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Abstract 

The selection of peptides presented by MHC molecules is crucial for antigen discovery. 

Previously, several predictors have shown impressive performance on binding affinity. However, 

the decisive MHC residues and their relation to the selection of binding peptides are still 

unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based 

framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 

to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and 
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unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele 

signatures on the important positions to disclose the relation between binding motifs and MHC-I 

sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele signatures (HLA-A: 13, 

HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and allele signatures disclosed the critical 

polymorphic residues that determine the binding preference, which are believed to be valuable 

for antigen discovery and vaccine design when allele specificity is concerned. 

Introduction 

Antigens are essential for the induction of adaptive immunity to respond to threats such as 

infectious diseases or cancer1. Most antigens are short non-self peptides; however, not all 

peptides are antigenic1. Researchers have been committed to the development of peptide-based 

vaccines to prevent or treat numerous diseases2–5. For instance, tumor neoantigens, derived from 

proteins with nonsynonymous somatic mutations, may be suitable cancer therapeutic vaccines6–8. 

In order to choose good antigens, it is important to understand the process of antigen presentation. 

 

Major histocompatibility complex class I (MHC-I) molecules are cell surface proteins essential 

for antigen presentation1. MHC-I encoded by three gene loci (HLA-A, -B, and -C) are composed 

of a polymorphic heavy α-chain and an invariant β-2 microglobulin (β2m) light chain9. The α1- 

and α2-domains form the peptide-binding cleft, a highly polymorphic region, contributing to the 

diversity of MHC-I-binding motifs9. There are more than 13,000 MHC-I alleles on a four-digit 

level (e.g., A*02:01) recorded in the IPD-IMGT/HLA database10, representing a particular 

protein sequence. Thus, it is difficult to select antigens from numerous peptides for each MHC 

allele via experiments. 
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In order to facilitate the process of antigen discovery, several predictors have been developed 

and shown accurate performance on MHC-I-peptide binding affinity11,12. Owing to the similarity 

of polymorphic regions in MHC-I alleles, researchers tended to build a single pan-allele 

predictor rather than numerous allele-specific predictors13; of note, a pan-allele predictor takes 

both MHC-I and peptide sequences as the input. A pan-allele predictor is thought to disclose the 

connection among different alleles via the consensus pattern in polymorphic regions13. 

Nevertheless, the relation between MHC-I sequences and their binding motifs is still unspecified. 

 

In the past years, a few studies have discussed the similarity between MHC-I-binding motifs14–16. 

Some key residues of MHC-I molecules determine the binding motifs which can be clustered 

into several groups14; the types of key residues within allele clusters and motif clusters are 

consistent to some extent15. In addition, the similarity between binding motifs can be used to 

improve the performance of binding prediction16. However, it is difficult to specify the key 

residues of each motif group from the limited number of alleles with experimental measurements. 

 

In this regard, we developed a deep learning-based framework, MHCfovea, that incorporates 

supervised binding prediction with unsupervised summarization to connect important residues to 

binding preference. As exemplified in Fig. 1, this study explored the binding potential of billions 

of peptide-allele pairs via the prediction module; only qualified binding pairs were sent to the 

summarization module to infer the relation between binding motifs and MHC-I sequences. In the 

end, the resultant pairs of hyper-motifs and allele signatures can be easily queried through a web 

interface (https://mhcfovea.ailabs.tw). 
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Results 

Overview of MHCfovea. MHCfovea integrates a supervised prediction module and an 

unsupervised summarization module to connect important residues to binding motifs (Fig. 1).  

The predictor in the prediction module is constructed of an ensemble model based on 

convolutional neural networks (CNN) (Supplementary Fig. 1) embedded with ScoreCAM17, a 

class activation mapping (CAM)-based18 approach, to highlight the important positions of the 

input MHC-I sequences. As for the summarization module, to infer the relation between the 

important residues and the binding motifs, we made predictions on unobserved alleles to expand 

our knowledge from 150 to 13,008 alleles followed by clustering all N-terminal and C-terminal 

binding motifs respectively. Then, the corresponding signatures of MHC-I sequences on the 

important positions were generated to reveal the relation between MHC-I sequences and their 

binding motifs. In the following subsections, we first demonstrate the performance of 

MHCfovea’s predictor using 150 alleles with experimental data. Secondly, we introduce the 

important positions highlighted by ScoreCAM embedded in MHCfovea’s predictor. Finally, we 

present the summarization results on 13,008 alleles in groups of HLA-A, -B, -C, respectively. 

Additionally, alleles from the same HLA group but falling into different clusters, are identified to 

disclose the critical residues that determine the binding preference beyond HLA groups. 

