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Abstract The clustering of mutations observed in cancer cells is reminiscent of the12

stress-induced mutagenesis (SIM) response in bacteria. SIM employs error-prone polymerases13

resulting in mutations concentrated around DNA double strand breaks with an abundance that14

decays with genomic distance. We performed a quantitative study on single nucleotide variant15

calls for whole-genome sequencing data from 1950 tumors and non-inherited mutations from16

129 normal samples. We introduce statistical methods to identify mutational clusters and17

quantify their distribution pattern. Our results show that mutations in both normal and cancer18

samples are indeed clustered and have shapes indicative of SIM. We found the genomic location19

of groups of close mutations are more likely to be prevalent across normal samples than in20

cancer suggesting loss of regulation over the mutational process during carcinogenesis.21

22

Introduction23

Genomic instability is a well known hallmark of cancer manifested as higher than normal rates of24

genomicmutations. However thesemutations do not typically arise at uniformly random locations25

across the genome. Rather, they typically follow a non-uniform distribution resulting in mutational26

clustering Drake (2007);Wang et al. (2007); Chen et al. (2009); Ye et al. (2010); Roberts et al. (2012);27

Nik-Zainal et al. (2012); Alexandrov et al. (2013); Kamburov et al. (2015); Nik-Zainal et al. (2016).28

This phenomenon is observed in its extreme form as kataegis, consisting of six or more mutations29

with inter-mutational distances of 1 kb or less Alexandrov et al. (2013); Nik-Zainal et al. (2016).30

In particular, large mutational loads in human cancer have been associated with replication re-31

pair deficiency Campbell et al. (2017);Ma et al. (2018); Campbell et al. (2021), and thus underlying32

defects in the DNA repair machinery are thought to lead to biases in the types and locations of pas-33

senger mutations and structural events acquired during the progression of cancer. These general34

ideas justify targeting DNA repair and checkpoint inhibitors in cancer therapies Murai (2017); For-35

ment and O’Connor (2018); Ubhi and Brown (2019); Zhu et al. (2020). But given that mostmutations36

are either neutral or deleterious, the likelihood that randomly distributed mutations would result37

in gains in fitness is considered to be low Ram and Hadany (2014), whereas concerted patches38

of mutation, particularly when occurring within specific genes, could lead to neo-functionalization39
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and increased cellular fitness Drake (2007); Ram and Hadany (2014); Cortés-Ciriano et al. (2020).40

Previous work has shown that even though cancer samples typically exhibit a lot more muta-41

tions outside of genes, clustered mutations are enriched in genes relative to the intergenic spaces42

Cisneros et al. (2017); Supek and Lehner (2017). In particular, mutation clustering in non-coding43

regions have been associated with structural changes that possibly cause elevated mutation rates44

but by themselves very rarely constitute driver mutations Nik-Zainal et al. (2016); Rheinbay et al.45

(2020).46

Other studies have identified the action of the AID/APOBEC family of cytosine deaminases as47

well as the action of Pol-� as contributingmechanisms to the phenomenon ofmutational clustering48

Lada et al. (2012); Roberts et al. (2013); Taylor et al. (2013); Supek and Lehner (2017); Buisson et al.49

(2019); Roper et al. (2019); Shi et al. (2020). However these processes only explain a subset of the50

mutational clusters observed and thus a more general mechanism remains to be determined.51

Stress-induced mutagenesis (SIM) in bacterial occurs when DNA damage happens in the con-52

text of additional cellular stress sufficient to initiate the SOS responseMcKenzie et al. (2000); Foster53

(2007); Janion (2008); Shee et al. (2012); Rosenberg et al. (2012). SIM has been shown to increase the54

mutation rates locally around DNA lesions as cells strive to adapt to the challenging environment55

Foster (2007); Rosenberg et al. (2012); Fitzgerald et al. (2017). In the course of double-strand-break-56

mediatedmutagenesis in bacteria, DNA repair switches from high-fidelity homologous recombina-57

tion to a repair mechanism that relies on the error-prone DNA polymerase Pol IV, encoded by the58

gene dinB. The result of this mechanism is a spectrum of both single nucleotide variants (SNV)59

and copy number amplifications. The molecular signature of this process is a clustering of SNVs60

around the site of the double strand break (DSB) spanning hundreds of kilobases in size and with61

a decaying probability of mutation as a function of the distance from the DSB that remains above62

background for up to a megabase Shee et al. (2012); Fitzgerald et al. (2017). The molecular finger-63

print associated with stress-induced mutagenesis manifests as a random probability distribution64

of SNVs centered on a putative DSB and with a decay distance of about two hundred kilobases65

