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Abstract

Microbial communities are ubiquitous in nature, and rapid advances have been made
recently in our understanding of how they assemble and persist. A relatively poorly
understood phenomenon is that of “community coalescence”, where a new microbial
community arises through the encounter and mixing of two or more separately
assembled communities. In particular, while recent theoretical work has begun to
elucidate the role of competition in coalescence, that of the other key interaction type
commonly seen in microbial communities, cooperation, remains unclear. Here, we study
the combined effects of competitive and cooperative interactions on the outcome of
coalescence events. We simulate communities with varying levels of each type of
interaction using a general consumer-resource model where microbial populations can
both compete, and cooperate through cross-feeding on metabolic by-products. We
perform extensive coalescence simulations of pairs of pre-coalescence communities lying
on the spectrum from competition to cooperation, to gain general insights into their
relative roles in determining coalescence success. We find that when both interactions
are present in two parent communities, the less competitive one tends to dominate
during coalescence, regardless of its cooperativity, suggesting that minimizing
competition is the main driving force of this process. When competition in parent
communities is weak however, counter-intuitively, more cooperative ones are at a
disadvantage in coalescence events because multi-species invasions tend to disrupt
established cooperative links. Our results provide new, empirically-relevant predictions
about key factors determining microbial community coalescence, and a framework to
make new predictions about coalescence based on the interaction structures of
coalescing communities.

Introduction 1

Microbial communities are widespread throughout our planet [1], from the the human 2

gut to the deep ocean, and play a critical role in natural processes ranging from animal 3

development and host health [2, 3] to biogeochemical cycles [4]. These communities are 4

very complex, often harbouring hundreds of species [5], making them hard to 5

characterize. Recently, DNA sequencing has allowed a high-resolution mapping of these 6

consortia, opening a niche for theoreticians and experimentalists to collaboratively 7

decipher the complexity of these systems [6–14]. Despite thorough explorations, the 8
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mechanisms responsible for the assembly of microbial communities have only begun to 9

be revealed. 10

Unlike in the macroscopic world, entire, distinct microbial communities are often 11

displaced over space and come into contact with each other due to physical (e.g., 12

dispersal by wind or water) and biological (e.g., animal-animal interactions or leaves 13

falling to the ground) factors [15–18]. The process by which two or more communities 14

that were previously separated join and reassemble into a new community has been 15

termed community coalescence [19]. Despite the frequency of microbial community 16

coalescence, the outcome of such events in terms of community structure and function 17

remains poorly understood [20]. 18

Early mathematical models of community-community invasion in animals and plants 19

revealed that when two communities merge after barrier removal, asymmetrical 20

dominance of one community over the other one is likely to occur [21,22]. As an 21

explanation for this observation, it was argued that, because communities have been 22

assembled through a history of competitive exclusion, they are likely to compete with 23

each other as coordinated entities, rather than as a random collection of species. This 24

result has been established more rigorously in recent theoretical work, where 25

consumer-resource models have been used to show that in microbial community 26

coalescence events, the winning community will be that which is capable of 27

simultaneously depleting all resources more efficiently [23,24]. Overall, these findings 28

suggest that communities arising from competitive species sorting exhibit sufficient 29

“cohesion” to prevent invasions by members of other communities. 30

However, empirical support for the role of competition alone in coalescence remains 31

circumstantial, and the role of cooperation, which is commonly seen in microbial 32

communities, remains largely unknown. For example, during coalescence in 33

methanogenic communities, cohesive units of taxa from the community with the most 34

efficient resource are co-selected [25], and in aerobic bacterial communities, the invasion 35

success of a given taxon is determined by its community members [26], but neither of 36

these studies was able to establish that competition was the dominant factor shaping 37

cohesiveness and coalescence success. The microbial communities in these experiments 38

presumably display some degree of cooperation through cross-feeding, where leaked 39

metabolic by-products of one species act as substrates for others [27–29]. These 40

cross-feeding networks can vary in their particular link distribution (the architecture of 41

the flow of metabolites shared across species), but also in their link weights (the fraction 42

of consumed resources that is secreted to the environment as metabolic by-products 43

instead of kept for private consumption) [30]. Indeed, several studies have suggested 44

that a combination of competitive and cooperative interactions may determine the 45

outcome of coalescence in microbial communities [31–33]. 46

Here, we focus on the gap in our theoretical understanding of the relative importance 47

of competition and cooperation in community coalescence, which is is largely missing. 48

