the disease prevalence is the cumulative incidence, which by definition always 
increases with age, and the threshold is the upper quantile of the inverse standard normal at the 
age specific prevalence. An individual then only becomes a case if its liability becomes larger than 
the prevalence threshold, as it decreases with time. A consequence of this assumption is that 
early-onset cases generally have higher disease liabilities than late-onset cases, which is also 
the expectation in survival model analysis if the hazard rate is (positively) correlated with the 
genetic risk. The correlation between genetic risk and earlier age-of-onset has been observed for 
several common diseases, e.g. Alzheimer's disease56, coronary artery disease and prostate 
cancer 57. However, if the age-of-onset for a given disease is not heritable, or if the genetic 
correlation between the age-of-onset and disease outcome is weak, then we do not expect LT-
FH++ to improve statistical power for identifying genetic variants. Indeed this might be one 
possible explanation for why we do not observe improvements in power when applying LT-FH++ 
to iPSYCH data, although we note that polygenic risk scores have been found to contribute to 
hazard rates for psychiatric disorders in the iPSYCH data58,59.  
 
Conceptually, LT-FH++ combines two methods into one to improve power in genetic analyses, 
namely LT-FH, which is based on the liability threshold model and incorporates family history, 
and survival analysis, which can account for age and changes in prevalence over time and is 
routinely used to model time-to-event data. With family history and age-of-onset information 
available, we believe LT-FH++ will be an attractive method for improving power in many different 
genetic analyses, including GWAS, heritability analyses and for polygenic risk scores60–62. As 
more genetic datasets with linked health records and family information become available, e.g. in 
large national biobank projects, we expect the value of statistical methods that can efficiently distill 
family history and individual health information into biological insight will only increase.  
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Code Availability 
The code used for LT-FH++ has been implemented into an R package, and it is available at 
https://github.com/EmilMiP/LTFHPlus. We have also reimplemented LT-FH in the package, 
where we utilize the Gibbs sampler to efficiently estimate the genetic liabilities, keeping the same 
input format as the original implementation.  

Methods 

Model 
   The underlying model is identical to the one used in LT-FH30, as a result the model will only 
briefly be presented here, and the main differences will be elaborated on. Under the liability 
threshold model each individual has a liability, 𝑙𝑙, which follows the standard normal distribution. 
An individual will be considered a case, 𝑧𝑧 =  1, when their liability is above a given threshold, i.e. 
𝑙𝑙 ≥  𝑇𝑇, and a control, 𝑧𝑧 =  0, if the liability is below the threshold, 𝑙𝑙 <  𝑇𝑇. The threshold, 𝑇𝑇, is 
determined from the prevalence of the dichotomous disorder, such that 𝑃𝑃(𝑙𝑙 ≥ 𝑇𝑇)  =  𝐾𝐾, where 𝐾𝐾 
denotes the prevalence in the population.  
   LT-FH builds on this idea, and for a single individual, the liability is assumed to be further 
decomposed into a genetic and environmental component, 𝑙𝑙 =  𝑙𝑙𝑔𝑔 + 𝑙𝑙𝑒𝑒. Both 𝑙𝑙𝑒𝑒 and 𝑙𝑙𝑔𝑔 are 
normally distributed and independent. We have: 
 

 
 
   Here  is the heritability on the liability scale. The LT-FH setup extends this idea to include 
parents and siblings. It considers a multivariate normal distribution given by: 
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   Here  denotes the full liability for the individual (denoted  for a single individual above), and 

 denotes the genetic component of this liability.  and  denotes the full liability of each parent, 
while  denotes those of the sibling. The example above includes one sibling only, but in theory 
any number of siblings could be included in the model. We are interested in estimating the 
posterior mean genetic liability for each individual conditional on family information:  

 
 
   Here  denotes the vector of status for the family, consequently a restriction is placed on each 
individual’s full liability. In the case of everyone having the disorder, we would consider the space 

, where  denotes a family member, and  denotes the family member’s 
threshold and  denotes their full liability. In LT-FH, the thresholds are the same for all children 
(the offspring and any siblings), and another threshold is used for all parents. 
 