Rosenberg et al. (2012).66

The evidence of clustering in cancer coupled with the known intra-tumor chromosomal struc-67

tural heterogeneity that characterizes many cancers Roschke et al. (2002, 2003, 2005) prompted68

us to inquire into a comparable process to bacterial stress-induced mutagenesis happening dur-69

ing carcinogenesis, an idea that has been previously suggested by Fitzgerald, Rosenberg and col-70

leagues Fitzgerald et al. (2017); Xia et al. (2019). Adaptive mutagenesis has been recently shown71

in the context of the emergence of drug resistance, with evidence of down-regulation of mismatch72

repair (MMR) and homologous recombination (HR), and up-regulation of error-prone polymerases73

in drug-tolerant colorectal tumor cells Russo et al. (2019). Furthermore an mTOR stress signaling74

has been shown to facilitate SIM in multiple human cancer cell lines exposed to non-genotoxic75

drug selection Cipponi et al. (2020).76

We investigated SNV distributions observed by whole genome sequencing of non-inheritedmu-77

tations in normal samples and a wide variety of solid tumors. We found clear evidence of muta-78

tional clustering as demonstrated by enrichment of closer-than-expected mutations, particularly79

for samples with low mutational loads. Additionally, by characterizing the distributions of clusters80

we observed that there is a greater consistency of cluster locations across normal samples than81

in cancer samples, suggesting a degree of regulation control for mutations in normal tissue that82

breaks down during carcinogenesis. Finally, we identified the molecular signal of SIM in the SNV83

distributions of clustered mutations and showed a relationship with clinical outcome.84

Results85

Variant distribution is not uniform86

We analyzed the patterns of mutational density across the genome in non-inherited mutations87

from 129 normal individuals (CGI data) as well as somatic mutations in 1950 tumors from 14 differ-88
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ent tissues (PCAWGdata) (see section 1 for details), and compared themwith simulated patterns of89

NSNV = 1000, 2500, 5000, 10000, 25000 and 50000 total uniformly distributedmutations (500 replicates90

each).91

First, we measured the distribution of inter-SNV distances x as a function of the total number92

of mutations. This is, for each sample we find the number of segments with length x inside each93

15 kb bin up to 150 kb, and plot against the total mutational load of the sample (Fig.1).94

In both normal samples, Fig.1(B), and cancer samples, Fig.1(C), short intervals are more fre-95

quently observed than expected from a theoretical null model (see section 1), thus revealing a96

tendency of mutations to cluster together in genomic space. The effect is considerably stronger97

for lower values of the mutational load, particularly with NSNV < 3000 where the numbers of short98

segments (x ≤ 15 kb) can be over an order of magnitude larger than expected. On the other hand99

longer interval distances are progressively less over-represented: for x ∼ 75 kb they have appear100

at about the expected frequency.101

As the total number of mutations increases we observe a drop in the theoretical prediction of102

numbers of inter-SNV segments. This drop is due to a saturation effect; as the number of uniformly103

distributed SNVs goes over 100,000, the expected inter-event distance in a 3 billion base genome104

would be under 30kb, and thus long intervals become more and more unlikely. Interestingly, in105

cancer samples the over-representation of small segments is prevalent even for large values of106

mutational loads. This effect is compensated with an under-representation of moderate to large107

length intervals, yet for very large mutational loads (NSNV > 100, 000) long intervals are also more108

frequent than expected. This suggests that there are regions of the genome somehow avoided by109

mutations, manifesting in the form of unexpected long conserved, or protected, regions. These110

features are consistent across all samples and is evidently not associated to number fluctuations,111

since the dispersion in 500 simulated replicates cannot account for it (Fig.1(A)). From this analysis112

we conclude mutations in both normal and cancer samples tend to form groups.113

We then looked at the number of groups, with “group” defined as a set of contiguous SNVs with114

inter-SNV distances x ≤ D⋆ (D⋆ = 15 kb) as a function of the mutational load. We deemed these115

groups tuples, while a singleton (i.e. a mutation that is not grouped) is simply a tuple of size n = 1, .116

The numbers of tuples and singleton variations for simulated, normal and cancer data are117

shown in Fig. 2(A). The most salient feature is that the frequency of singletons are significantly un-118

derrepresented for low mutational loads, while tuples are typically over-represented with respect119

to the theoretical expectation (Poisson point process model). The number of tuples is particularly120

high for samples withNSNV < 3000, a mutational load for which a uniformly random process would121

very rarely lead to any proximal mutations. Namely, at NSNV ∼ 1000 SNVs only a handful of tuples122

are expected yet dozens to hundreds are typically observed in cancer samples. And interesting123

conclusion of the observation that many groups form is that, though mutations tend to cluster124

together, they don’t do it as a large scale condensate, but rather in many small clusters. In partic-125

ular, mutations in normal samples seem to mainly aggregate in groups of 2 or 3 while mutations126

in cancer tend to cluster is groups of a much wider size spectrum (see Appendix section 1 for de-127

tailed distributions for different tuple sizes). On the other hand, as the total number of mutations128

increases the distributions approached the predicted curve, but then departed again. For large129

mutational loads the relationship between the proportion of tuples and singletons with respect130

to the expected behavior is inverted, supporting the idea that certain regions in the genome are131

protected from accumulation of mutations as singletons become very rare.132

All together these observations demonstrate that themutational rate is an heterogeneous prop-133

erty of the genome, and thus likely a regulated or constrained process. We hypothesize two, non-134

mutually exclusive basic ways to generate these kinds of mutational patterns:135

1. The mutational process is modulated, such that it can be modeled as non-uniform Poisson136

process with a location-dependent rate �(x) at location x. This modulation is an effect of137

differential DNA repair efficiencies along the genome, conservation or protection of certain138

3 of 22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440291doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

genomic regions due to topological or folding/packing molecular properties and other se-139

quence or location dependent processes.140

2. Mutations are inter-dependent events, entailing either nucleation of mutations during sub-141

sequent DNA replications (i.e. mutations induce new errors) or a process in which events142

happen together as a single burst of proximal mutations.143

144

Figure 1. Number of inter-SNV segments of different lengths as a function of the mutational load in (A)Simulated, (B) Normal and (C) Cancer samples. Dashed lines are the theoretical predictions for a Poissonpoint process. Both normal and cancer cases show significant enrichment of small segments indicating thatmutations are typically closer than expected.145