 

Performance evaluation of MHCfovea’s predictor. The predictor of MHCfovea takes an 

MHC-I binding cleft sequence with 182 amino acids and a peptide sequence with 8-15 amino 

acids19 to predict the binding probability. We trained the predictor using 150 alleles with either 

binding assay data or ligand elution data, and then tested it on an independent ligand elution 

dataset built by Sarkizova et al15. We adopted a large number of in silico decoy peptides in 
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parallel with in vivo free peptides (not present on MHC-I molecules) to train and test the 

predictor; of note, we took NetMHCpan4.120 as a reference to set the ratio of decoy peptides to 

eluted peptides (decoy-eluted ratio, D-E ratio) at 30 in the benchmark (testing) dataset. The data 

sources used are characterized in Supplementary Tables 1 and 2. 

 

The number of decoy peptides is notably higher than that of eluted peptides, meaning that MHC-

I-peptide binding prediction is an extremely imbalanced classification process. In fact, the 

imbalance among classes is a common issue in machine learning, and some methods have been 

developed to deal with it21. In MHCfovea, we used the ensemble strategy with downsampling22–

24 to resolve such an imbalanced learning task (Fig.2a). 

 

Next, to evaluate the effect of the D-E ratio in the overall training dataset (denoted as A in Fig. 

2a) and the D-E ratio in each downsized dataset (denoted as B in Fig. 2a), we trained models 

with five different D-E ratios (B=1, 5, 10, 15, and 30) in each downsized dataset and three 

different D-E ratios (A=30, 60, and 90) in the training dataset. Fig. 2b depicts the performance of 

the validation dataset. The best model was that with D-E ratios of B=5 and A=90, respectively, 

showing an AP of 0.898 and an AUC of 0.991. Therefore, we used the ensemble model with 18 

(=90/5) CNN models as the predictor of MHCfovea. 

 

Here, we compared MHCfovea’s predictor with other well-known predictors, including 

NetMHCpan4.120, MHCflurry2.025, and MixMHCpred2.116, using an independent benchmark 

dataset, which is depicted in Fig. 2 and Supplementary Fig. 2. Importantly, MHCfovea showed 

an AUC of 0.977 (Fig. 2c) and an AP of 0.841 (Fig. 2d), both better than those obtained with the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.18.440359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440359
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

other predictors. Apart from the whole benchmark dataset, we also evaluated the performance on 

every allele in Supplementary Table 3. MHCfovea showed a median AUC value of 0.984, with 

81 of the 91 (89%) alleles, showing an AUC of at least 0.95. MHCfovea performed significantly 

better than the other predictors with respect to the AUC and AP metrics (Fig. 2e and 2f). 

 

Additionally, the performance of our pan-allele model was tested in the context of 25 rare alleles 

(with less than 100 binding peptides in the training dataset), listed in Supplementary Table 4. 

Importantly, the performance metrics between rare and common alleles were not significantly 

different (Fig. 2g and Supplementary Fig. 2), suggesting that MHCfovea shows good 

performance not only toward alleles commonly present in the training data but also in the context 

of rare alleles. The high similarity of sequences between alleles in the same HLA group was 

regarded as a reason for the good performance on rare alleles. Nevertheless, B*55:02 is a rare 

allele with an AUC of 0.993, while no common alleles in B*55 are present in the training dataset, 

demonstrating that the alleles within rarely observed HLA groups also have good accuracy. 

 

Selection of important MHC-I residues. The MHC-I binding cleft is a sequence of 182 amino 

acids, some of which occupy highly polymorphic sites considered as decisive for epitope binding. 

Therefore, we investigated the important positions using ScoreCAM17, a kind of class activation 

mapping (CAM) algorithm. We focused on the positive predictions of the training dataset and 

obtained allele masks; briefly, every position has a mask score representing the relative 

importance across the 182 amino acids. Fig. 3a shows the stack plot of importance of each HLA 

gene at each position and the heatmap clustering of allele masks. The importance of each 

position was quantified by the proportion of alleles with a mask score of over 0.4. Importantly, 
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alleles from identical HLA genes were mostly grouped together in the heatmap, consistent with 

the divergence of importance between different HLA genes in the stack plot. This result indicates 

that our model not only learned the differences between HLA-A, -B, and -C but also focused on 

different positions in different HLA genes. 

 

Additionally, to evaluate the consistency of polymorphism and mask score of each position, we 

applied linear regression analysis on the degree of polymorphism and importance. The degree of 

polymorphism was calculated by the information entropy of amino acid frequency. Owing to the 

divergence between HLA genes in Fig. 3a, the importance scores of HLA-A, -B, and -C were 

calculated separately, and the max one was chosen as the final importance. The activation maps 

derived from CAM-based approaches are not sharp enough; residues next to the real important 

residue could be highlighted simultaneously. This explains why some non-polymorphic positions 

also have high importance; therefore, before applying linear regression, we removed all non-

polymorphic positions. Fig. 3b presents a Pearson’s correlation of 0.67 (P < 0.05) between 

polymorphism and importance, and reveals that highly polymorphic sites play a more important 

role in the predictor. 

 

Non-polymorphic positions with importance more than 0.4 were chosen as important positions. 