   The choice of thresholds is where LT-FH++ starts to differentiate itself from LT-FH. In short, the 
liability thresholds are personalized, such that every individual, sibling or parent has a potentially 
unique threshold which is determined by their age, birth year, and sex. Furthermore, we adapt an 
age-dependent liability threshold model, where the threshold is dynamic, in the sense that it 
decreases as a population grows older. This idea is illustrated in figure 1A, where the threshold 
decreases as time progresses for a population, with marks for ages 15, 25, 35, 50, and 80. This 
model assumes that the threshold decreases continuously as time progresses, and these marks 
can be seen as snapshots in time, where an individual who was diagnosed at one of the marks 
had an assumed (fixed) liability equal to said mark. This age-dependent liability threshold model 
allows us to be very precise with the liability for cases when an accurate age-of-onset is available. 
If an accurate estimate of age-of-onset is not available, then the threshold can still be personalized 
based on other available information, with the modification that we do not fix the full liability, but 
integrate over all liabilities above the personalized threshold. Interestingly, the age-dependent 
liability threshold model can be thought of as a survival analysis (see below). 
   Another point where LT-FH++ differs from LT-FH is in how siblings are included. LT-FH includes 
the siblings by specifying the number of siblings and assigns a single case-control status to the 
siblings with the condition that at least one sibling has the disorder. However, a more fine-grained 
inclusion of the siblings, where each sibling is added individually is not available. LT-FH++ 
expects each individual and their family members to be added separately, such that information 
on each individual can be accounted for.  
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Relationship with survival analysis 
In survival analysis GWAS the risk for becoming a case in a time-interval depends on the 
covariates in the model. This is reflected by a hazard rate 𝜆𝜆(𝑡𝑡|𝑥𝑥), which describes the event rate. 
In our context it would refer to the rate for becoming a case. This rate depends on both time 𝑡𝑡, 
and covariates of the model 𝑥𝑥, e.g. genotypes. The hazard rate (also referred to as the intensity) 
can be approximated by 𝜆𝜆(𝑡𝑡|𝑥𝑥) ≈ 𝑃𝑃(𝑇𝑇(𝑡𝑡+𝑑𝑑𝑑𝑑)<𝑙𝑙 |𝑇𝑇(𝑡𝑡)>𝑙𝑙,𝑥𝑥)