Now, if the mutational process is dependent on genomic location, then tuples would tend to occur146

at the same places across samples. We compared tuple distributions across samples for which tu-147

ple enrichment was most obvious (Fig. 2(A)):Ns=129 normal samples andNs=784 cancer samples148

have NSNV < 5100. We identified all regions in the genome containing tuples in at least√Ns of the149

samples (corresponding to 8.8% of the normal samples and 3.5% of the cancer samples), provid-150

ing confidence that our measurement is above the Poisson-counting statistical noise. For normal151

samples (Fig. 2(B)) we found 128 regions with an overlap going as high as 30%. These regions were152

no longer than 30 kb and about a quarter of them were single base locations repeatedly mutated153

in several samples. Many of these regions were close together rendering more than 50 coarse-154

grained ranges as shown in Fig. 2(B). In contrast, cancer samples had few overlaps. We observed155

19 susceptible regions that coarse-grained to 5 distinct ranges (see Fig. 2(B)): a ∼ 117 kb region in156

chromosome 6, associated to the human leukocyte antigen (HLA) complex, which contained tuples157

in up to 7% of the samples, two ∼ 1 kb regions in chromosomes 2 and 3, a single point mutation in158

chromosome 1 overlapping in ∼ 4% of the samples which is associated with the zinc finger protein159

ZNF678 and a half kilobase region in chromosome Y with 11% overlap in the 479 male samples.160

These results suggest that both processes of non-uniform mutation could be at play. The close161

proximity of mutations in cancer seems to be driven by a process in which events are not neces-162

sarily independent from each other, perhaps occurring simultaneously, yet otherwise distributed163
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(A) (B)

Figure 2. (A) Observed number of tuples and singletons as a function of the total mutational load. A tuple is aset of consecutive mutations with inter-event distance x ≤ 15 kb. A singleton is a mutation farther than 15 kbfrom any other mutation (1-tuple). Black dots are simulated data, dashed lines are the expected curvesaccording to Poisson statistics. (B)Susceptible regions for NSNV < 5100. In normal samples (blue) and cancersamples (red) all regions that are part of a tuple in at least 8.8% of the normal samples and 3.5% of the cancersamples, based on the square root of the number of samples. These regions are evidently more common innormal than in cancer samples.

mostly randomly across the genome and therefore not showing large overlap between samples.164

In contrast, non-inherited mutations in normal tissue appear at least partially driven by a location-165

specific and/or sequence-specific process, quite possibly sculpted by evolution and regulated166

across the genome.167

Quantification of Cluster Shapes168

Previous work demonstrates that SNVs in both normal tissues and cancer cluster together and the169

sequence context of both the reference and mutant calls can be used to infer mechanism Roberts170

et al. (2012). The association of APOBEC cytosine deaminases with clusters is well established171

Lada et al. (2012); Burns et al. (2013); Taylor et al. (2013); Roberts et al. (2013), but it accounts for172

atmost 50% of the clusters observed Roberts et al. (2013). Furthermore, there is nothing about the173

mechanism of APOBEC that would suggest a characteristic shape of the clusters. In contrast, the174

stress-induced mutational response of bacteria, mediated by Pol IV and encoded by dinB, leads to175

a clustering pattern with a characteristic cluster shape where the number of SNVs in the center of176

the cluster will be greater than those found at the edges Shee et al. (2012). Therefore, we looked177

at how both the number and shape of clusters, defined as statistically unlikely tuples of size n ≥ 3178

(see 1), varied with total mutational load among non-inherited mutations or somatic mutations in179

cancer.180

Data simulated under the null hypothesis of uniform random mutation showed that as the total181

number of SNVs increases, we expect to see the number of clusters and the fraction of SNVs in182

those clusters increase (Fig. 3(A)-(B)). We note that, in agreement with observations presented183

above, no clusters were observed in simulated data withmutational loadsNSNV < 2500, and amean184

of only four clusters per genome was detected in samples with 2500 mutations. This indicates185

that under the null hypothesis at least several thousand mutations are required to observe any186

measurable clustering. In contrast, both non-inherited mutations in normal tissue and somatic187

mutations in cancer show extensive clustering when the mutational burden is this low (Fig 3(A)).188

On the other hand, for very large numbers of mutations we observed a sudden plateau in the189

number of clusters. Again, saturation is expected as in a genome 3 billion bases long 100,000190

mutations yields an average inter-mutation distance of ∼ 30 kb, tuples would not be unlikely and191

the thus number of statistically significant clusters would drop.192
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(A) (B) (C)

Figure 3. (A) Number of Clusters per sample as a function of the mutational load. Dashed line is the best fitfor simulated data. Clustering is clearly larger than expected. The plateau at large NSNV is related to the limitat which the average mutation distance in a background of 3 billion bases approaches 30 kb, which producesmany statistically likely tuples and thus less clusters. (B) Fraction of SNVs in clusters versus NSNV. The fractionof SNV in clusters increases with the number of mutations, suggesting that as more mutations areaccumulated in the genome they are preferentially placed in clusters. (C) Fraction of SNVs in clusters in genesversus NSNV, showing that cluster do not typically overlap genes for high NSNV.