Fig. 3c presents the Venn diagram of position selection. In the end, 42 important positions were 

selected, and thirteen of them were important in all HLA genes (Supplementary Table 5). 

We compared the selected residues (42 residues) with 34 contact residues (the pseudo-sequence 

applied in NetMHCpan4.1)20 in Fig. 3b. Some highly polymorphic sites are not included in the 
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pseudo-sequence but have significant importance, suggesting that some residues other than the 

34 contact residues are essential for epitope binding, such as position 65 and 71. 

 

Expansion and summarization of MHC-I-binding motifs. Each MHC-I allele has its own 

binding motif owing to the distinct MHC-I sequence. To further explore the pattern among 

different alleles, we computed the binding motif of alleles in the training dataset. Since the 

length of epitopes ranges from 8 to 15 and the significant residues are usually located at the 

second and last positions, we focused on the first four (N-terminal) and last four (C-terminal) 

residues to construct an 8-amino acid-long motif for each allele. Supplementary Fig. 4 depicts 

the hierarchical clustering of the binding motifs of HLA-B alleles. Some alleles, especially those 

of identical HLA group (e.g., B*44), have similar binding motifs and are grouped together; 

however, some alleles with similar N-terminal sub-motifs have dissimilar C-terminal sub-motifs. 

For example, both HLA-B*40:01 and HLA-B*41:01 have an E-dominant N-terminal sub-motif, 

but the former has an L-dominant C-terminal sub-motif and the latter has an A-dominant one. 

This motivated MHCfovea to cluster the N-terminal and C-terminal sub-motifs separately. 

 

When exploring the relation between HLA sequences and MHC-I-binding motifs/sub-motifs, we 

noticed that the number of alleles in a cluster is too small to form meaning signatures. The 

training dataset has only 150 alleles, a fraction of the 13,008 MHC-I alleles recorded in the IPD-

IMGT/HLA database10; it is difficult to obtain notable MHC-I sequence patterns from such an 

insufficient number of alleles. Therefore, we made predictions on all available alleles to generate 

more motifs, relying on the good performance of the MHCfovea’s predictor. In total, we 

obtained 4,158 HLA-A motifs, 4,985 HLA-B motifs, and 3,865 HLA-C motifs. 
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We then retrieved N- and C-terminal sub-motifs and clustered them into several clusters. Fig. 4 

shows the clustering of N- and C-terminal sub-motifs of all HLA-B alleles, with 7 N-terminal 

and 5 C-terminal sub-motif clusters. For each sub-motif cluster, we calculated the hyper-motif 

and the corresponding allele signature to represent the preference of binding motifs and amino 

acids at the important positions (Fig. 4, Supplementary Figs. 5 and 6). Of note, the allele 

signature was constructed from a subset of alleles in the cluster to reduce the imbalance between 

different HLA groups; the column “HLA Groups” in Fig. 4 is used to denote the HLA groups 

that construct the allele signature. Notably, the pattern of binding motifs and allele signatures are 

partly interpretable with the property of amino acids. In Fig. 4, the first cluster of C-terminal 

hyper-motifs is composed of aromatic residues (e.g., Y and F), whereas the second and third 

clusters are composed of aliphatic amino acids (e.g., L, V, I, and A). Moreover, the fifth and 

sixth clusters of N-terminal hyper-motifs dominated by basic amino acids (H and R) with similar 

allele signatures, indicating that MHC-I-peptide binding depends on physicochemical properties 

to some extent. 

 

To investigate the distribution of allele groups with respect to the combinations of N- and C-

terminal clusters, we plotted the combination heatmap in Fig. 5a (Supplementary Fig. 7 for 

HLA-A and -C), which in total has 35 combinations (7 N-terminus × 5 C-terminus) for HLA-B. 

Interestingly, five novel combinations, not present in the training dataset, were discovered by 

MHCfovea via the pattern learned from the observed combinations. In Fig. 5b we presented four 

combinations of N- and C-terminal clusters. The noticeable residues of N- and C-terminal hyper-

motifs are mostly located in the first half and last half part of allele signatures respectively, 
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which is consistent with the binding structure of MHC-I molecules. For example, the E-dominant 

cluster has noticeable residues in the first half part of the allele signature; these residues are 

highly conserved in not only different combinations but also the cluster, which enhances 

confidence of the key residues highlighted in the allele signature. 

 

Disclosure of the HLA groups falling into multiple sub-motif clusters. Overall, alleles within 

the same HLA group were clustered into the same sub-motif cluster. However, Fig. 4 shows that 

some HLA groups, such as B*15 and B*56, fell into multiple sub-motif clusters. An HLA group 

is defined as a multi-cluster HLA group if its alleles fall into multiple clusters and the secondly 

large cluster contains the number of alleles ≥25 or the ratio to the total allele number of this 

group >0.1, MHCfovea identified 27 multi-cluster HLA groups.  