𝑑𝑑𝑑𝑑
, where 𝑑𝑑𝑑𝑑 is a small change in time63, 𝑇𝑇(𝑡𝑡) is 

the threshold for being a case at time 𝑡𝑡, and 𝑙𝑙 is the full liability of an individual. This means that 
the hazard rate is proportional to the probability an event occurs within a time-interval (𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑), 
given that no event had occurred earlier. For different types of survival analyses we can estimate 
this probability using the hazard rate, e.g. for a Cox proportional hazards model where we aim to 
estimate the effect of a genotype 𝑥𝑥 on the hazard rate, it becomes: 𝑃𝑃(𝑇𝑇(𝑡𝑡 + 𝑑𝑑𝑑𝑑) < 𝑙𝑙 |𝑇𝑇(𝑡𝑡) > 𝑙𝑙, 𝑥𝑥) =
𝑑𝑑𝑑𝑑 𝜆𝜆(𝑡𝑡|𝑥𝑥) = 𝑑𝑑𝑑𝑑 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝛽𝛽). To keep notation simpler, we will denote the genetic liability of 
individual 𝑖𝑖 as 𝑔𝑔𝑖𝑖 instead of 𝑙𝑙𝑔𝑔𝑖𝑖, and if we further assume that the genetic component for an 
individual of a case-control outcome contributes to the hazard rate such that 𝜆𝜆(𝑡𝑡|𝑔𝑔𝑖𝑖) =
𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔𝑖𝑖) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖), where 𝑥𝑥𝑖𝑖 denotes the genotype of the i’th individual, and 𝛽𝛽 their 
true effects (in the Cox-regression model). Conceptually, this means that individuals with higher 
than average genetic risk, i.e. 𝑔𝑔𝑖𝑖 > 0, will be at higher risk to become cases throughout their 
lives, irrespective of age. These high-risk individuals will on average also have earlier age-of-
onset. 
   To understand how this model relates to the proposed age-dependent liability threshold model, 
we can derive the same probability to approximate the corresponding hazard rate. Under the LT-
FH++ model, the probability for an individual 𝑖𝑖 to be diagnosed (become a case) within a time-
interval 𝑑𝑑𝑑𝑑 can be written as 𝑃𝑃(𝑇𝑇(𝑡𝑡 + 𝑑𝑑𝑑𝑑) ≤  𝑙𝑙𝑖𝑖|𝑇𝑇(𝑡𝑡) > 𝑙𝑙𝑖𝑖 ,𝑔𝑔𝑖𝑖), where 𝑡𝑡 again denotes the age of the 
individual, and 𝑇𝑇(𝑡𝑡) now denotes the age-dependent liability threshold. We note that 𝑇𝑇(𝑡𝑡) is a 
monotonic decreasing function as the prevalence of a case-status (i.e. cumulative lifetime 
incidence proportion) always increases with age (conditional on birth year and sex). Furthermore, 
𝑙𝑙𝑖𝑖 denotes the full liability of the individual and 𝑔𝑔𝑖𝑖 the genetic component of that liability (which is 
generally on a different scale than a genetic component in Cox regression). The liability threshold 
model assumes that the liability of an individual consists of a genetic and environmental 
components, i.e. 𝑙𝑙𝑖𝑖 = 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖. It also assumes that these are independent, follow a Gaussian 
distribution, and have variance ℎ2 and 1 − ℎ2 respectively. Hence using these we can expand the 
probability of being diagnosed within a time-interval 𝑑𝑑𝑑𝑑 further as follows 
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𝑃𝑃�𝑇𝑇(𝑡𝑡 + 𝑑𝑑𝑑𝑑) ≤  𝑙𝑙𝑖𝑖�𝑇𝑇(𝑡𝑡) > 𝑙𝑙𝑖𝑖,𝑔𝑔𝑖𝑖�  
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Plotting this function for different thresholds and genetic liability values shows that the probability 
for being diagnosed within the time-interval, and thus the hazard rate, increases linearly as a 
function of the genetic liability when 𝑔𝑔𝑖𝑖 is near 𝑇𝑇(𝑡𝑡) or larger. We compare this probability with the 
corresponding Cox regression probability assuming a base incidence rate of 𝜆𝜆0(𝑡𝑡) = 𝛼𝛼, where 𝛼𝛼 
is determined by the prevalence. These two probabilities, which are proportional to the hazard 
rate, are plotted as a function of 𝑔𝑔𝑖𝑖 in Figure S20, illustrating how the hazard rates of the two 
models depend on 𝑔𝑔𝑖𝑖. We note that the two models share the properties that individuals with 
higher than average genetic risk will, on average, be more likely to become cases within any time-
interval, and have earlier age-of-onset.  
   It may seem counterintuitive that a arguably deterministic model such as the age-dependent 
liability threshold model, where the liability is constant throughout life, can be recast as a survival 
analysis model. The reason for this is that although the outcome of the age-dependent liability 
threshold model is always known given the liability, one never observes this liability. Hence, the 
environmental term, which can be thought of as capturing various environmental effects as well 
as chance events and other non-genetic effects, leads to a non-deterministic survival analysis 
model. 