Figure 3(B) shows that as the number of mutations increase in cancer samples, the fraction of193

SNV in clusters increased as well. This suggests that as more mutations are accumulated, a larger194

fraction of those mutations are preferentially placed in clusters. Thus the clustering process itself195

could be implicated in the mechanism driving cancer mutations in some form of positive feedback196

loop or nucleation process. Another interesting observation is that the fraction of SNVs in cluster is197

very high for normal samples as compared to cancer samples with the same mutational load, and198

a load for which we don’t expect any clustering under the null hypothesis. This indicates that the199

mutational process in normal samples is in fact driven by a mechanism that favors close proximity200

of variations, and is likely restricted to susceptible genomic regions as suggested by Fig.2(B).201

When we looked at whether the SNVs are found in genes or in intergenic regions, the null hypoth-202

esis predicts as the number of SNVs increases, the proportion of SNVs located in genes converges203

to about 40% and remains constant (Fig.3(C)). Private non-inherited (Normal) mutations converged204

to about 37% (range 31.3%-42.8%) of SNVs localizing within genes, while cancer was defined by a205

large amount of variability that converged to about 25% being located in genes.206

The clustering behavior for the cell-line set is somewhat consistent with cancer samples, but more207

intense: it shows more clusters, a larger fraction of SNVs in clusters and a rather low fraction of208

them localized in genes. In all cases these samples are equivalent to the most extremes cases in209

the cancer set in terms of clustering for the same mutational burden.210

In agreement with our previous study Cisneros et al. (2017), SNVs in clusters in cancer are pref-211

erentially excluded from genes (Fisher’s exact, Odds Ratio (OR) = 0.6002, 95% CI =0.5992-0.6013,212

p-value < 2.2x1016). When we looked specifically at the position of clusters within genes by count-213

ing SNVs that are in genes versus those that are not, we observed a slight enrichment for SNVs214

in clusters to be in the 3’-end of genes compared to SNVs that are not in clusters (Fisher’s exact,215

OR = 1.024, 95% CI = 1.021-1.027, p-value =3.067x10−57), confirming the observations of Supek and216

Lehner Supek and Lehner (2015, 2017).217

To evaluate the shape of the clusters, we introduce the Stress-Introduced Heterogeneity (SItH)218

score (see Methods and Fig. 6). The SItH score was computed both on individual clusters (cluster219

SItH) andover all clusters in a tumor (overall SItH). In simulated data, increasing the number of SNVs220

led to decreasing overall SItH scores (Fig. 4(A)) and produced a sigmoid shape for the variability in221

cluster SItH measured by the inner-quartile rage (IQR) (Fig. 4(B)). The overall SItH score was higher222

in cancer than in normal samples. In comparison to the simulated data, overall SItH scores were223

larger at the extremes of mutational burden and lower in the mid-range of total SNV count (Fig.224

4(A)). Moreover, cancer samples showed a greater diversity of SITH scores than predicted under225

the assumption of random uniformmutations or compared to normal (Fig. 4(B)). Interestingly, the226
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(A) (B)

Figure 4. SItH scores by number of SNvs. (A) Overall SItH score as a function to the mutational load.(B)Inner-quartile range (IQR) of Cluster SItH scores as a function of the mutational load.

diversity of cluster shapes reaches a plateau at mutational loads corresponding to higher than227

expected overall SItH scores. Combined, these results suggest the mutational clustering in cancer228

is complex and likely driven by multiple mechanisms simultaneously.229

Survival Analysis230

A key characteristic of SNV clusters that result from stress inducedmutationmechanisms is a decay231

in the frequency of incidental SNVs as a function of distance from the DSB that triggered error-232

prone repair response Shee et al. (2012). We postulated that a more positive overall SItH score233

reflects a greater contribution of the adaptivemutation process to themutational landscape of the234

tumor. Therefore SItH provides a measure of the evolutionary response, or the adaptive capacity,235

of a tumor to a source of stress such as chemotherapy. Overall SItH scores ranged from 0.145 to236

0.999 (Fig. 4(A)) and varied significantly by organ site and whether the tumor was one of multiple237

tumors from a single donor (ANOVA, organ, F = 136.70, p< 2.2x10−16; multiple tumor, F = 3.07, p =238

0.0799; Maximum SITH Score, F = 16.14, p = 6.098x10−5).239

To determine the relationship between SItH scores and clinical outcome, we conducted Cox Pro-240

portional Hazard analysis of both overall SItH score as well as the inter-quartile range of the cluster241

SItH. The models are specified as follows:242

Overall Survival ∼ SItH + multiple.tumor + is.Max.SItH + strata(Organ) (1)
where the data analyzed were either primary tumors or the group of metastases and recurrences.243

For inter-quartile range of the cluster SItH the model is:244

Overall Survival ∼ SItH IQR + multiple.tumor + is.Max.SItH + strata(Organ) (2)
After controlling for organ site and multiple tumor status, we found overall SItH scores predict245

patient survival but with different effects depending on whether the sample was a primary tumor246

or from ametastasis or recurrence. In primary tumors, more positive overall SItH scores predicted247

better patient survival (Cox Proportional Hazard Regression (CPHR), Hazard Ratio (HR) = 0.4516,248

