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Abstract 26 

White clover is an agriculturally important forage legume grown throughout temperate 27 

regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, 28 

making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate 29 

the effects of clover and rhizobium genetic variation by monitoring plant growth and 30 

quantifying dry matter yield of 704 combinations of 145 clover and 169 rhizobium 31 

genotypes. We find no significant effect of rhizobium variation. In contrast, we can predict 32 

yield based on a few white clover markers strongly associated with plant size prior to 33 

nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably 34 

high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 35 

1, which regulates growth rate and biomass accumulation. Our work provides fundamental 36 

insight into the genetics of white clover yield and identifies specific candidate genes as 37 

breeding targets.   38 
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Introduction 39 

White clover (Trifolium repens L.) is an important forage crop in temperate climates. It 40 

improves forage quality by increasing protein content, digestibility and palatability in 41 

perennial grass pastures and allows reduced nitrogen fertilizer input due to symbiotic nitrogen 42 

fixation with rhizobia (Archer, 1973; Ruz-Jerez et al., 1991; Thomson et al., 1985). It is a 43 

relatively young, outcrossing species, which originated during the most recent glaciation 44 

around 20,000 years ago by hybridisation of two diploid species, T. occidentale and T. 45 

pallescens (Figure 1A) (Griffiths et al., 2019).  46 

In grass-clover pastures, three main components and the interaction between them determine 47 

yield: clover, grass and rhizobia. Under low nitrogen input, yield can improve many-fold if 48 

legumes are inoculated with the appropriate symbiont, supporting sustainable agricultural 49 

systems to feed livestock (Caradus et al., 1995). Since the 1970s, a large number of studies 50 

have investigated the interactions between white clover and rhizobium. Many examples of 51 

successful inoculation have been reported in locations where the natural occurrence of 52 

Rhizobium leguminosarum sv. trifolii white clover symbionts is low (Irisarri et al., 2019; 53 

Lowther & Kerr, 2011; M. M. Svenning et al., 2001; Young & Mytton, 1983), and a number 54 

of examples of white clover-rhizobium interactions that affect yield exist (Mytton, 1975; 55 

Mette M. Svenning et al., 1991; Young & Mytton, 1983), although other studies reported 56 

only small effects or no such interactions (Crush, 1995).  57 

A major objective of white clover breeding is to improve the biomass yield and thus reduce 58 

the land use required for supporting meat and dairy production (Hayes et al., 2013), but the 59 

genetic gain for dry matter yield in clover has increased at a moderate to low rate in the last 60 

90 years (Hoyos-Villegas et al., 2019). Currently, white clover is primarily bred using 61 

phenotypic selection, which might be confounded by large effects of phenotypic plasticity, 62 

limiting accurate estimates of breeding values, and requires relatively long generation 63 

intervals as the breeder has to wait for traits to become observable (Hayes et al., 2013; 64 

Hoyos-Villegas et al., 2019). Although several studies have reported successful prediction of 65 

complex traits when applying genomic selection (GS) to important crops (Voss-Fels et al., 66 

2019), the application of genetic markers in breeding of white clover has been very limited, 67 

probably because of its complex genetic nature (Faville et al., 2012). However, with the 68 

emergence of a high quality reference genome with extensive gene annotation (Griffiths et 69 

al., 2019), applying genomics in the breeding practices of white clover has become more 70 
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attractive, especially considering that GS has shown promising results for biomass yield in 71 

alfalfa, an autotetraploid forage legume (Paolo Annicchiarico et al., 2015). 72 

Identification of quantitative trait loci (QTLs) can help accelerate the yield improvement of 73 

future cultivars. During the last decades efforts have been made to identify QTLs associated 74 

with yield in important crops (Bernardo, 2008). Examples of these studies include the 75 

identification of QTLs that explain between 5% and 45% of the variation in plant biomass 76 

yield in rye, sweet potato, rice and alfalfa using family-based linkage studies or genome-wide 77 

association studies (GWAS) (Matsubara et al., 2016; Miedaner et al., 2018; Sakiroglu & 78 

Brummer, 2017; Zhao et al., 2013). 79 

Most traits associated with agronomically important traits such as yield are controlled by 80 

many loci each contributing small effects (Bernardo, 2008). For such complex traits marker 81 

assisted selection (MAS) based on a few loci is not expected to significantly increase genetic 82 

gain. A newer alternative to MAS is GS (Meuwissen et al., 2001). GS uses all molecular 83 

markers distributed across the genome in a regression model to calculate genomic estimated 84 

breeding values (GEBVs) of individuals without any prior knowledge of where causal genes 85 

are located (Meuwissen et al., 2001). A popular method of implementing genomic prediction 86 

(GP) is the genomic best linear unbiased predictor (GBLUP) that utilizes genomic 87 

relationships between individuals for prediction. An assumption for the GBLUP model is 88 

equal variance for all markers, which is very seldom the case even for complex traits 89 

(VanRaden, 2008). Alternatively, identified QTLs can be used to reduce the number of 90 

markers expected to influence a trait by combining the GWAS top significant SNPs with a 91 

genomic prediction method that allows markers to have different effect sizes. The self-trained 92 

and fast nature of machine learning algorithms make them excellent alternatives to traditional 93 

genomic prediction methods. Among the most popular machine learning algorithms is 94 

random forest (RF), which uses ensemble learning methods of individual decision trees to 95 

make an accurate prediction model (Breiman, 2001). 96 

Previous studies have shown that 80-200 GWAS selected markers can predict yield in wheat 97 

with an accuracy similar to GP models based on all available marker data (Cericola et al., 98 