Sampling Strategy  
   If we consider an individual with disease status available for both parents, but no siblings, then 
we have a total of 6 unique ways to configure the status vector, , when disregarding other 
information, since the scenario where a single parent is a case can happen in two ways. LT-FH 
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estimates the posterior mean genetic liability for each of these configurations by sampling a large 
number of observations from the multivariate normal distribution described above. The 
observations are then grouped into these 6 unique configurations, and the genetic liabilities are 
estimated by averaging genetic liabilities within each configuration. This strategy works well when 
there are a limited number of configurations, but becomes infeasible when the number of 
configurations becomes too large. 
   LT-FH++ cannot efficiently use the same sampling strategy, since the personalized thresholds 
increases the number of potential configurations such that the strategy becomes intractable. 
Instead LT-FH++ considers each family as a unique configuration, since it uses individualized 
thresholds. To derive the posterior means efficiently we use a Gibbs sampler to sample from a 
truncated multivariate normal distribution64. The truncation points in the truncated multivariate 
normal distribution are the personalized thresholds. Sampling for all individuals is fast, requires 
far fewer observations, and can be easily parallelized across individuals as each family is 
independent from each other.  
 

Prevalence Information  
The age-dependent prevalence of ADHD, autism, depression and schizophrenia was obtained 
through Danish national population-based registers. For these estimates, we included all 
9,251,071 persons living in Denmark at some point between January 1, 1969 and December 31, 
2016. Each individual in the study was followed from birth, immigration to Denmark, or January 
1, 1969 (whichever happened last) until death, emigration from Denmark, or December 31, 2016 
(whichever happened first). All dates were obtained from the Danish Civil Registration System65, 
which has mantained information on all residents since 1968, including sex, date of birth, 
continuously updated information on vital status, and a unique personal identification number that 
can be used to link information from various national registers. Information on mental disorders 
was obtained from the Danish Psychiatric Central Research Register66, which contains data on 
all admissions to psychiatric inpatient facilities since 1969 and visits to outpatient psychiatric 
departments and emergency departments since 1995. The diagnostic system used was the 
Danish modification of the International Classification of Diseases, Eighth Revision (ICD-8) from 
1969 to 1993, and Tenth Revision (ICD-10) from 1994 onwards. The specific disorders were 
identified using the following ICD-8 and ICD-10 codes: ADHD (308.01 and F90.0), autism (299.00, 
299.01, 299.02, 299.03 and F84.0, F81.4, F84.5, F84.8, F84.9), depression (296.09, 296.29, 
298.09, 300.49 and F32, F33), and schizophrenia (295.x9 excluding 295.79 and F20). For each 
individual in the study, the date of onset for each disorder was defined as the date of first contact 
with the psychiatric care system (inpatient, outpatient, or emergency visit). All analyses were done 
separately for each sex and for each birth year. The cumulative incidence function for each 
disorder was estimated with the Aalen-Johansen approach considering death and emigration as 
competing events67. The cumulative incidence over age is interpreted as the proportion of persons 
diagnosed with the specific disorder before a certain age.  
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Personalized Thresholds 
With the cumulative incidence rate tables we are able to assign personalized thresholds to 
everyone with sufficient information available. Examples of cumulative incidence rate curves can 
be seen in Figures S9 - S12. Under the liability threshold model, sex, birth year and age for 
controls or age-of-onset for cases can uniquely determine the threshold for an individual. Based 
on this information a proportion is assigned to them, which is transformed to an individual’s 
threshold through the inverse normal cumulative distribution function.  
   For controls, it has allowed us to tailor the threshold in the liability threshold model to each 
individual, similar to what is seen in Figure 1A, where the threshold is decreasing as an individual 
is getting older. In short, the older a control is, the larger a proportion of the possible liabilities in 
the liability threshold model can be excluded as no longer attainable. For cases, the tailored 
threshold means we are able to very accurately estimate what a person’s full liability is for a given 
disorder under the liability threshold model. Since the full liability can be accurately estimated for 
a case by the assigned threshold, we will fix the full liability of a case to be the threshold in the 
model. 

Simulation details 
For the simulations we simulated 100.000 unrelated individuals each with 100.000 independent 
single-nucleotide polymorphisms (SNPs). We simulated two parents, and between zero and two 
siblings. The parents’ genotypes were drawn from a binomial distribution with probability 
parameters equal to the allele frequency (AF) of the corresponding variant. The variant AF was 
drawn from a uniform distribution on the interval (0.01, 0.49). The parents’ genotypes were either 
0, 1, or 2; we defined the child’s genotypes as the average between the genotypes of both parents, 
rounding values of 0.5 or 1.5 up or down with equal probability. Allele effect sizes were drawn 
from , with  being the number of causal SNPs and  denoting the heritability. Case-
control status was assigned using the liability threshold model. 
 