We use a consumer resource model that includes cross-feeding to assemble complex, 49

cohesive microbial communities spanning a broad range in the competitive-cooperative 50

spectrum. Using novel metrics, we then quantify competition and facilitation levels in 51

the assembled communities, and determine the relative importance of the two types of 52

interactions on success in pairwise coalescence events. We find that when competition 53

and cooperation are present, cohesive communities out-perform competitors in 54

coalescence events, both with and without the effects of leakage. However, when 55

competition is negligible, we find that cohesion is detrimental to to coalescence success. 56
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Consumer-resource-crossfeeding model 57

We use a consumer-resource model based on Marsland et al [6] for the change in
consumer and resource abundance over time:

dnα
dt

= gαnα

(1− l)
∑
j

cαjRj − zα

 (1)

dRj
dt

= κj − τ−1j Rj −
∑
α

nαcαjRj + l
∑
αk

nαDkjcαkRk. (2)

Here, Rj , where j ∈ {1 . . .m}, is resource abundance, and nα, where α ∈ {1 . . . s}, is 58

the abundance of bacterial species. κj and τ−1j are the supply and dilution rate of 59

resource j, respectively. The growth of species α is determined by the resources it 60

harvests, which in turn depends on the resource concentration Rj , and whether or not 61

the species α uses resource j (cαj = 1 or cαj = 0, respectively). Not all the harvested 62

resources contribute to growth, and a fraction, l, leaks back to the environment as 63

metabolic by-products. The matrix element Djk represents the leaked proportion of 64

resource j that is transformed into resource k. Note that, by definition, D is a row 65

stochastic matrix, i.e., its rows sum to 1. Each species’s population uses part of its 66

energy intake for maintenance zα, which we assume is given by: 67

zα = χ0

∑
j

cαj(1 + ε). (3)

Here, χ0 is the average cost of being able to consume a given metabolite, the summation 68

represents the number of resources that species α is able to process, and ε is a random 69

fluctuation sampled from a truncated normal distribution (to ensure that zα > 0). Eq 3 70

ensures that neither generalists nor specialists are systematically favoured during the 71

community assembly (For more information, see Supporting text.). The remaining 72

resources after subtracting leakage and maintenance are transformed into biomass with 73

a proportionality constant of gα, which value doesn’t affect the results presented here. 74

See first vignette in Fig 1 for a graphic representation of the behaviour just described. 75

The above model entails the following assumptions: (i) all resources contain the same 76

amount of energy (taken to be 1 for simplicity), (ii) a type I functional response, (iii) a 77

binary matrix of consumer preferences, (iv) a shared core metabolism encoded in D, and 78

(v) a complex environment where all resources are externally supplied in equal amount. 79

Competition and facilitation metrics 80

In the above system, competition for resources exists because the metabolic preferences 81

vectors of the species in the community generally overlap. Additionally, competition 82

between species depends on the resource environment experienced by the community. 83

This is made up of two contributions; the externally supplied resources, and the 84

metabolic by-products generated by the community. Due to this duality, we calculate 85

the community-level competition by averaging all interspecific pairwise competitive 86

interactions for both externally supplied and biotically leaked resources (see Supporting 87

text for details), that is 88

C = 〈(Ca)αβ + (Cb)αβ〉α6=β , (4)

where (Ca)αβ measures the level of competition between species pair (α, β) for 89

externally supplied resources, and Cb)αβ the level of pairwise competition for resources 90

that have been leaked by species α and β 91
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We define (Ca)αβ to be, 92

(Ca)αβ = (1− l)
∑
k

κ̃kcαkcβk. (5)

Here, intrinsic competition between the species pair is quantified by their common 93

metabolic preferences through the scalar product of their preference vectors; interaction 94

strength is given by the fraction of externally supplied resources that is used for growth, 95

1− l; and the factor κ̃j accounts for possible differences in the external resource supply 96

rate between metabolites. Additionally, the pairwise competition for leaked resources 97

(second term in Eq 4) is defined to be, 98

(Cb)αβ = l
∑
jk

κ̃jDjk (cαj + cβj) cαkcβk. (6)

Here, l is the strength of competition on leaked resources (see Supporting text for 99

details), and the product Djk(cαj + cβj)cαkcβk represents the necessary conditions to 100

have effective competition for the kth leaked resource (see Supporting text for details). 101

Facilitation links form when a species leaks by-products that are used by another. 102