2017). However, only few studies have used GWAS to identify QTLs in white clover and 99 

none of these examined biomass yield, the genetics of which remains poorly understood 100 

(Inostroza et al., 2018; Kaur et al., 2017). 101 

In this study, we examine binary interactions of rhizobium strains and clover genotypes by 102 

continuously monitoring plant growth and quantifying dry matter yield. We use these results 103 
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to assess the relative contributions of clover and rhizobium genetic variation to yield, identify 104 

yield-related QTLs and predict yield within and across generations. 105 

 106 

Results 107 

145 diverse white clover genotypes derived from commercial 108 

cultivars 109 

We carried out RNA-sequencing of roots for a panel of 145 white clover genotypes derived 110 

from 20 commercial cultivars and identified 383,280 high quality SNPs that were used for all 111 

downstream analyses. The genetic structure of the white clover population was assessed 112 

using a genomic relationship matrix (Figure 1B). In general, the genotypes clustered by 113 

cultivar and showed low levels of relatedness. Genotypes from different cultivars had 114 

relationship coefficients close to 0. In line with these results, principal component analysis 115 

indicated that the clover genotypes clustered mostly by variety (Figure 1C). We found a 116 

rapid decline in LD after 1 kb (Figure 1D) and high levels of heterozygosity with an average 117 

of 0.28 (Figure 1E), consistent with obligate outcrossing.  118 

Initial plant size is strongly correlated with yield 119 

To evaluate the relative contributions of clover and rhizobium genetic variation to white 120 

clover yield, we combined the 145 clover genotypes with 169 previously described 121 

Rhizobium leguminosarum sv. trifolii strains representing genospecies A, B, and C (Cavassim 122 

et al., 2020). We tested 704 clover-rhizobium combinations in a greenhouse setting, 123 

continuously monitoring plant growth using a high-throughput imaging system (Tausen et al., 124 

2020) (Figure 2A-C). Using stolon cuttings to generate clones of single plants, we included 125 

an average of 15.9 replicates of each white clover genotype in combination with 4-6 different 126 

rhizobium strains or a mix of multiple strains, which yielded 13.6 replicates of each 127 

rhizobium strain and a total dataset of 2,304 observations. The experiment was structured into 128 

two different rounds of a randomised trial design. Each round consisted of two sets where 129 

each set refers to a full set of 704 unique clover and rhizobium combinations, each grown in 130 

2-3 replicates per round. The 19 non-inoculated controls showed pale yellow leaves, 131 
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indicative of nitrogen starvation, and very poor growth, showing that the experimental setup 132 

efficiently prevented spread of rhizobia between pots. 133 

We recorded dry matter yield as an end-point measurement and calculated the average 134 

growth per day (gpd) as the dry matter increase per day from inoculation to harvest (Figure 135 

2E). Based on the image data, we quantified the initial plant size prior to onset of nitrogen 136 

fixation (iSize) and growth rate during nitrogen fixation (gpi) (Figure 2D+2F, 137 

Supplementary file 1). iSize was calculated as the average plant size during the first 10 days 138 

post inoculation, whereas gpi represented the average growth rate from day 11 to 25 post 139 

inoculation (Figure 3A). Observations of iSize, gpd and gpi were approximately normally 140 

distributed for most combinations of rounds and sets. However, this was not the case for gpd 141 

observations from round 1 set 2, where plants had been inoculated on different days and 142 

greenhouse temperatures had been unusually high (Figure 2D-F). 143 

Individual plants of the same genotype showed large variation in both iSize and their overall 144 

growth (Figure 3A). Based on all 2304 observations, we found that iSize was strongly 145 

correlated with gpd (Figure 3B, Supplementary file 2). Likewise, iSize and gpi were also 146 

significantly correlated, although they represent non-overlapping growth stages (Figure 3B, 147 

Supplementary file 2). This suggested that variation in plant size prior to symbiosis 148 

establishment, iSize, had a large impact on the entire growth period. To correct for this 149 

variation, and get independent representations of growth stages prior to and during nitrogen 150 

fixation, we subtracted the effect of iSize from gpd and gpi, to obtain the traits gpdCor and 151 

gpiCor, respectively. 152 

Rhizobium variation does not significantly affect yield 153 

Based on the full set of data, which included 3-4 four replicates of each clover-rhizobium 154 

combination, we estimated the variance explained by clover, rhizobium and clover x 155 

rhizobium interaction for gpd, gpdCor, gpi, gpiCor and iSize. For all traits, we found that 156 

clover explained more of the yield variance than rhizobium. The rhizobium contribution was 157 

not significant for any of the traits, as the highest posterior density interval (HDPI) included 158 

zero (Figure 3C, Supplementary table 1). Although significant for gpd and gpdCor, the 159 

clover x rhizobium interaction explained a very small part of the variation (Figure 3C, 160 