 

Here, we used the important positions and expanded alleles to further investigate the multi-

cluster HLA groups. Fig. 6a shows that the difference in polymorphism between multi-cluster 

and mono-cluster HLA groups is significant considering the important positions, but not all 182 

amino acids. Fig. 6b shows that MHCfovea has good performance with respect to rare alleles for 

both mono- and multi-cluster HLA groups. Fig. 6c and 6d demonstrate hyper-motifs and 

highlighted allele signatures of multi-cluster HLA groups. Fig. 6c shows three major N-terminal 

sub-motif clusters of B*15; the grey box highlights the highly polymorphic sites, especially 

position 67, which may contribute to different MHC-I-binding motifs. Additionally, position 65 

and 71, not selected in the pseudo-sequence of NetMHCpan4.1 (Fig. 3b), are highlighted in the 

second cluster of Fig. 6c, supporting that some important positions beyond 34 contact residues 

are also decisive for the binding motif. On the other hand, Fig 6d shows three major C-terminal 
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sub-motif clusters of B*56; in the B*56 HLA group, only B*56:01 was present in the training 

dataset, which reveals that another two clusters were discovered by MHCfovea after allele 

expansion. In summary, these results demonstrate some notable patterns of MHC-I sequences 

beyond HLA groups, corresponding to some specific sub-motifs. 

Discussion 

Antigen discovery is composed of two major steps, antigen presentation and T cell recognition1; 

several researches have built accurate predictors for antigen presentation, especially MHC-

peptide binding12. However, the decisive residues of MHC sequences for peptide binding are still 

unspecified. A few studies have explored the pattern of MHC sequences and peptides14–16; 

nevertheless, owing to the limited number of alleles with experimental measurements, it is hard 

to conclude the relation of MHC sequences and binding motifs from all MHC alleles. 

 

Here, we developed MHCfovea for predicting binding probability and providing the connection 

between MHC-I sequences and binding motifs. MHCfovea’s predictor outperformed the other 

predictors via an ensemble framework with downsampling to solve the data imbalance between 

decoy and eluted peptides. To focus on the important positions determining the binding motifs, 

MHCfovea selected 42 amino acids of MHC-I sequences based on 150 observed alleles using 

ScoreCAM. After expanding the knowledge from observed alleles to unobserved alleles (total 

number: 13,008), MHCfovea delivered 32 pairs (HLA-A: 13, HLA-B: 12, and HLA-C: 7) of 

hyper-motifs and allele signatures on 42 important positions, to reveal the relation of MHC-I 

sequences and binding motifs. In addition, MHCfovea discovered some novel combinations of 

N- and C-terminal sub-motifs with the support from high similarity between allele signatures. 
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Finally, MHCfovea disclosed some multi-cluster HLA groups, such as B*15 and B*56, and 

highlighted the key residues to determine the different binding motifs. 

 

Some limitations of MHCfovea are addressed here. First, the unobserved motifs are derived from 

predictions. Although MHCfovea has an accurate performance in the context of rare alleles, the 

total number of alleles with experimental data is a small fraction of available MHC-I alleles. 

Second, sub-motifs with a dominant amino acid can be clustered notably. In contrast, sub-motifs 

of HLA-C mostly with no dominant amino acids have neither obvious clusters nor 

indistinguishable allele signatures; therefore, it is difficult to determine the relation between 

motifs and MHC-I sequences on such alleles. 

 

As for the binding prediction, MHCfovea is only trained on mono-allelic measurements; adding 

multi-allelic data to the training dataset increases not only the number of peptides but also the 

diversity of MHC-I alleles. Alvarez et al26 designed a semi-supervised method to associate each 

ligand to its MHC-I allele, which can potentially deal with the ambiguous annotation on multi-

allelic data. In the future, we will incorporate this method with MHCfovea to enlarge the number 

of observed alleles; we anticipate increasing the number of experimental data can further 

improve model performance and the quality of the summarization of MHCfovea. Furthermore, a 

complete immune response depends on the recognition of MHC-I-peptide complexes by T cells. 

Building a model for T cell immunogenicity followed MHCfovea is expected to promote the 

contribution of computational approaches on antigen discovery. 
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In summary, MHCfovea successfully connects MHC-I alleles with binding motifs via deep 

learning. MHCfovea’s predictor expanded the knowledge of MHC-I binding motifs from 150 

alleles to 13,008, which were further summarized into pairs of hyper-motifs and allele signatures. 

The large number of allele sequences realized the generalization of allele signatures connected to 

distinct binding motifs correspondingly. Antigen discovery and vaccine design can be facilitated 

by knowing such clustered alleles and their key residues. Additionally, MHCfovea reveals some 

multi-cluster HLA groups, which provided additional examination for allele similarity beyond 

the allele group, based on the 42 important positions of MHC-I newly uncovered by MHCfovea. 