We calculate community-level cooperation by averaging all the interspecific facilitation 103

links between species in the community as 104

F = 〈Fαβ〉α6=β , (7)

where the condition to have a cooperative link between a species pair, α→ β is (see 105

Supporting text for futher details) 106

Fαβ = 〈
∑
jk

κ̃jcαjDjkcβk〉α6=β . (8)

Simulations 107

Fig 1 presents an overview of our simulation method for analysing coalescence under the 108

mathematical framework presented above (see the matrix implementation used in the 109

simulations in Supporting text. We first assemble cohesive communities. To this end, 110

we sample consumer preferences and metabolic parameters from random distributions, 111

imposing specific constraints in order to modulate the range of competition and 112

facilitation levels achieved in each such community at equilibrium. Once we have 113

assembled communities lying on a spectrum of competition to cooperation, we perform 114

coalescence simulations between random pairs of communities. Finally, we analyse the 115

contribution from each community to the species abundance in the resulting coalesced 116

community, and ask how this contribution depends on the nature of interactions in each 117

of the original pair of communities. For the parameter values used in the simulations see 118

Supporting text. 119

Modulating competition and facilitation levels 120

We are interested in generating communities spanning a broad range of competition and 121

facilitation levels. These can be modified by sampling cαj and Djk respectively, with 122

specific constraints. 123

Competition can be modulated by increasing or decreasing niche similarity between 124

consumers. To this end, we use an iterative procedure to impose a specific level of 125

competition (see Supporting text). In this procedure, metabolic preferences of single 126
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Fig 1. Overview of our coalescence simulations. Step 1 (parameter sampling): the metabolic preferences
of 60 bacterial strains (s = 60), and the metabolic matrix D, are sampled for each community. This sampling is
done either with structure in resource classes, or without it. Step 2 (assembly): dynamics of the system are
allowed to play out in an environment with m = 60 resources, according to equations 1 and 2 till the community
reaches steady state. Step 3 (community coalescence): assembled communities are randomly paired up and each
hybrid community re-run to steady state in an environment with fresh resources. Step 4: the contribution of
each community to the final mix is analyzed (Eq 12) as a function of the degree of competitive versus cooperative
interactions in the original pair of communities.

species are assigned iteratively by re-evaluating the probability that species α samples 127

resource j, which is given by 128

pαj = (1− kc)
1

m
+ kcd̃α−1j , (9)

where m is the number of resource types, d̃α−1j is the normalized cumulative demand of 129

resource j at iteration α− 1, and kc is the competitiveness factor. (see Supporting text 130

for details). In each step of the iteration, the sampling probability of each resource is 131

changed according to the demand on it, such that highly demanded resources are more 132

likely to be sampled in the next step. Note that kc modulates the intensity with which 133

consumers prefer highly demanded metabolites such that when kc = 0, the sampling is 134

uniformly random (Fig 2A), and as kc → 1, the sampling becomes increasingly 135

preferential (Fig 2B) . 136

The facilitation level of the community depends on the metabolic cross-feeding 137

topology. This information is encoded in the community metabolic matrix D (Fig 2D), 138

which is sampled such that it mimics the distribution of resource demands. This 139

effectively results in increasing facilitation levels by causing the community to release 140

large fractions of the resources that are highly demanded (Fig 2E, and see Supporting 141

text for details). 142
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Fig 2. Examples of the preference (C) and metabolic (D) matrices for different combinations of
the competition and facilitation parameters kc, Kc, kf , and Kf in a system of 60 resource types
and 60 consumer species. Figures A and D represent purely random matrices, where all the four parameters
are 0. As kc and kf are increased (B and E) the regime moves towards greater preferential sampling, where more
demanded resources are more likely to be sampled (increase of kc), but also secreted at higher fractions (increase
of kf ). Instead, if Kc and Kf are increased (C and F), the regime moves towards greater metabolic and
taxonomic structure where species are more likeley to sample resources from their metabolic class (increase in
Kc), and leak a higher fraction of energy in the form of resources that don’t belong to their taxonomic class
(increase in Kf ).