Supplementary table 1). The proportion of variance explained by clover was smallest for 161 

iSize (Figure 3C, Supplementary table 1), which is consistent with considerable stochastic 162 

variation in cutting size (Figure 3A). On the other hand, correcting for iSize led to a 163 
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decreased proportion of variance explained by clover for both gpd and gpi, suggesting that 164 

iSize includes a genetic component relevant for yield. Based on this broad-sense heritability 165 

analysis, we chose to focus exclusively on the clover contribution for the remaining analyses 166 

and averaged the data by clover genotype to obtain 145 observations of each trait 167 

(Supplementary file 3). 168 

 169 

Yield and initial plant size show high narrow sense heritabilities 170 

Using the averaged data, we then estimated narrow sense heritabilities for all traits using a 171 

GRM based on the 383,280 RNA-seq SNPs (Supplementary file 4) . In contrast to its low 172 

broad sense heritability at the single plant level, iSize showed a high narrow sense heritability 173 

of 0.83 for the data averaged by clover genotype (Figure 3D). This indicates that stochastic 174 

variation in cutting size is efficiently controlled for by averaging across a large number of 175 

replicates, clearly revealing a large genetic component captured by the genotyped SNPs. Gpd 176 

showed the second highest SNP heritability, whereas the remaining yield traits, gpdCor, gpi 177 

and gpiCor, which describe the second part of the growth phase, showed lower narrow-sense 178 

heritabilities (Figure 3D). 179 

The high narrow sense heritabilities for iSize and gpd were encouraging for genomic 180 

prediction, and we applied GBLUP prediction models to all traits using 6-fold cross-181 

validation repeated 100 times. We observed moderate to high prediction accuracies for gpd 182 

(0.39) and iSize (0.53) (Figure 4A). Further, the model was able to predict gpi with a low 183 

accuracy of 0.16 (Figure 4A). However, we were unable to predict the traits where iSize 184 

effects were eliminated, gpdCor and gpiCor, from genetic data (Figure 4A). 185 

To test more thoroughly if later growth stages could contribute genetic information relevant 186 

to yield, we predicted gpd by combining iSize GEBVs with gpdCor, gpi or gpiCor GEBVs. 187 

We found that gpdCor GEBVs could not explain a significant part of the gpd phenotypic 188 

variance, whereas gpi and gpiCor GEBVs could explain a significant part of gpd variance 189 

only when iSize GEBVs were not included in the model (Supplementary table 2). Based on 190 

these results, we focused on the iSize and gpd traits for the remaining analyses. 191 

 192 

Yield can be predicted based on the genetics of initial plant size 193 

To further investigate the relationship between the traits, we calculated Pearson correlation 194 

coefficients for all possible combinations of observed phenotypes and estimated GEBVs 195 

(Figure 4B). Surprisingly, we observed that gpd showed a higher correlation with iSize 196 
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GEBVs (0.38) than with its own gpd GEBVs (0.33). Furthermore, we found the correlation of 197 

GEBVs of gpd and iSize to be 0.93, indicating that the two traits show a very high degree of 198 

genetic correlation that exceeds the phenotypic correlation of 0.75 (Figure 4B). These 199 

observations indicate that it is possible to predict gpd from iSize, i.e. to predict dry matter 200 

accumulation for the entire growth period based on GEBVs obtained exclusively from data 201 

describing the initial growth phase prior to onset of nitrogen fixation.  202 

Since iSize could be a comparatively simple trait, if for instance related mainly to leaf size, 203 

we carried out GWAS to identify specific markers associated with iSize and/or gpd. In line 204 

with the high level of genetic correlation, we observed overlapping genetic signals associated 205 

with gpd and iSize on chromosomes 3 and 7 (Figure 5A-D, Supplementary figure 1, 206 

Supplementary file 5). In addition, we found a strong signal approaching the Bonferroni-207 

threshold on chromosome 13 and a peak on chromosome 1, which was exclusively associated 208 

with iSize. In general, the gpd associations were weaker than those of iSize, but we found a 209 

gpd signal on chromosome 8 that was not identified for iSize (Figure 5A-D, Supplementary 210 

figure 1).  211 

Motivated by what appeared to be clear GWAS signals, although they did not reach genome-212 

wide significance, we set up a two-step prediction approach. First, we conducted a GWAS 213 

using a training population to select the top 25 or 200 most significant markers. Second, we 214 

used a random forest (RF) approach to predict gpd or iSize in a testing population based on 215 

the GWAS markers. GWAS was carried out for 600 different training populations, resulting 216 

in 949 unique SNPs in top 25 for iSize and 1196 for gpd. When considering only SNPs that 217 

occurred in at least 10% of the GWAS runs, the numbers were reduced to 43 and 47 for iSize 218 

and gpd, respectively. We predicted iSize and gpd based on both iSize and gpd GWAS 219 

markers. All GWAS-based predictions were compared to predictions using 25 or 200 random 220 

SNPs. The predictions based on the top GWAS SNPs were significantly more accurate than 221 

those based on random sets of markers in all cases (Figure 5E+F). 222 

For iSize, the GWAS+RF method achieved performances close to GBLUP using the full 223 

GRM, but the GBLUP model was significantly better in all cases (Figure 5A). For gpd, the 224 

predictive performance was relatively poor when using the top 25 or top 200 gpd GWAS 225 