The default simulation setup consisted of causal SNPs assigned to positions at random, two 
different prevalences, 5% and 10%,  set to 1000, and a sex-specific prevalence of 8% for men 
and 2% for women. When the prevalence was 10%, these sex-specifc prevalences were doubled. 
To generate the age-of-onset, we assumed that the cumulative incidence curve followed a logistic 
function, because it resembles real-world cumulative incidence rates for some traits, see Figure 
S7 & S10-13. The logistic function is given by: 
 

 
 
where 𝐿𝐿 denotes the maximal attainable value, 𝑘𝑘 is the growth rate, and 𝑥𝑥0 denotes the age at 
which 𝐾𝐾 is 𝐿𝐿/2, which is the midpoint of the curve, i.e. median age-of-onset. These parameters 
resulted in an age-of-onset that was largely normally distributed around the median age, 𝑥𝑥0. The 
cumulative incidence rate curve allows us to obtain the expected prevalence at each age, which 
we can then translate into a threshold in the liability threshold model, i.e. an earlier diagnosis 
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indicates higher liability for the trait. We set 𝐿𝐿 as the lifetime prevalence (5% and 10%). We also 
set 𝑘𝑘 to 1/8 and 𝑥𝑥0 to 60 such that 90% of cases have an age-of-onset between 36.5 and 83.5.  
 
A family consisted of one offspring, two parents, and zero to two siblings. The age of the cases 
was set to the age-of-onset. The age-of-onset was assigned by taking the inverse of the logistic 
function on the full liability’s quantile under the standard normal distribution. Individuals with an 
age lower than their age-of-onset would normally be considered controls, since they had not yet 
had the time to develop the disorder. However, setting high liability individuals to controls due to 
age-of-onset being later than age was decided against to properly fix the number of cases to the 
prevalence in the simulated data. For controls, the offspring’s age was uniformly distributed 
between 10 and 60. The parents’ age was set to the age of the child plus a uniform draw between 
20 and 35, allowing for up to 95 year olds. The threshold was assigned with the logistic function 
with the age and sex as inputs. For simplicity, birth year was not modelled. 
 
When considering sex and the sex-specific prevalences, we assigned each individual a male or 
female sex with equal probaility. We assumed males were four times as likely to be cases than 
females. For the two overall prevalences (5% and 10%) this corresponded to 8% and 16% 
prevalence among males (liability thresholds  and ) and 2% and 4% 
prevalence among females (liability thresholds  and ). Finally, we 
simulated sample ascertainment by downsampling controls such that cases and controls had 
equal proportions (50% each). For 5% prevalence this resulted in a sample size of 10,000 and 
20,000 individuals when using a prevalence of 10%. 

GWAS in UK biobank 
We restricted individuals to the White British group (Field 22006) and to the individuals used for 
computing the principal components (PCs) in the UK Biobank (Field 22020). These individuals 
are unrelated and have passed some quality control (see section S3 of 51). This resulted in 
337,475 individuals. Table 1 shows a breakdown of how many people are cases and controls for 
the genotyped individuals and parents. We used the genotyped SNPs for the UK biobank 
participants as model SNPs in BOLT-LMM37, after removing SNPs with maf < 0.01, missing call 

rate > 0.01, and Hardy-Weinberg equilibrium p-value < 1 × 10
−50

, which left us with a total of 
504,138 SNPs. When performing the GWAS, we used the imputed SNPs in bgen files and 
removed SNPs with a maf < 0.005 or info score < 0.6, which resulted in 11,335,564 SNPs. We 
used BOLT-LMM v2.3.2 with age, sex, and the first 16 PCs as covariates. The three mortality 
outcomes used in the UK biobank were case-control status, LT-FH, and LT-FH++. We considered 
the binary death outcome as the case-control phenotype, with LT-FH and LT-FH++ further utilising 
the mortality status of both parents, but no siblings.  
 