Methods 

Preparation of MHC-I sequences. We used the IPD-IMGT/HLA database (version 3.41.0)10 as 

a reference for MHC-I sequences and used peptide-binding clefts annotated in the UniProt 

database27 as the target binding region. Of note, the peptide-binding cleft, composed of α-1 and 

α-2 regions, is a protein sequence with 182 amino acids and is critical for epitope presentation9. 

We used the alignment file from the IPD-IMGT/HLA database and obtained the corresponding 

sequences to build a peptide-binding domain database of all MHC-I alleles for the development 

of the proposed pan-allele binding predictor adopted by MHCfovea. 

 

Preparation of peptide data. Experimental data of binding and ligand elution assays, especially 

mass spectrometry (MS), were collected from Immune Epitope Database and Analysis Resource 

(IEDB)28, the most comprehensive immunopeptidome database. Because MHCfovea is a binary 

classifier for MHC-I-peptide binding, all measurements were labelled with 0 and 1. For the 
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binding assays, an IC50 of 500 nM was set as the upper bound for the positive label. As for ligand 

elution assay, all samples were labeled as positive. 

 

The binding assay dataset generated in 2013 was directly downloaded from IEDB. To focus on 

the prediction of 4-digit human MHC-I alleles (ex. A*01:01), non-human, mutant, and digital-

insufficient MHC-I alleles were excluded. The peptides were restricted to 8-15-mers and this 

setting covered most epitopes19. The MS dataset was exported from IEDB on 2020/07/01; the 

following filters were used: linear epitopes, human species, MHC class I, and positive MHC 

ligand assay. Both 4-digit human alleles and peptides with a length of 8-15 amino acids were 

selected, following the same selection strategy as above. After filtration, the dataset consisted of 

515,110 measurements across 150 alleles. 

 

Separation of the training, validation, and benchmark datasets. To build an isolated testing 

benchmark, we considered a single experimental reference selected from the previous ligand 

elution assay dataset. The MHC-I immunopeptidome built by Sarkizova et al15 is the largest 

mono-allelic MS dataset, comprising 127,371 measurements across 92 alleles and was, therefore, 

chosen as the testing benchmark in this study. The binding assay dataset and the MS dataset 

excluding the experimental data used in the benchmark were combined to build the training 

dataset (95%) and the validation dataset (5%). In addition, to avoid duplication between training 

and benchmark datasets, we excluded peptides with identical allele and peptide sequences from 

the training and validation datasets and retained them in the benchmark dataset. 
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Preparation of decoy peptides. As the MS data only provide positive results, we prepared a 

decoy dataset to be used as negative results. We created two types of novel decoy peptides, 

“protein decoy” and “random decoy”, both extracted from the UniProt proteome. “Protein decoy” 

refers to the peptides that were generated from the same protein as an eluted peptide, whereas 

“random decoy” refers to the peptides that were randomly extracted from the UniProt proteome. 

For each eluted peptide in the benchmark and validation datasets, we created two protein decoy 

peptides and two random decoy peptides for each length of 8-15 (a.a.). Duplicated peptides with 

identical allele and peptide sequence were excluded. In the end, both benchmark and validation 

datasets had a D-E ratio of 30, which is close to that of the dataset in NetMHCpan4.120. On the 

other hand, in the training dataset, to evaluate the effect of D-E ratio on model performance, we 

generated decoy peptides with D-E ratios >30. For each eluted peptide, we created two protein 

decoy peptides and ten random decoy peptides for each length of 8-15 (a.a.). We only enlarged 

the number of random decoy peptides because it was difficult to select more different unique 

peptides from a single protein (protein decoy peptides) with a short length. In the end, the 

training dataset had a D-E ratio of 90, which is three times that in the validation and benchmark 

datasets. The number of data instances in each dataset is listed in Supplementary Table 1, and the 

data number by alleles of the training, validation, and benchmark datasets is recorded in 

Supplementary Table 2. 

 

CNN model architecture. The predictor adopted by MHCfovea is an ensemble model of 

multiple CNN model. A CNN model takes the allele (182 a.a.) and peptide (8-15 a.a.) sequences 

as input; both sequences are encoded with a one-hot encoder of amino acids. The CNN model 

architecture is shown in Supplementary Fig. 1. Before concatenation, the encoded vectors are 
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passed through several convolution blocks separately. The convolution block is composed of a 

1D convolution layer with kernel size 3, stride 1, and zero-padding 1, a batch normalization layer, 

a ReLU activation layer, as well as a max-pooling layer. In the allele part, sequences are passed 

through four convolution blocks and downsized to a 15-long matrix. In the peptide part, all 

sequences are padded with “X” as an unknown amino acid to 15-long at the end of the sequence, 

the maximal length of peptides, and three convolution blocks are applied. After concatenation in 

the dimension of filters, the matrix is passed through another two convolution blocks with the 

replacement of the last max-pooling layer by a global max-pooling layer followed by a fully 

connected layer and a sigmoid operator. Finally, a prediction score is obtained to represent the 

binding probability of MHC-I and peptide sequences. 