SNPs for prediction. Especially, using the top 25 gpd SNPs resulted in a large drop in 226 

predictive power, with an average correlation of 0.20 compared to 0.33 using GBLUP. The 227 

iSize-associated markers produced more accurate predictions for gpd, indicating that the iSize 228 

trait more accurately captures the relevant genetics. Predicting gpd from the top 200 iSize 229 
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GWAS SNPs did not differ significantly from the GBLUP results. However, using the top 25 230 

iSize markers resulted in significantly better accuracy than GBLUP (Figure 5F).  231 

To evaluate the stability and importance of the genetic regions associated with gpd and iSize, 232 

we coloured markers by the fraction of times they occurred in the top 25 most significant 233 

SNPs in our cross-validation scheme and scaled them by their average importance given by 234 

the RF model (Figure 5A-D). The top SNPs contributing the overlapping iSize/gpd peaks on 235 

chromosomes 3 and 7 occurred frequently in top 25, thus providing us with stable and 236 

trustworthy signals for both traits (Figure 5A-D). The SNPs in the remaining peaks identified 237 

for iSize also showed high occurrences (Figure 5A+C). The SNPs in the peak on 238 

chromosome 8 identified exclusively in the gpd GWAS showed relatively low occurrence, 239 

indicating that they were less likely to be truly associated with gpd (Figure 5B+D).  240 

Looking further into the prediction of gpd from the top iSize markers and vice versa we 241 

found that predicting a trait based on GWAS results from the other correlated trait caused the 242 

genetic regions shared by the two traits to be assigned more importance by the RF model 243 

relative to the peaks specific for one trait (Figure 5A-D). Overall, the GWAS and RF 244 

prediction results indicated that relatively few genomic regions contribute large effects to the 245 

traits of interest. The genes located most closely to the markers in the GWAS peaks on 246 

chromosomes 1, 3, 6, 7, 8 and 13 are listed in Supplementary table 3. These include a 247 

putative ortholog of Arabidopsis thaliana GIGANTUS1, which regulates growth and biomass 248 

accumulation (Gachomo et al., 2014). 249 

F1 poly-cross yield can be predicted with high accuracy 250 

The greenhouse experiment was based on stolon cuttings in order to obtain genetically 251 

identical individuals in an outcrossing species. However, white clover is normally grown 252 

from seed. To examine the relevance of our data for seed-grown plants and to evaluate the 253 

ability to predict performance across generations, we set up nine poly-crosses with 4-6 254 

parents chosen among the 145 genotypes tested in the greenhouse (Figure 6A, 255 

Supplementary table 5). For both iSize and gpd, the parents represented a large diversity in 256 

their GEBVs as predicted by GBLUP (Supplementary figure 2, Supplementary table 5). 257 

The F1 populations resulting from the polycrosses showed large differences in average yield, 258 

ranging from 2.9 g to 4.6 g of dry matter per F1 individual (Figure 6B, Supplementary 259 

table 5, Supplementary file 6). 260 
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To test if we could predict the average yield of the nine F1 populations based on the data 261 

from the parental (F0) generation, we calculated GEBVs for the F0 parents, using the 262 

remaining 139 to 142 F0 clover genotypes as the training population (Figure 6A). This 263 

simulates a scenario, where the parents for a synthetic cultivar are genotyped but not 264 

phenotyped, and the average genotype of an offspring population is assumed to be 265 

represented by the average parental GEBV. We found a correlation between the average 266 

parental GEBV and the average dry weight of F1 populations of 0.95 for gpd and 0.94 for 267 

iSize (Figure 6C-D). We compared these values to the correlation between F1 average dry 268 

weight and the average F0 phenotype. This represents a phenotypic selection scheme, where 269 

parents are selected directly based on their F0 gpd or iSize phenotype. Phenotypic selection 270 

yielded correlations of 0.92 and 0.78 for gpd and iSize, respectively (Figure 6E-F). We 271 

conclude that genomic prediction performed better than or equal to direct phenotypic 272 

selection. In particular, genomic selection outperformed phenotypic selection for iSize, 273 

indicating that it is not initial plant size per se, but rather its heritable genetic components that 274 

are important for yield.  275 

 276 

Discussion 277 

Previous studies on white clover-rhizobium effects on yield relied on a handful of clover and 278 

rhizobium genotypes (Mytton, 1975; Mette M. Svenning et al., 1991; Young & Mytton, 279 

1983), likely because the pairwise testing of many clover-rhizobium combinations requires a 280 

large experimental setup. Here, we examined more than 700 different combinations, but 281 

found no significant contribution to yield from rhizobium and only minor effects of clover-282 

rhizobium interactions. Since we used diverse rhizobium strains belonging to three distinct 283 

genospecies of R. leguminosarum sv. trifolii, which were collected from locations in 284 