95% CI: 0.2274 -0.8968, p=0.0231, see Supplemental Fig. 5). However, when the recurrences and249

metastatic tumors were considered as a group, the overall SItH score predicted a worse survival,250

with a HR of 14.84 (CPHR, 95% CI: 1.934-113.876, p= 0.00947). When we looked at the diversity251

of SItH scores on a cluster basis, the type of tumor sample was no longer relevant. The inner252

quartile range (IQR) of cluster-level SItH scores associated with worse survival, with a HR of 5.744253

(CPHR, 95% CI: 1.824 -18.09, p= 0.00283). We then asked whether there was a difference in survival254

between patients with SItH IQRs above or below the median SItH IQR, as clinical translation will255
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likely require a creating a cut-off value above which onewould predict poor prognosis. As is seen in256

Fig. 5, there is a significant difference in survival, even after accounting for the baseline differences257

in survival by tissue of origin (CPHR, HR = 1.26, 95% CI: 1.043-1.531, p= 0.0168).258

Effects of the maximum inter-SNV distance in the definition of clusters259

Our definition of a cluster is a tuple with a probability of less than 1% as measured by a negative260

binomial test. The test is conducted so that a given tuplemight not satisfy the second condition but261

part of it might (e.g. one with a higher concentration ofmutations in one end). In this case only that262

portion of the tuple is called a cluster. The specific valueD⋆ = 15 kb was chosen because it’s a good263

balance between signal and noise: (a) ifD⋆ is too small, very few clusters are found unless the total264

number of mutations is very large. Even though less clusters are found the restrictive condition265

given by D⋆ yields more concentrated clusters with small dispersion as measured by the SItH IQR.266

(b) On the other hand if D⋆ is too large many clusters are found and the noise level is larger. In267

this case there is more room for different configurations of clusters, producing larger values of the268

IQR. Low to moderate mutational loads typically have smaller SItH scores since clusters tend to be269

more uniform (i.e. less peaked), but samples with large mutational loads exhibit saturation effects270

that limit the number of clusters (i.e if tuples are common then they are not clusters). There is271

therefore a trade-off between the effects on smaller and larger mutational loads. In order to find a272

good signal-noise balancewe ran our analysis with 8 different values ofD⋆. Tables 1 and 2 show the273

correlations between the overall SItH score and SItH IQR in cancer samples. Based on these results274

we conclude that D⋆ = 15 kb is a good choice: result values are well correlated with cases in both275

ends, indicating that this parameter captures well the signal for both small and large mutational276

loads without too much compromise on the quality.277

SItH 1kb 2kb 5kb 10kb 15kb 20kb 25kb 50kb
1kb 1 0.988498379 0.953254764 0.913062667 0.885251282 0.872055507 0.86602581 0.890076618
2kb 0.988498379 1 0.979158317 0.944003381 0.914886845 0.896847418 0.884576285 0.885092543
5kb 0.953254764 0.979158317 1 0.981798123 0.95732091 0.937928221 0.92095692 0.885284312
10kb 0.913062667 0.944003381 0.981798123 1 0.988106173 0.973637963 0.957521878 0.900404232
15kb 0.885251282 0.914886845 0.95732091 0.988106173 1 0.992613883 0.980773228 0.919694508
20kb 0.872055507 0.896847418 0.937928221 0.973637963 0.992613883 1 0.993667498 0.939087871
25kb 0.86602581 0.884576285 0.92095692 0.957521878 0.980773228 0.993667498 1 0.957075149
50kb 0.890076618 0.885092543 0.885284312 0.900404232 0.919694508 0.939087871 0.957075149 1

Table 1. Correlation of overall SItH scores for different D⋆ values with PCAWG data.

SItH IQR 1kb 2kb 5kb 10kb 15kb 20kb 25kb 50kb
1kb 1 0.938197026 0.838362333 0.78391552 0.737391598 0.688942755 0.65370155 0.445513598
2kb 0.938197026 1 0.906115983 0.830270283 0.774522805 0.721045756 0.680923471 0.454410934
5kb 0.838362333 0.906115983 1 0.921681646 0.848406024 0.784003812 0.736097232 0.493501676
10kb 0.78391552 0.830270283 0.921681646 1 0.933918906 0.868093155 0.815392267 0.584146019
15kb 0.737391598 0.774522805 0.848406024 0.933918906 1 0.941611092 0.882449786 0.664941136
20kb 0.688942755 0.721045756 0.784003812 0.868093155 0.941611092 1 0.944940353 0.736770549
25kb 0.65370155 0.680923471 0.736097232 0.815392267 0.882449786 0.944940353 1 0.789022886
50kb 0.445513598 0.454410934 0.493501676 0.584146019 0.664941136 0.736770549 0.789022886 1

Table 2. Correlation of SItH IQR scores for different D⋆ values with PCAWG data.