 

Model training. MHCfovea uses binary cross entropy as its loss function and the Adam 

optimization algorithm as the optimizer. The number of training epochs was set to 30, and the 

best model state was chosen after epoch 24 via the performance of the validation dataset to avoid 

overfitting. Additionally, some hyperparameters were set, including a batch size of 32, learning 

rate of 10-4, and weight decoy of 10-4. The learning rate scheduler was used to adjust the learning 

rate during the training process. Of note, the learning rate was reduced to 10-5 after epoch 15 and 

to 10-6 after epoch 24. 

 

Performance metrics. We used four metrics, AUC, AUC0.1, AP, and PPV, to evaluate the 

performance of our model as well as that of other predictors. The area under the receiver 

operating characteristic (ROC) curve (AUC) is a curve of the true positive rate (TPR) against the 

false positive rate (FPR). AUC0.1 has a restriction of the FPR under 0.1. AP (average precision), 
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is the area under the precision-recall curve created by plotting the precision against TPR, also 

called recall. PPV (positive predictive value) is defined as the equation (1) where N is the 

number of positive measurements. 

 

��� �  ����	�
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�                             �1� 

 

In addition, we calculated these metrics in the context of every allele to evaluate the distribution 

of allelic performance. 

 

Comparison with other predictors. NetMHCpan4.120, MHCflurry2.025, and MixMHCpred2.116, 

well-known MHC-I-peptide binding predictors, were compared with the MHCfovea’s predictor. 

For MHCflurry2.0, we used the variant model of MHCflurry2.0-BA, the only one trained 

without our benchmark dataset. Both NetMHCpan4.1 and MHCflurry2.0 are compatible with all 

kinds of amino acids and 8-15 length peptides; however, for MHCflurry2.0, we had to replace 

amino acids beyond 20 human-required amino acids with “X” as an unknown amino acid. On the 

other hand, MixMHCpred2.1 only allows 8-14 length peptides and sequences within 20 amino 

acids; therefore, for accurate comparison, we removed peptides with other amino acids or those 

longer than 14 amino acids. 

 

First, we tested all models directly on the benchmark dataset and calculated performance metrics 

for comparison. The output of MHCflurry2.0 was the IC50 of the binding affinity; therefore, we 

used a function (1 – log50000(x)) to transform the binding affinity into binding probability. Then, 

the performances of these models were tested by allele to evaluate the confidence between 
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different alleles. In total, there are two types of results because of the peptide availability of 

MixMHCpred2.1 depicted in Fig. 2 and Supplementary Fig. 2.  

 

Class activation mapping. We applied class activation mapping (CAM) on our model for 

interpretation purposes. CAM-based approaches provide the explanation for a single input with 

activation maps from a convolution layer. There are several CAM-based methods, including 

CAM18, GradCAM29, GradCAM++30, and ScoreCAM17. ScoreCAM was chosen due to its 

stability and significance on the former convolution layer. We applied ScoreCAM on the second 

convolution block before the max-pooling layer of the MHC part (Supplementary Fig. 1). We 

focused on positive predictions with prediction scores over 0.9. The mean of ScoreCAM scores 

from positive predictions of a single allele was calculated as the final result called “allele mask” 

used in Fig. 3. Of note, in allele masks, every position has a score representing the relative 

importance across the 182-amino acid-long sequence. 

 

Selection of the important positions. The training dataset with 150 alleles composed of 46 

HLA-A, 85 HLA-B, as well as 19 HLA-C alleles was used to select the important positions, and 

both allele masks and amino acid polymorphism were taken into consideration. Owing to the 

divergence between HLA genes, positions from different HLA genes were chosen separately. 

First, we calculated the importance of each position for each HLA gene. The importance of a 

position was quantified as the proportion of alleles with mask scores over 0.4 (set heuristically). 

Then, for each HLA gene, residues with importance over 0.4 (also set heuristically) were 

selected; however, those with no polymorphism (all alleles had the same amino acid) were 

dropped. Then, we combined the selected positions from each HLA gene as important positions 
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of our model. In total, we selected 42 important positions, including positions 1, 9, 11, 12, 24, 31, 

32, 43, 44, 45, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 79, 80, 94, 95, 97, 98, 109, 114, 116, 

127, 131, 138, 142, 143, 144, 145, 152, 156, 163, and 180 of the MHC-I peptide-binding cleft 

sequence (182 a.a.). 

 

Prediction of all alleles. With the good performance of MHCfovea’s predictor on rare alleles, 

we predicted the binding probability of each allele against 254,742 peptides (including all ligand 

elution data and some decoy peptides whose number was the same as ligand elution data of the 

benchmark dataset). In total, 3.3 billion pairs of peptide-allele were tested. The peptides with a 

prediction score over 0.9 (~78 million peptides) were sent to the summarization module to 

calculate the binding motif for each allele. Each MHC-I-binding motif with 8 amino acids was 

composed of the first four residues (N-terminal) and the last four residues (C-terminal). In total, 

we obtained 4,158 HLA-A motifs, 4,985 HLA-B motifs, and 3,865 HLA-C motifs in the 

summarization step. 