Denmark, England and France (Cavassim et al., 2020; Moeskjær et al., 2020), we had 285 

initially expected variation in nitrogen fixation efficiency between the strains. All strains 286 

were collected from pink and healthy looking root nodules, suggesting an effective symbiotic 287 

interaction. In our setup, this generalised to efficient interactions with all tested clover 288 

genotypes, although they too represent considerable genetic variation across twenty different 289 

commercial cultivars. Our results suggest that white clover is efficient in sanctioning rhizobia 290 

that do not provide high levels of fixed nitrogen and that a large degree of cross-compatibility 291 

exists for European white clover and R. leguminosarum sv. trifolii genotypes. This does not 292 
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rule out that different clover genotypes would preferentially select specific rhizobium strains 293 

or that strong clover-rhizobium interaction effects exist outside of our population samples, as 294 

reported by others (Irisarri et al., 2019). Indeed, if we had also isolated rhizobium strains 295 

from small and inefficient-looking nodules, we may well have identified such effects. Seen 296 

from an inoculation perspective, our results indicate that efficient rhizobia are present and 297 

selected by white clover at all sampled locations, and our isolated strains represent a 298 

genetically well-characterised source of potential new white clover inoculants for locations 299 

with limited rhizobium populations. 300 

We used stolon cuttings to achieve genetic replication in an outbreeding species. Because of 301 

the insignificant contributions from rhizobium, we effectively had more than ten replicates of 302 

each clover genotype. This helped reduce the effects of variation in cutting size and allowed 303 

us more accurate phenotype estimates for each clover genotype. For F0 predictions, reducing 304 

the number of replicates quickly leads to deterioration of prediction accuracy, whereas F1 305 

polycross predictions retain high accuracy even with as little as two replicates 306 

(Supplementary figure 3). Because the polycrosses have 4-6 parents, however, two 307 

replicates in the F1 predictions correspond to averaging across at least eight data points. The 308 

prediction of polycross yield is therefore intrinsically more robust to limited replication of 309 

individual genotypes. Still, accurate predictions of the breeding values of potential parents is 310 

required for ensuring maximum genetic gain, and here increasing the number of replicates, 311 

even to more than 10, appears to result in increased accuracy (Supplementary figure 3). 312 

Clonal propagation is used in many major food crops including nearly all types of fruit and 313 

important roots and tubers, making it highly relevant to consider the effect of the number of 314 

replicates on prediction accuracy (Bradshaw, 2016; Grüneberg et al., 2009). It is worth noting 315 

that the stolon-based greenhouse experiments were carried out in two rounds, which differed 316 

both with respect to growth medium (sterilized peat or vermiculite) and time of year (spring 317 

or summer). Because of this large variation in environmental conditions, we consider it likely 318 

that the genetic associations discovered using the complete data set are generally important 319 

for white clover yield potential. The fact that yield from seed-grown F1 plants cultivated the 320 

following year in a different greenhouse could be predicted with high accuracy based on the 321 

stolon cutting data supports this hypothesis.  322 

We find it striking that we could predict yield most accurately based on the genetics 323 

underlying initial plant size from day 1-10 post inoculation, and that data from the remaining 324 

growth period, even the dry matter yield data itself, did not contribute additional relevant 325 

genetic information. Others have reported genetic correlations between growth at different 326 
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stages and biomass yield in rye, but the relative predictive power of the different observation 327 

was not investigated in detail (Miedaner et al. 2018). The image data was critical for 328 

understanding the characteristics and limiting factors for yield, because it enabled us to 329 

examine distinct growth stages separately. Under our experimental conditions, the clover 330 

yield potential was already manifest in the size of the stolon cuttings from fully nitrogen-331 

fertilized mother plants, indicating that variation in nitrogen fixation efficiency in later 332 

growth stages did not impact yield. This is consistent with the lack of substantial 333 

contributions from rhizobium and clover-rhizobium interactions. In contrast, iSize captures 334 

critical yield components related to morphology, probably most prominently leaf size. In field 335 

trials, leaf size was previously identified as a trait with very high narrow sense heritability, 336 

while dry matter yield showed moderate heritability and the two traits displayed a positive 337 

genetic correlation (P. Annicchiarico et al., 1999; Jahufer et al., 1994).  338 

Previous studies used pedigrees to estimate narrow sense heritability, whereas we base our 339 

analysis on material genotyped using RNA-seq, which yields a large number of markers 340 

located within genes. This allowed us to identify specific candidate genes associated with 341 

yield and initial plant size. White clover has complex allotetraploid genetics, and a large 342 

number of densely distributed markers is required to detect signals linked to causal loci 343 

because of the very low LD in outbreeding population. QTLs associated with white clover 344 

cold tolerance were identified using a tetraploid model, whereas no signals could be detected 345 

using a diploid model (Inostroza et al., 2018). However, Inostroza et al. did tetraploid 346 

genotype calling which gave a different starting point for diploid GWAS than in our models. 347 

When calling the genotypes as diploid, we found that using a standard diploid GWAS worked 348 

well. We would expect that to be the case since the two white clover sub genomes exist in 349 

parallel without recombining (Griffiths et al., 2019), which allows us to assume the presence 350 

of only two alleles per locus. It is intriguing that one of the strong GWAS signals was located 351 

near a homolog of Arabidopsis GIGANTUS1, which regulates biomass accumulation, 352 

potentially through effects on ribosome biogenesis. In fact, the top markers on chromosomes 353 

3 and 7 appear very tightly linked (Supplementary figure 4). One of the peaks is likely 354 

misplaced and the two signals probably represent a single peak near the GIGANTUS1 gene. It 355 

has not been studied in biomass crops, and further studies will be required to determine if 356 

there is a causal effect of GIGANTUS1 variation with respect to white clover biomass yield. 357 

The results of our cross validation scheme for prediction using GWAS SNPs in an RF model 358 

provides compelling evidence for the predictive value of the associated markers. Since we 359 

were able to predict yield more accurately using the top 25 GWAS markers than using a 360 
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GRM based on the full set of SNPs, marker-assisted selection could potentially yield quick 361 

progress simply by applying it to subselection within existing cultivars, none of which are 362 

fixed for the alleles with positive effects on yield or initial plant size (Supplementary figure 363 