Discussion278

Our study provides evidence that a signature of stress-inducedmutagenesis, characterized by clus-279

ters of SNVs with a defined geometry, is widespread across multiple cancer types. Furthermore,280
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(A)

(B)

Figure 5. Survival difference based on SItH score IQR being above or below the median SItH score IQR. a)Kaplan-Meir curves for tumors with cluster-level SItH IQR above and below the median SItH IQR for 1895tumors. b) Results from the Cox Proportional Hazard analysis. Survival data from 1950 tumors, of which 1201samples had SItH IQR scores in 14 different cancer types were used. Hazard ratio for IQR group wascontrolled for by multiple tumors, maximum IQR value and tissue of origin.
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the association of both overall cluster shape and increased cluster shape variability with patient281

survival suggests stress-inducedmutation has a clinical impact. Both the overall SItH value and the282

heterogeneity represented by the SItH IQR are likely derived from a combination of the strength283

of stress-induced mutation as a mutational process within a tumor and the clonal diversity of the284

tumor, both of which would be expected to impact disease outcome Andor et al. (2016). The rela-285

tionship between overall SItH and SItH IQR with respect to survival suggests cluster heterogeneity286

predominantly represents a combination of the amount of time stress-induced mutagenesis has287

been active during carcinogenesis and clonal heterogeneity, while overall SItH represents the ra-288

tio of stress-induced mutagenesis relative to other mutational processes. Our work showed an289

increase in mutational load leads to both increasing cluster sizes as well the percentage of SNVs290

involved in clusters, but only up to a point. In tumors with high mutational burdens, the number291

of clusters, the genomic distance covered by cluster, and the number of SNVs contained within a292

cluster plateau. This implies that under high mutational burden the variations in mutation density293

across the genome flatten out, likely due to alterations in DNA repair pathways such as a loss of294

mismatch repair Supek and Lehner (2017); Campbell et al. (2017), and obscure the detection of295

clusters.296

The influence of intra-tumor diversity on clinical outcome is an area of active investigation. Evi-297

dence frommeasures of clonal diversity and copy number diversity are associated with worse out-298

come and therapeutic response Andor et al. (2016); Davoli et al. (2017); Roh et al. (2017); Dagogo-299

Jack and Shaw (2017); Turajlic et al. (2019); Ben-David and Amon (2019). However, cancer must300

balance the introduction of genomic rearrangements that contribute to cellular diversity with a suf-301

ficient level of genome stability to avoid a genomic error catastrophe. Our results are consistent302

with this notion in that very large positive overall SItH scores associates with better patient survival.303

The SItH IQR represents a measure of mutational heterogeneity that ties intra-tumor diversity to304

a mutational process underlying an evolutionarily conserved response to cellular stress. The di-305

versity measured by the SItH IQR is a measure of the heterogeneity of adaptive strategies within306

a patient. This diversity manifests as a broader ensemble of mutational cluster shapes within a tu-307

mor driven by the heterogeneity in mutational processes to generate genomic diversification. This308

in turn increases the substrates available for broad phenotypic plasticity, including transcriptional309

responses. Such responses have been shown to be important in the rapid acquisition of resistance310

to doxorubicinWu et al. (2015). In this case high diversity becomes a direct survival advantage for311

the tumor, allowing it to respond to a wider range of stresses and leading to a poor outcome for312

patients.313

Others have found clustered mutations and proposed mechanisms for them Roberts et al. (2012);314

Lada et al. (2012); Burns et al. (2013); Taylor et al. (2013); Roberts et al. (2013); Supek and Lehner315

(2017). Our definition of mutational clusters spanning over kilobase distancesShee et al. (2012);316

Fitzgerald et al. (2017) is broader than that of Supek and Lehner who showed Pol-�, a TLS poly-317

merase closely related to Pol IV, is involved in the generation of clustered mutations that prefer-318

entially locate to the 3’-end of active genesSupek and Lehner (2015). However, we were able to319

confirm that key finding with our cluster definition.320

An open question that remains is whether the clusters we and others detect arise from single321

events reflective of bursts of mutational activity or are accumulated over time, therefore marking322

regions of the genome prone to mutation. Allele fraction has been suggested as one way to ad-323

dress this question. However, the precision of most allele fraction measurements prevents the324

accurate discrimination of varying degrees of heterogeneity across a tumor. For example, the325

95/95 binomial tolerance interval for a true allele fraction of 0.5 at a read depth of 60x ranges from326

0.25 to 0.75 (see Appendix). This interval represents the bounds in which we are 95% confident327

that 95% of the measurements of a true allele fraction of 0.5 will lie. If we have a cluster where the328

allele fractions of the SNVs all fall within this range, we cannot rule out they actually represent a329

true allele fraction of 0.5 and therefore all come from the same event. Experimental evidence in330

mammalian systems leading to cluster formation is necessary to answer this question. This is an331
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important study to pursue as the strategies onemight propose for influencingmutational patterns332

with impact on clinical outcomes will depend on whether the target is the mutational process itself333

or the regions of the genome being acted upon by the mutational process.334

Conclusions335

Cancer is notorious for outsmarting the physician. To make progress we need to factor in how336

cancer cells evolve and adapt in the face of treatment challenges. Understanding the mechanisms337

of mutation and adaptation in cancer is therefore an essential pre-requisite for improving patient338

outcomes. Stress-induced mutagenesis, an ancient and evolutionarily conserved adaptive muta-339

tionmechanismwell-characterized in E. coli, underlies in part the genomic instability seen in cancer340

and contributes to the ability of the tumor to evolve resistance to therapy Fitzgerald et al. (2017).341

We have described a way to quantify this antagonism and shown that SIM has a strong association342

with poor prognosis. Further investigations into the process of SIM in cancer should lead to bet-343

ter patient outcomes by giving clinicians a measure allowing them to tailor treatment that checks344

tumor progression while minimizing the risk of triggering an aggressive evolutionary response.345