 

Sequence motifs. The sequence motif is the pattern of a set sequences. There are some types of 

matrices, including position probability matrix (PPM), position weight matrix (PWM), and 

information content matrix (ICM), used to represent the sequence motif. In this study, we used 

PPM to calculate the MHC-I sequence motif and ICM to calculate the MHC-I-binding motif. 

From a set S of M aligned sequences of length L, the elements of the PPM are calculated from 

equation (2) where I is an indicator function. 

����,� � 1
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The ICM is used to correct PPM with background frequencies and highlight more important 

residues. The elements of the ICM are calculated from equation (3) where the background 

frequency B is 0.05 (=1/20) for each amino acid. 

�$��,� � ����,� � %����,� & '�(	�����,��
) *

�
�	� ����� ������

                                  �3� 

 

Sub-motif clustering. An MHC-I-binding motif with 8 amino acids was split into an N-terminal 

sub-motif with the first 4 residues of the motif and a C-terminal sub-motif with the last 4 

residues of the motif. Consequently, a sub-motif is represented by a 4×20 (the number of amino 

acids) information content matrix. Before clustering, the pairwise distance of each sub-motif was 

calculated via cosine metric. Then, we used agglomerative hierarchical clustering with cosine 

metrics and maximum linkage to cluster the pairwise distance. Different numbers of clusters 

were set for different HLA genes or sub-motif sides manually. 

 

Hyper-motifs and allele signatures. Hyper-motifs and allele signatures are both used to 

demonstrate the characteristics of a specific group of alleles. Hyper-motifs representing the 

MHC-I-binding motif of alleles were calculated from the element-wise mean of motif or sub-

motif matrices. Allele signatures disclose the preference of amino acids at important positions. 

For each sub-motif cluster, we sampled 50 alleles from each HLA group on a two-digit level to 

balance the allele number of each group because of two reasons. First, alleles with the same HLA 

group have similar MHC-I sequences, which may lead to similar binding motifs (Supplementary 

Fig. 4). Second, there is a huge variation among the allele number of different HLA groups. For 

example, HLA-B*07 has 394 alleles, but HLA-B*56 only has 69 alleles. Of note, if the allele 

number of an HLA group was less than 50, all alleles were selected. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.18.440359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440359
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 

Afterward, to generate the allele signature matrix (ASM), we had to calculate a background 

position probability matrix (PPM background) from all sampled alleles of an HLA gene and a 

position probability matrix of sampled alleles from a specific sub-motif cluster (PPM cluster). On 

the other hand, to evaluate the sequence pattern of HLA groups, we also calculated the position 

probability matrix of alleles from an HLA group in a specific sub-motif cluster (PPM group). The 

ASM cluster was defined as the difference between PPM cluster and PPM background; the ASM group was 

defined as the difference between PPM group and PPM background in equation (4). 

,��������� � ���������� - �������������  
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For instance, we used 1,790 sampled HLA-B alleles to generate the PPM background of HLA-B and 

502 sampled alleles of the P-dominant sub-motif cluster (Fig. 4) to produce the PPM cluster. The 

allele signature of the P-dominant N-terminal sub-motif in the header row of Fig. 4 was 

calculated from the difference of these two probability matrices. 

 

In addition, the highlighted allele signature demonstrated in Fig. 6c and 6d was used to highlight 

the similarity of allele signatures of the specific alleles and of the corresponding sub-motif 

clusters. We implemented the element-wise product to get the highlighted allele signatures in 

equation (5), where L is the sequence length and HASM is the matrix of the highlighted allele 

signature. 
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Figures 

Fig. 1 | An overview of MHCfovea. MHCfovea, a deep learning-based framework, contains a 

prediction module and a summarization module that infers the relation between MHC-I 

sequences and peptide binding motifs. First, the predictor, an ensemble model of multiple 

convolutional neural networks (CNN models), was trained on 150 observed alleles. In the 

predictor, 42 important positions were highlighted from MHC-I sequence (182 a.a.) using 