4). Our finding that we can predict yield well using a relatively small set of markers is quite 364 

surprising. Compared to an inbreeding crop like wheat, white clover has high levels of 365 

heterozygosity and rapid LD decay, which should make it difficult to select small marker-sets 366 

for prediction. In wheat, 200-300 markers were needed to achieve a prediction accuracy 367 

similar to that using GBLUP (Cericola et al., 2017; Inostroza et al., 2018). This suggests that 368 

we have successfully identified major yield QTL in white clover. Likewise, it was 369 

encouraging to see the very high prediction accuracy for F1, indicating that genomic 370 

prediction can be a very robust tool for prediction of polycross performance.  371 

The main limitations of the study is that our experiments were carried out in the greenhouse 372 

in order to be able to control the rhizobium populations and in the absence of a companion 373 

grass. The greenhouse is a warm and well-watered environment that to some degree shelters 374 

the plants from the environment, and additional factors will certainly affect field grown 375 

material. However, it is promising to see specific markers strongly linked to yield and plant 376 

size, and future trials will tell if these remain relevant in the field. Considering the results 377 

presented here, it is tempting to reiterate the suggestion to base white clover breeding on 378 

well-replicated cloned material, deferring progeny testing to late stages in the selection 379 

programme (P. Annicchiarico et al., 1999; Gibson et al., 1963). Despite a larger initial 380 

investment, determining the genetic merit of individual plants using cloned plants might be 381 

what is needed to significantly accelerate genetic gains in forage legumes.  382 

 383 

Materials and Methods  384 

Plant material and clonal propagation 385 

The plant material used in this study consists of a panel of 148 white clover genotypes from 386 

20 commercial varieties with diverse agronomic qualities. To cover maximum genetic 387 

diversity, the genotypes were chosen to be as morphologically distinct as possible within each 388 

variety. To ensure genetically identical replicates from each genotype, individual plants were 389 

clonally propagated from mother plants. Four stolon cuttings were taken from the mother 390 
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plants with sterilised scissors including a minimum of three internodes and viable leaves. The 391 

stolons were sterilised in 1:4 bleach (Klorin, Colgate-Palmolive Company, USA) for five 392 

seconds, washed with tap water, and subsequently stored in tap water with Conserve (Dow 393 

Agroscience, Denmark) until potting (1 to 10 minutes) to prevent transfer of thrips from our 394 

breeding greenhouse to the experimental greenhouse. An overview of the experimental setup 395 

can be seen in Figure 2A and 2C. 396 

Greenhouse setup  397 

The plants were grown in individual 5L pots under greenhouse conditions in Egå, Denmark 398 

(56.226°N, 10.259°W). Water and nutrients were supplied through individual feeding tubes to 399 

minimize contamination between pots (Figure 2B). The experiment was structured into two 400 

rounds of a randomised trial design with 10-24 replicates per clover genotype. Each round 401 

consisted of two sets where each set refers to a full setup of 883 unique clover and rhizobium 402 

combinations, each grown in 2-3 replicates per round. In round 1, cuttings were potted in 403 

gamma irradiated peat (Pindstrup Mosebrug A/S, Denmark) (Supplementary table 4) and 404 

stored under white plastic at 100% humidity for two weeks. The growth periods of Round 1 405 

Set 1 and Set 2 were from 11/05/2018 to 02/07/2018 (52 days) and from 05/06/2018 to 406 

26/07/2018 (42 to 49 days), respectively. In round 2, plants were potted in vermiculite (Pull 407 

Rhenen B.V., Netherlands) and stored under white plastic at 100% humidity for two weeks. 408 

The plastic storage sacks containing vermiculite were sterilised with Klorin prior to opening. 409 

The growth period of both sets in Round 2 was from 15/08/2018 to 24/10/2018 (68 to 70 days).  410 

All plants were acclimatised for a week and transferred to the main greenhouse for the trial. 411 

Immediately after removing the plastic, plants were inoculated with one of 169 genetically 412 

characterised Rhizobium leguminosarum bv. trifolii strains (Cavassim et al., 2020), or a mix of 413 

10 genetically distinct strains (OD600 = 0.001). One genotype (Aearl_07) was highly replicated 414 

and inoculated with all strains, separately. Only pots where four cuttings survived until the end 415 

of the trial were included in the analyses. Further, observations from uninoculated plants or 416 

plants inoculated with ‘SM73’ were removed due to contamination. To avoid a large 417 

contribution from the many Aearl_07 observations to the subsequent analysis, its observations 418 

were scaled down to represent only observations from plants inoculated with six random 419 

symbionts. The detailed experimental setup and overview of the greenhouse is available in 420 

Figure 2A-C. 421 
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Plants were harvested at the end of the growth period. Harvested plant material was dried at 422 

35°C until a constant weight was achieved.  423 

Image-based filtering  424 

Plants were monitored using a Raspberry Pi based imaging setup (Tausen et al., 2020). The 425 

imaging setup gave rise to daily area measurements of individual plants that were used to 426 

estimate the initial size of single plants expressed as the average size of the plant during the 427 

first 10 days of growth using the Greenotyper software (Tausen et al., 2020). In addition, the 428 

daily area measurements of single plants were used to clean up the data by removing 429 

presumably unsuccessfully inoculated plants and error-prone measurements. To identify 430 

problematic data, area measurements of single plants were regressed on days past inoculation 431 