Methods346

Null model - Uniform randommutations347

A uniform distribution of pointmutations can bemodeled as a Bernoulli process. Because the total348

number of mutations is typically much smaller than the number of nucleobases in the genome the349

expected inter-event distance can be approximated as an exponential function. This distribution350

is equivalent to the expression for the waiting time distribution in a Poisson process Cinlar (1975)351

or the survival density function in a constant hazard processMoore (2016).352

The probability of observing an inter-event distance x is given by the density function:353

f (x) = �e−�x (3)
Where � = NSNV∕L is the mutational rate, NSNV the total number of SNVmutations and L the length354

of the genome. The probability of x ≤ D, or cumulative waiting time function, is355

F (D) = ∫

D

0
f (x)dx = 1 − e−�D (4)

and the probability of x > D, or survival function, is S(D) = 1 − F (D) = e−�D.356

The probability associated with the range of interval lengths [di, di +Dbin] is357

Pi = F (di +Dbin) − F (di) = e−�di ⋅
(

1 − e−�Dbin
)

= S(di) ⋅ F (Dbin) (5)
And the expected number of intervals with length in this range is Ei = NSNV ⋅ Pi.358

Wedefine a n-tuple as a set of n consecutivemutations that are closer thanD⋆ = 15 kb. By definition359

all tuples are separated by intervals x > D⋆ from each other. In particular 1-tuples, or singletons,360

are those SNVs that are farther than D⋆ bases from its closest neighbors.361

From eq. (5) the probability of x ≤ D⋆ is F ⋆ = 1 − e−�D⋆ and the probability of x > D⋆ is S⋆ = e−�D⋆ .362

The expected total number of tuples can be estimated as:363

T ⋆ = NSNV ⋅ S⋆ = NSNV ⋅ e−�D⋆ (6)
The total number of mutation events in tuples can be estimated as E⋆ ∼ NSNV ⋅F ⋆, where the iden-364

tity is not exact because of edge effects; for instance, location differences are calculated on each365

chromosome (except Y) independently and therefore the total number of inter-mutation intervals366

is NSNV − 25.367

Following these definitions, the probability of observing a n-tuple can bewritten as the combination368

of probabilities:369

P ⋆(n) = (S⋆)2(F ⋆)n−1 = e−2�D⋆ ⋅
(

1 − e−�D⋆
)n−1 (7)
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Thus the expected number of n-tuples is N⋆(n) = NSNV ⋅ P ⋆(n) and the probability mass function of370

n-tuples is371

Pn =
N⋆(n)
T ⋆

= S⋆(F ⋆)n−1 = e−�D⋆
(

1 − e−�D⋆
)n−1

, (8)
which is equivalent to the binomial mass function of the first order Pr(1, s, �).372

Data373

We obtained variant calls for normal and cancer from public repositories where all cases had been374

called by a standard pipeline. For non-inherited mutations in normal tissue, we used WGS data375

from the Complete Genomics Indices database in the 1000 Genome Project The 1000 Genomes376

Project Consortium (2015)(release 20130502, see Supplementary Materials Table 7 in Cisneros, et377

al. Cisneros et al. (2017) for a list of donors). This data has average genome coverage of 47X.378

The VCFs of 129 trios were analyzed using the vcf_contrast function from the VCFTools analysis379

toolbox to compare each child with the two corresponding parents. The resulting potential novel380

variants were then filtered such that the child and both parentsmust be flagged as PASS (the variant381

passed all filters in the calling algorithm); the child must have a read depth of at least 20; and the382

alternative (aka novel) allele frequency was ≥ 0.35. For cancer, we analyzed the simple somatic383

mutations and corresponding clinical data from the PCAWG coordinated WGS calls for 1950 tumor384

samples from 1830 donors representing 14 different primary sites Campbell et al. (2017). Somatic385

variants for all data sets were classified as previously published Cisneros et al. (2017).386

We generated 500 sample replicates for eight groups of simulated data defined by their total mu-387

tational load (NSNV = 500; 1000; 2500; 5000; 10, 000; 25, 000; 50, 000; 100, 000). We modeled a uniform,388

random distribution of SNVs across the genome as a one-dimensional Bernoulli Process, corre-389

sponding to our null hypothesis. The number of events in a region of size X is a random variable390

with a probability mass function that can be approximated as a Poisson distribution:391

P (n) =
(X ⋅ �)n

n!
e−(X⋅�) (9)

with � = (NSNV∕L) the total mutational rate and L the genome length.392

In order to characterize the clustering of genomic mutations we defined a tuple as a set of consec-393

utive SNVs such that the inter-event distance x < D⋆ = 15 kb for all event pairs in it. According with394

Poisson statistics (per equation 8) the expected number of n-tuples in a sample withNSNV mutation395

is given as396

NT(n) = NSNV

(

1 − e−�D⋆
)n−1

e−�D⋆ . (10)
Detection of mutation clusters397

A group of SNVs is deemed a “cluster” if it is a tuple of at least 3 variations and the probability of398

finding it by chance is less than 1% according to the negative binomial regression given by the total399

rate of observed mutations in the genome. In other words, the particular group of variations is400

statistically unlikely to happen in the background given by the mutational load of the sample. For401

each WGS sample in our database, all possible clusters were identified and the “center of mass”402