LT-FH++ and LT-FH require prevalence information, which was acquired from the Office for 
National Statistics (ONS) https://www.ons.gov.uk/. Mortality rates for England and Wales were 
available from 1841 to the present day. The same information was available for all of the United 
Kingdom (UK), but only from the 1950's onwards. Since England is the most populous country in 
the UK, we believe these mortality rate estimates are a good proxy for all of the UK. From the 
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mortality rates provided by ONS, we calculated the cumulative incidence curves for death, for 
each birth year from 1841 onwards and for both sexes. We used this information to calculate the 
personalized thresholds in LT-FH++, accounting for birth year, sex, and current age or age of 
death. Note that, in LT-FH, it is not possible to adjust for sex, age, or cohort effects at the individual 
level, but two different threshold can be specified, one for all parents and one for all children. 
Therefore, we assumed the same age for all children and the same age for all parents when 
running LT-FH. We used the last recorded death as the endpoint, which happened in 2018, and 
assumed all children were 55 years old, and parents were 85 years old. This translated into an 
assumed birth year of 1963 and 1933, respectively. Based on these birth years, we found the 
prevalence of death for these birth years and ages in the survival curve, and averaged the sex-
specific prevalences. For LT-FH, we also considered thresholds based on prevalence estimated 
in the UK biobank participants and their parents, however we did not see any significantly different 
results, when comparing to the population based prevalence estimates (results not shown). A 
heritability of 20% was used for LT-FH and LT-FH++.  
 

 
Table 1: Breakdown of the number of cases and controls for mortality for the UK biobank 
participants (here Children) and their parents. The case-control GWAS only used the Children 
column as input, while LT-FH and LT-FH++ used all columns. 

GWAS in iPSYCH 
The iPSYCH cohort has recently received a second wave of genotyped individuals, increasing 
the number of genotyped individuals from ~80k to ~143k68. The two iPSYCH waves have been 
imputed separately with the Ricopili pipeline69. After combining the two waves and removing any 
SNP with missingness > 0.1 or MAF < 0.01, we have a total of 4,706,774 SNPs. When performing 
a GWAS, we restrict the analysis to individuals classified as controls in the iPSYCH design and 
individuals diagnosed with the analysed phenotype, even when using LT-FH or LT-FH++. We 
filtered for relatedness with a 0.0884 KING-relatedness cutoff and restricted the analysis to a 
genetically homogeneous group of individuals by calculating a Mahalanobis distance based on 
the first 16 PCs and keeping individuals within a log-distance of 4.570. For a breakdown of the 
number of individuals included in each GWAS and the number of cases and controls see Table 
2. We used BOLT-LMM37 v2.3.2 to perform the GWAS with sex, age, wave, and the first 20 PCs 
as covariates. LT-FH and LT-FH++ require an estimate for the heritability, and for ADHD we used 
75%71, autism was 83%72, depression was 37%73, and schizophrenia was 75%73,74. See 
Prevalence Information for details on how the cumulative incidence curves were derived. 
   When assessing power between outcomes, we considered SNPs that are in the iPSYCH cohort 
and have been found to be significantly associated with the psychiatric disorder being analysed 
in the largest publicly available meta-analysed GWAS8-10,75. PLINK is used to perform linkage 
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disequilibrium (LD) clumping on the external summary statistics. We used PLINK’s default 
parameters, except for the significance thresholds. PLINK’s p-value threshold used were 5 ⨯ 10−6 
for both the index SNP and the clumped SNPs. The default window size of 250kb and the LD 
threshold of 0.5 was used.  
 

 
 
Table 2: Breakdown of how many cases and controls each GWAS was performed with. For case-
control outcome only the Children column was used. For LT-FH and LT-FH++ all columns were 
used. LT-FH only included a binary variable for sibling status, for ASD this meant 1,427 satisfied 
the “at least one sibling is a case” condition of LT-FH. Some individuals had no siblings and thus 
no sibling status. 
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