(dpi). Plants with regression coefficient < 100 area/day in the interval 10-20 dpi were 432 

considered to be unsuccessfully inoculated and consequently removed. Furthermore, plants 433 

that showed an overall negative regression coefficient from 10 dpi to the remaining growth 434 

period were removed. In total this image-based filtering removed data points of 163 plants. In 435 

addition, we removed 3 clover accessions we did not have genotype data for. This gave a 436 

total of 2304 observations from 704 combinations of 145 clover and 169 rhizobium 437 

genotypes including 6-20 replicates pr. clover genotype. 438 

Genomic data 439 

RNA from a panel of 148 white clover accessions was sequenced using Illumina 150 bp 440 

Paired End reads (Novogene, Hong Kong). The RNA used for genotyping was extracted from 441 

roots of plants grown in sterile vermiculite for 8 weeks. Roots were washed with sterile 442 

water, harvested, and immediately frozen in liquid nitrogen. 2mm of the root tip was removed 443 

prior to freezing. RNA was isolated using the NucleoSpin RNA Plant (Macherey Nagel, 444 

Germany). 445 

RNA-seq reads were mapped to the reference S9 genome using the STAR software (v2.5.2) 446 

with stringent mapping to avoid ambiguous mapping between the two subgenomes (Dobin & 447 

Gingeras, 2016). Variant calling was performed for each sample separately using the 448 

HaplotypeCaller program in GATK (v3.8) outputting all confidently callable sites (McKenna 449 

et al., 2010). The outputs were then merged in batches of 20 using CombineGVCFs and 450 

finally combined into a single GVCF file which was genotyped using GenotypeGVCFs. 451 

Using SelectVariants in GATK the following filters were applied to the .vcf file: mapping 452 
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quality > 30, depth > 160 and quality > 20. Annotation was done using bcftools (Danecek & 453 

McCarthy, 2017). The workflow for mapping and variant calling can be found at: 454 

https://github.com/MarniTausen/WhiteCloverRNAseq. 455 

A number of filtering steps were applied to the raw variant data based on the S9 reference 456 

calling: all variants that are not classed as single nucleotide polymorphisms (deletions, 457 

insertions, etc.) were excluded, read depth > 300, excess heterozygosity (Phred-scaled p value 458 

for exact test of excess heterozygosity) < 150, and AN (Total number of alleles in called 459 

genotypes) > 130. SNPs with more than 10% missingness were excluded, and the remaining 460 

missing SNPs were imputed using BEAGLE version 5 with default settings (Browning et al., 461 

2018). Further, markers with a minor allele frequency < 5% were removed and an LD-filter 462 

was applied to remove redundant information by filtering out SNPs that showed complete LD 463 

with SNPs already in the data set. In addition, SNPs that showed < 0.5 correlation with 464 

genotypes of all other SNPs located within the same gene/intergenic region were removed, as 465 

these were considered unreliable. The final set of markers consisted of 383,280 SNPs. 466 

Population structure analysis 467 

The genomic relationship matrix (GRM) for the clover genotypes was calculated as proposed 468 

by VanRaden method 1 (VanRaden, 2008): 469 

𝐺𝑅𝑀 =	 !!!

"∑$"	(&'$")
 (1) 470 

Where Z is the centered genotype matrix with dimensions n x m, where n is the number of 471 

individuals and m is the number of markers. pi denotes the allele frequency of the second 472 

allele at locus i. After closer investigation of the GRM, 3 individuals were removed, as they 473 

showed very close relationship to an already present sample, and no relationship to the 474 

remaining accessions of the variety that they were labeled as belonging to, indicating a 475 

labelling error that could not be untangled. All analyses were therefore based on 145 unique 476 

genotypes.  477 

Based on the GRM, a principal component analysis (PCA) was performed using the prcomp 478 

R-function and the ggfortify package for visualisation (Tang et al., 2016; R Core Team, 479 

2020).  480 
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Multiparental crosses 481 

10 F1 populations were generated from plants in the 145 clover genotype greenhouse setup 482 

(Supplementary table 5). Crosspollination was done using bumble bees in net houses. 483 

Between 20 to 48 F1 seeds were germinated based on available seedstock for each population 484 

and grown under greenhouse conditions. Seeds were scarified using sandpaper, germinated for 485 

7 days in petri dishes, and transferred to 0.5 L pots with sterile vermiculite. All plants were 486 

inoculated with the same Rhizobium strain (SM42). A table watering system with the same 487 

fertiliser solution as described in the section “Greenhouse setup and phenotyping” was used 488 

throughout the growth period. After 98 days of growth under artificial light, the plants were 489 

harvested, dried, and weighed using the approach described above. One of the 10 F1 490 

populations was excluded from the downstream analysis due poor germination and/or growth 491 

resulting in < 10 offspring plants. The remaining populations had between 11 and 48 data 492 

points. Further, observations within each population with a dry weight below 1g or fresh weight 493 

below 10g were removed, since these plants had established poorly and appeared wilted. 494 