(genomic location of cluster centroid) in each case is calculated along with other properties like403

start and end locations, length and size (number of variations) Cisneros et al. (2017).404

Detection of cluster shape405

We treated cluster centroids as likely locations of the DSBs that induced the accumulation of vari-406

ations. Therefore, the expected signature for stress-induced mutagenesis should be evident as a407

concentration of mutations around these centroids that decays with distance. Thus, for each clus-408

ter i we computed the cumulative distribution of SNV events Fi(X), as a function of the distance X409

from the cluster centroid up to 250 kb and in both the 3′ and the 5′ directions. By aggregating to-410

gether all cumulative distributions observed in each sample we generated a representative overall411

curve F (X) =
∑

Fi(X) that conveys the probability of finding a mutation at a given distance from412
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a cluster center. If the distribution of SNV events were uniformly random (and therefore do not413

typically decay) then F (X) is expected to increase proportionally with X. This assumption gives us414

a background of mutations against to which we can compare the observed distribution pattern.415

It is important to note that this definition is itself independent of the definition of clusters. By416

construction, if the background distribution is uniform as assumed, then we should not observe417

clusters at all since they are statistically unlikely by random chance. In order to define a useful418

score, we normalizeX by 250 kb and F by the number of events closer than 250 kb, thus mapping419

all cluster-associated cumulative distribution curves to a unit box:420

X
250kb

→ x ; x ∈ [0, 1]

F (X)
F (250kb)

→ f (x) ; f (x) ∈ [0, 1]

If the null hypothesis were correct for these events, f (x) = x. We define a measure of the de-421

gree of deviation from the null hypothesis by integrating the difference between the normalized422

cumulative distribution f (x) and the expected value x as follows:423

S (f (s)) = 2 ⋅
x=1
∑

x=0
(f (x) − x) (11)

The value ofS is a signed statistic with rangeS ∈ [−1, 1] (see Figure 6). AsS approaches one, smaller424

windows close to the origin (cluster center) contain more events than expected from a random425

uniform distribution, indicating that SNV events concentrate near the center of the clusters and426

sharply decay with the distance. A negative value indicates that the events are typically depleted427

from the center and concentrated on the edges of the cluster, and values of S close to zero indicate428

that the concentration of events ismostly uniform across the 250 kb interval length, supporting the429

null hypothesis. We call this the Overall Stress Introduced Heterogeneity score, or SItH score,430

of the distribution of somatic SNVs and use it to address the typical cluster geometry in a sample.431

Following the same definition on individual clusters we can estimate a Cluster SItH score using432

the function Fi(X) instead of F (X), thus leading to Si = S(fi(x)). This definition is statistically less433

robust than the overall measure but allows us to assess the diversity of behaviors in clusters within434

a sample. We do this by estimating the quartile statistics on the ensemble of Si values for each435

sample.436

Code Availability437

• Code to compute SItH scores is available upon request: Charles Vaske at Charlie.Vaske@438

nantomics.com.439

• Code for all other analysis, including data sets with computed SItH scores, is available at:440

https://github.com/kjbussey/SItH.441

Data Availability442

All data in this study are publicly available for analysis:443

• Cancer data: https://dcc.icgc.org/pcawg.444

• Normal tissue variant data from the Complete Genomics Indices database in the 1000445

Genome Project (release 20130502):446

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/cgi_variant_calls/447
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Figure 6. SItH Scores. Different outcomes for distributions of mutations as a function to the distance d tocluster centroids. a) Uniformly distributed mutations yield a linear cumulative distribution and S ∼ 0, while b)
S > 0 signifies a bell-shaped distribution of mutations around the centroid, and c) S < 0 signifies adistribution of mutations that increase with the distance to the centroid.
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Appendix 1710

Detailed tuple distributions711

We consider a n-tuple as a set of n contiguous SNVs in genomic space with inter-SNV dis-
tances x ≤ D⋆ and D⋆ = 15 kb. Then different values of n we observed numbers of n-tuples
in simulated, normal and cancer data, shown in Figure 1. Singletons (1-tuples) are signif-
icantly underrepresented for low mutational loads, while tuples of size two or more are
typically over-represented with respect to a Poisson point process model.
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And interesting observation, in normal samples 2-tuples are the most extremely overrepre-
sented, and the overrepresentation decays quickly with he tuple size. Tuples of size n = 4−5
are basically as frequently observed as expected. But in cancer samples tuples of all sizes
are over-represented. In fact, perhaps large tuples sizes are even more extreme than small
ones.
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Appendix 1 Figure 1. Number of n-tuples in (A) simulated, (B) normal and (C) cancer samples.Singletons (1-tuples) are less frequent than expected in both normal and cancer cases, while largern-tuples are more frequent than expected. This relation is inverted for large mutational loads.
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Appendix 2727

Precision in allele fraction estimations728

The 95/95 binomial tolerance interval for a true allele fraction of 0.5 at a read depth as
high as 60x ranges from 0.25 to 0.75 (Figure 1), meaning that random fluctuations in allele
fraction estimations anywhere in that range cannot be ruled out. According to this much
larger read depths are necessary to have the precision power to use allele fractions as a
methods to estimate mutation lineages and discriminate varying degrees of heterogeneity
across a tumor.
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Appendix 2 Figure 1. The shaded interval represents the bounds in which we are 95% confident that95% of the measurements of a true allele fraction of 0.5 will lie as a function of the real read depth.736
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