Decoupling facilitation from competition on leaked resources 143

In the previous section we imposed a preferential structure in the sampling of the 144

community’s metabolic properties that allowed us to modulate the levels of competition 145

and facilitation. However, increasing levels of facilitation by greater leaking of more 146

demanded metabolites only decreases competition for externally supplied resources, 147

leaving competition for biotically-generated resources unchanged. In order to decouple 148

facilitation from competition on leaked resources, we need to ensure that what species 149

consume is different from what they leak. To this end, we now add structure to the 150

matrices C and D by partitioning the resource space into different resource classes, and 151

imposing that consumers feed on a preferred class, but leak to any other. 152

Incorporating this structure to the previous one yields two levels of cooperation; a 153

fine structure with inter-species facilitation due to the imposed preferential sampling, 154

and a coarse structure with inter-guild facilitation due to the existence of distinct 155

resource classes. 156

April 18, 2021 6/15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.18.440290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440290
http://creativecommons.org/licenses/by/4.0/


In this case, we sample the metabolic preferences analogously to the previous section. 157

The only difference is that the probability pαj that species α is assigned resource j as 158

one of its preferences has the form (this is derived in Supporting text) 159

pαj =


1

A
(1 +Kc(Nc − 1))

( 1

m
(1− kc) + d̃α−1jkc

)
if C(j) ∈ T

1

m
(1−Kc) otherwise,

(10)

where A is a normalization constant ensuring that probabilities sum to 1. Each of the 160

two pieces of this function is weighted up or down depending on whether resource j 161

belongs in the preferred class of species α or not, respectively (Fig 2C). The magnitude 162

of this effect is given by the heterogeneity constant Kc, which controls the amount of 163

guild structure in the preferences matrix. 164

The metabolic matrix D is also constructed with the two levels of structure imposed 165

on C. Specifically, we use a two-tier secretion model, where the first tier contains 166

by-products that are not in the resource class of the substrate (off block-diagonals of 167

D), and the second contains by-products that share resource class with their substrates 168

(block-diagonals of D). The flux of resource k leaked to each tier is lower if that 169

resource belongs to the same class as its substrate j, and higher, otherwise (Fig 2F. The 170

amount of heterogeneity in the matrix is given by the inter-guild facilitation factor Kf 171

(see Supporting text for details). 172

Community coalescence 173

We perform two sets of community assembly simulations. First, under the preferential 174

sampling scenario (Fig 3); secondly under the sampling scenario with different resource 175

classes (Fig 4). Within each set, we perform 100 random assembly processes at every 176

point of the parameter grid, which encompasses all possible combinations of the 177

following parameter values s = m = 60, l = kc = kf = Kc = Kf = [0.1, ..., 0.9]. We then 178

use the assembled communities to perform in silico community invasion assays. 179

Here, a community coalescence event is performed by mixing a random pair of 180

communities that have been equilibrated independently and letting the combined 181

system relax to a new equilibrium state. We analyze the species abundance of the mix 182

at equilibrium to try to address the effect of the interactions present in the community 183

in the outcome of the coalescence process. 184

Previous works in microbial community coalescence [21–23,25], focus on the cohesion 185

of a community as an important property when predicting coalescence success. Here, we 186

quantify the community cohesion, Θ, by pinning it down to the interactions between the 187

different species in the community. More cohesive communities will be those where 188

competition is minimized and facilitation is maximized, such that 189

Θ = F − C, (11)

where F and C are the measures of competition and facilitation presented previously, 190

Eqs 4 and 8. 191

First, we simulate coalescence between pairs of communities assembled under the 192

first sampling scenario (Fig 3 A). For each value of leakage, we perform 1.5 ·104 193

simulations where 2 randomly sampled communities are mixed in fresh media (all 194

resources are set to the initial concentrations before assembly). The cohesion values of 195

each community Θ1 and Θ2 are recorded before coalescence. An extended system with 196

the two communities (see Supporting text) is then created, and its dynamics let to play 197

out until a new equilibrium is reached. The species abundance of the mix at equilibrium 198

is analyzed in order to compute the similarity of the outcome community to each of 199
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Fig 3. Coalescence results assuming preferential sampling. Figure A shows one example of the matrix
of secretions (CD)αk, which represent the total leakage of metabolite k by an individual of species α. Columns
and rows have been reordered according to the dominant eigenvectors of CD and (CD)T , respectively. This
reveals a nested structure where a portion of species (lighter top rows) leak the majority of the more demanded
metabolites (lighter left columns). Figure B shows that community coalescence success is positively correlated
with community-level cohesion. The composition of the post-coalescence community on the basis community 1
(S = 1) - community 2 (S = −1), S(C2, C1) is plotted as a function of the community cohesion difference
∆Θ = Θ1 −Θ2 between them. Shown is binned mean (20 bins) over communities with similar ∆Θ (solid line) ±σ
(shaded). Figure C shows community-level competition C (dark red) and facilitation F (blue) averaged across
simulations for each levels of leakage. When l << 1, abiotic competition (dashed decreasing line) dominates over
biotic competition, Ca >> Cb (dashed increasing), but this relation inverts as leakage increases, so that total
competition CT remains consistently high across all values of leakage. Facilitation increases linearly with l.