ScoreCAM. Next, we made predictions on 150 observed alleles and 12,858 unobserved alleles 

against a peptide dataset (number: 254,742), and extracted positive predictions (score >0.9) to 

generate the binding motif of an allele. Then, after clustering the N-terminal and C-terminal sub-

motifs, we built hyper-motifs and the corresponding allele signatures based on 42 important 

positions to reveal the relation between binding motifs and MHC-I sequences. 
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Fig. 2 | The framework and performance of the MHCfovea’s predictor. a, The ensemble 

framework with the partitioning strategy. We first adopted the training dataset with a decoy-

eluted ratio (D-E ratio) of A. The decoy dataset was partitioned into A/B downsized decoy 

datasets with D-E ratio of B.  Then, A/B CNN models were trained on one downsized decoy 

dataset along with the experimental dataset. Finally, the mean of results was calculated as the 

prediction score. b, AP and AUC scores of the ensemble model trained under different D-E 

ratios in the overall training dataset, including A=30, 60, and 90, against different D-E ratios in 

the downsized decoy dataset, including B=1, 5, 10, 15, and 30. The x-axis represents the D-E 
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ratio in the training dataset, and the y-axis represents the metric score. c-f, Comparison of the 

performance of MHCfovea and those of other predictors, including NetMHCpan4.1, 

MHCflurry2.0, and MixMHCpred2.1. ROC curves with AUC scores and PRC curves with AP 

scores are depicted in c and d, respectively. The violin plot on e and f shows the distribution of 

AUC and AP by alleles (n = 91). g, Comparison of the AUC between common (n=67) and rare 

(n = 25) alleles. Boxplots depict the median value with a white dot, the 75th and 25th percentile 

upper and lower hinges, respectively, whiskers with 1.5x interquartile ranges. P-values (two-

tailed independent t-test) are shown as “ns” no significance, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001, and **** P ≤ 0.0001.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.18.440359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440359
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

Fig. 3 | Selection of the important positions. a, A stack plot of the position importance of HLA 

genes at each MHC-I residue and a heatmap of allele masks derived from ScoreCAM results 

with clustering on alleles. In the stack plot, different HLA genes were counted independently due 

to the number of alleles with variation as well as the divergent patterns of conserved or 

polymorphic sequences (Supplementary Fig. 3). As for the heatmap clustering, we used 

Euclidean distance and unweighted average linkage for clustering allele masks. These two plots 

are aligned by MHC-I binding cleft sequences, to better demonstrate the distribution of mask 

scores. b, A scatterplot with linear correlation shows the relationship between polymorphism and 

importance of each polymorphic MHC-I residue (n = 80). Information entropy (−ΣP×ln(P), 

where P is the amino acid frequency) is used to represent the degree of polymorphism. The 

important positions selected using ScoreCAM are colored in red, and the 34 residues derived 

from NetMHCpan4.1 are cross-marked. The blue band represents the 95% confidence interval of 

the regression fit, and the line represents the estimated regression. c, A Venn diagram shows the 

intersection of the important position set from each HLA gene and the polymorphic residue sets. 
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Residues in the set of “(A ⋃ B ⋃ C) ∩ polymorphism” are selected as the 42 important positions 

of MHCfovea.  
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Fig. 4 | The relation between MHC-I sequences and MHC-I-binding motifs. a, A 

summarization table of HLA-B. The MHC-I-binding motifs are divided into N-terminal and C-

terminal sub-motifs; sub-motifs are clustered by agglomerative hierarchical clustering. Hyper-

motifs and the corresponding allele signatures are calculated from each sub-motif cluster. In each 

cluster, the number of alleles, and the HLA groups with the number of alleles ≥25, are recorded 

in the last two columns.  
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Fig. 5 | The combination map of N-terminal and C-terminal hyper-motifs. a, The binding 

motif of an allele is a combination of an N-terminal and a C-terminal hyper-motif. After 

allocating all the alleles into the combination map, the cell color is determined by log10(number 

of alleles in the cell). In each cell with an allele number >10, the maximal HLA group, and HLA 

groups with an allele number ≥25, or with a proportion (the allele number in the cell to the 

overall number of an allele group) >0.1, are listed. b, The relation of a combination to its hyper-

motifs. Four combinations are used as an example to illustrate the consistent signatures across 

different cells in the same column or row. The header column and header row consist of two N-

terminal and two C-terminal clusters respectively. Then, alleles of a cell, the combination of the 

N-terminal (column) and C-terminal (row) clusters, are used to generate the corresponding 
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hyper-motif and allele signature. The color boxes are used to highlighted the similar part of allele 

signatures.  
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Fig. 6 | Characteristics of the HLA groups falling into multiple sub-motif clusters. a, 

Polymorphism on all 182 amino acids or the important positions of mono-cluster (allele number 

= 65) or multi-cluster (allele number = 27) HLA-groups. b, AUC and AP of rare alleles grouped 

by mono-cluster (allele number = 12) or multi-cluster (allele number = 13) HLA-groups. c, d, 

The hyper-motifs and highlighted allele signatures of the N-terminal sub-motif clusters of B*15 

(c) and the C-terminal sub-motif clusters of B*56 (d). The box colored in grey is used to 

highlight the polymorphic sites. Boxplots depict the median value with a middle line, the 75th 

and 25th percentile upper and lower hinges, respectively, whiskers with 1.5x interquartile ranges. 

P-values (two-tailed independent t-test) are shown as “ns” no significance, * P ≤ 0.05, ** P ≤ 

0.01, *** P ≤ 0.001, and **** P ≤ 0.0001. 
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