their parent communities. This measure, S(C2, C1) ∈ [−1, 1], specifies the identity of 200

the post-coalescence community in the basis of the parent communities C1 and C2 with 201

original richness r1 and r2 respectively, and it is calculated as 202

S(C2, C1) =
1

r1

r1∑
i=1

bi −
1

r2

r2∑
i=r1

bi, (12)

where bi represents presence (1) or absence (0) of species i in the post-coalescence 203

community CP . Note that if S = 1, then CP = C1, and if S = −1, then CP = C2. Also 204

note that this measure is richness independent allowing us to mix communities with 205

different richness without introducing a bias in the similarity towards the richer 206

community. 207

Once the community composition of the mix is measured, we plot it against the 208

difference in cohesion of the parent communities ∆Θ = Θ1 −Θ2 (see Fig 3B), finding 209

that the resulting community is similar to its more cohesive parent. In the case of low 210

leakage, facilitation is negligible (blue line in Fig 3C), and competition is mainly for 211

abiotic resources (dashed line in Fig 3C). Thus, in this regime, being more cohesive is 212

equivalent to being less competitive. Therefore, in the low leakage regime, communities 213

that minimize competition succeed in coalescence events. Surprisingly, this trend is 214

consistent even for high values of leakage, where facilitation is slightly larger than 215

competition (now mainly for leaked resources) on average. This suggests that when 216

competition is not negligible, it drives the outcome of community coalescence, 217

overriding any effects that facilitation may have. 218

To uncover the effects of facilitation in the community (which will be expetedly 219

weaker than the effects of competition) we need to switch off competition for a range of 220

leakage values where facilitation is not negligible. To this end we perform a second set 221

of community coalescence simulations between pairs of communities assembled under 222
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Fig 4. Coalescence results assuming different resource classes . Figure A shows an example of the
secretion matrix with added structure in resource classes. Figure B shows that success of community coalescence
is positively correlated with ∆Θ for low values of leakage, when C > F ; but negatively correlated with ∆Θ for
high values of leakage, when C < F . Figure C shows community-level competition (C) and facilitation (F)
averaged across simulations for different levels of leakage. For low values of leakage, abiotic competition Ca
(dashed decreasing line) dominates, and for high values of leakage facilitation F is the important term. Biotic
competition Cb (dashed increasing line) is consistently low due to the imposed class structure.

the general sampling scenario (Fig 4A). This sampling method allows us to substantially 223

lower the term Cb in Eq 4, bringing out a new regime at high l values where C << F 224

(see Fig 4C). The simulation pipeline detailed above is now run on these communities. 225

In the low leakage regime, where competition is present, we recover the previous result. 226

In the high leakage regime, competition is negligible, so being more cohesive is 227

equivalent to having higher levels of facilitation. We find that cohesion is negatively 228

correlated with coalescence success, that is, more facilitative communities perform 229

poorly in coalescence events (see Fig 4B). 230

Discussion 231

New microbial communities often emerge through community coalescence [19]. Previous 232

studies have focused on coalescence as an outcome of competition between two 233

communities behaving as coherent wholes [21–26,31,34]. Our findings generalize these 234

results to include facilitation arising from metabolic cross-feeding. In particular, we find 235

that the balance between competition and facilitation can substantially change the 236

outcome of coalescence events [32]. 237

In the work of [23], the cohesiveness displayed by coalescing communities in the 238

absence of cooperative interactions resulted in effective resource depletion. This allowed 239

the winning community to engineer an environment more favorable for itself than for 240

the losing community, which was partially or completely displaced. The latter 241

theoretical prediction has been experimentally verified in methanogenic 242

communities [25], which are characterized by a dense metabolic cross-feeding network. 243

However, we cannot help to question this claim: how is it possible that a minimal 244

theoretical setting built exclusively around competition can explain the complex reality 245

of coalescence events in the presence of syntrophy? 246

In this work we presented a theoretical framework that incorporates the intricate 247

cross-feeding topology displayed by microbial communities and more realistically 248

reconciles theory with observations. The results we obtained in the absence of leakage 249

confirm the previous theoretical prediction that more cohesive communities out-perform 250

their competitor in a community coalescence event. Here, cohesive communities were 251
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those were competition was minimum. Because these communities behave analogously 252

to those in [23] in coalescence simulations, it must be that resource use efficiency is a 253

consequence of minimizing of competition. 254

When leakage was present, we found that reducing competition was still the main 255

force driving the outcome of community coalescence. The difference being that now 256

competition was taking place in another environment; the one engineered by a 257

community that both used and created resources. Ultimately, competition in the 258

biotically-generated resource space exists because bacteria are leaking resources 259

necessary for their own growth. While this might seem disadvantageous, and thus 260

unrealistic at first, leaking essential metabolites is an observed phenomenon in many 261

microbial systems [35,36], and may be advantageous as a “flux control” mechanism 262

employed by individual cells to promote growth in crowded environments [37,38]. 263

Overall, this finding extends the results of previous theoretical studies to accommodate 264

metabolic interdependence; an essential feature of microbial communities, thus 265

constituting a more robust result supporting experimental findings [25] and 266

hypotheses [39]. 267

To further disentangle the effects of facilitation, we introduced functional classes 268

that confined each consumer to obtain its energy from a subset of resources. We then 269

paired the taxonomic structure with metabolic structure, such that species from a 270

taxonomic class leaked energy in the form of resources that belonged to a different class 271

than their preferred one. These two constraints allowed us to survey a regime of 272

communities with very low competition and high facilitation levels. Performing a second 273

round of coalescence simulations revealed that cohesion was detrimental for coalescence 274

success in cooperative communities, that is, those communities where facilitation was 275

high and competition was negligible were easily displaced by an invading community. 276

This finding is experimentally supported by several studies [40–42] which recognize that 277

strong cooperative links are susceptible to be intercepted by invading species. 278

Nonetheless, recent in-silico results of single species invasions on microbial communities 279

have found that cooperative communities are more resistant to invasions than their 280

competitive counterparts [43]. The apparent contradiction between this finding and our 281

own suggests that community invasion ecology cannot simply be extrapolated from our 282

understanding of single species invasions [44]. 283

The pairs of coalescing communities in this work were drawn with no richness 284

restrictions, that is, communities with different species richness were allowed to 285

compete. Consequently, the results reported here are independent of the species richness 286

of the mixed communities. Interestingly, several works have pointed to microbial 287

community diversity as an important factor driving resource use efficiency and, 288

therefore, determining community resistance against biotic and abiotic 289

perturbations [45–47]. These observations do not necessarily contradict the results 290

reported here. Instead, our findings suggest that community interactions may be a more 291

fundamental mechanism explaining the response of communities to environmental and 292

biotic perturbations, and that biodiversity is rather a consequence of the underlying 293

community interaction network. It is not surprising that experiments have come across 294

biodiversity’s influence in community resilience before the effect of community 295

interactions, since the latter is much harder to measure than the former. Understanding 296

biodiversity as an emergent property of the interaction network topology in a microbial 297

community is a promising line of research [48], particularly in the context of climate 298

change/agriculture/health (REFERENCE(S)). 299

The only interactions considered here were facilitation and competition. However, 300

microbial inter-relations are more complex than just a binary classification [49], often 301

involving the release of antimicrobial compounds, end-product inhibition, predation, or 302

interactions with spatial dependencies, an aspect that was also omitted here. 303
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Throughout this work, we assumed absence of environmental fluctuations, since the 304

supply rate of all resources was kept fixed. Considering only biotic perturbations 305

allowed us to pinpoint the effect of each interaction separately. While this assumption 306

may be sensible in some cases [50], it surely is oversimplifying in others [33]. When two 307

communities collide, the process will entail, in general, a mixture of biotic and abiotic 308

perturbations. Laying down a theoretical framework to understand the effect of abiotic 309

perturbations, and the interplay between the two, in multi-species microbial invasions is 310

an exciting direction for future research. 311

Encounters between microbial communities are becoming increasingly frequent 312

across the globe [51]. Moreover, in-vitro/in-vivo mixing of whole microbial communities 313

is gaining popularity for bio-engineering [52], soil restoration [53], faecal microbiota 314

transplantation [54,55], and the use of probiotics [56]. In the absence of robust theory 315

that complements these observations and experiments, we present a framework which 316

ties multiple interactions in microbial communities to the outcome of community 317

coalescence events. Although more work is required so to bridge the gap between theory 318

and experiments, this study constitutes a first step in that direction. 319
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