Traits 495 

Initial size (iSize) was measured by pixel counts of a plant from a 512 x 512 pixel mask in the 496 

first 10 days of growth after inoculation, i.e. before the symbiotic relationship between the 497 

plants and rhizobia strains is established. Another measurement for yield was gpd, which was 498 

reported as the dry weight of harvested plants divided by days of growth from inoculation to 499 

harvest. For this reason, gpd was overlapping with the iSize measure. 500 

To get a yield measure that was less correlated with the iSize of plants, we calculated three 501 

additional yield traits: gpdCor, gpi and gpiCor. 502 

gpdCor reports gpd corrected for the full effect of iSize. 503 

The following equations were applied: 504 

𝑦)$* 	= 	1µ	 + 𝑋𝑠	 + 𝑒 (2) 505 

Where ygpd reports the observed gpd values, µ is the intercept, s is the fixed effect of initial size 506 

and e is a vector of residuals. X is a design matrix of n x 1 dimension, where n is the number 507 

of observations with observed initial sizes. Estimates from equation 1 was then used to 508 

calculate gpdCor: 509 

𝑔𝑝𝑑𝐶𝑜𝑟	 = 	𝑦)$* 	− 𝑋𝑠 − 1µ (3) 510 

Where variables and matrices are the same as reported in (2).  511 
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The fitting of initial size as a fixed effect was done using the “lme4” package in R (Bates et al., 512 

2015).  513 

Growth post inoculation (gpi) reports the growth per day during day 11 to day 25 past the 514 

inoculation date. The time interval was set based on a comprehensive test of the trait 515 

heritability for growth periods during different time periods and with different lengths. 516 

The trait was calculated by using the image data from the greenhouse to fit a regression 517 

model to describe the linear relationship between days post inoculation (dpi) and the area of a 518 

plant. This can be written as follows: 519 

𝐴𝑟𝑒𝑎	 = 	𝛽+ + 𝛽&	𝑑𝑝𝑖	 + 	𝑒 (4) 520 

𝛽&	from equation 3 was then considered our gpi trait. Although plant growth is generally 521 

exponential rather than linear, we found the linear regression a good approximation in this 522 

growth interval. 523 

gpi was corrected for the full effect of iSize in a similar way as described for gpd in equations 524 

2-3 to produce gpiCor. 525 

Phenotypic data analyses 526 

The variance estimates of clover, rhizobium and clover x rhizobium interactions were 527 

calculated using the following mixed-model on the full data (n = 2304).  528 

𝑦	 = 	µ	 +	𝑋&𝑠	 + 𝑋"𝑤 + 𝑋,𝑖	 + 	𝑍&𝑐	 +	𝑍"𝑟	 +	𝑍,𝑥	 + 𝑒	(5) 529 

Where y is the vector of a trait, µ is the overall mean, s and w are vectors reporting the spatial 530 

coordinate of a plant in the greenhouse along the north-south or east-west axis, respectively, i 531 

is a vector reporting the inoculation date of plants, c is a vector of clover effects, r is a vector 532 

of rhizobium effects, x is a vector of clover x rhizobium interaction effects and e is the vector 533 

of residual effects. Xn and Zn are design matrices of fixed and random effects, respectively.  534 

𝑐	～𝑁(0, 𝐼	𝜎-"), 𝑟	～𝑁(0, 𝐼	𝜎."), 𝑥	～𝑁(0, 𝐼	𝜎/") and 𝑒	～𝑁(0, 𝐼	𝜎0") where I is an identity 535 

matrix,𝜎-",𝜎.",𝜎/"and 𝜎0"are the variances of clover, rhizobium, clover with rhizobium 536 

interaction and the residual effects, respectively. 537 

After this analysis, the average phenotype of a clover genotype was calculated and used for 538 

the input in all subsequent analyses (n = 145) including the calculation of the narrow-sense 539 

heritability and genomic prediction. 540 

To estimate the narrow sense heritability the following model were fitted: 541 

𝑦	 = 	µ	 +	𝑍&𝑔	 + 𝑒	(6) 542 
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where y is a vector of 145 observations corresponding to the average performance of each 543 

clover genotype, and g denotes a vector of breeding values obtained from the following: 𝑔	544 

～𝑁(0, 𝐼	𝜎1") where 𝜎1" is the additive genetic variance as captured by the GRM. All the 545 

remaining terms are as described in equation (5)  546 

The narrow sense heritability was calculated as: 547 

ℎ" =	 2$%

2$%32&%
 (7) 548 

Model parameters were estimated using a Bayesian mixed model relying on a Markov chain 549 

Monte Carlo (MCMC) with a length of 20,000 cycles and a burn-in of 5000. The prior 550 

distributions were uniform for fixed effects. 551 

This and the estimation of the highest posterior density intervals (HPDIs) was implemented 552 

using the BayzR R-package which can be found at: https://github.com/MarniTausen/BayzR. 553 

Prediction models 554 

Two different approaches were used for genomic prediction of yield-related traits in the 555 

population of 145 clover genotypes. These models include a genomic best linear unbiased 556 

predictor (GBLUP) model and a two-step method where a genome-wide association study 557 

(GWAS) approach is combined with a random forest machine learning algorithm. 558 

In general the GBLUP model can be written as follows: 559 

𝑦	 = 	𝑋𝑏	 + 𝑍𝑢	 + 𝑒	(8) 560 

Where y is a vector of phenotypes, b is a vector of fixed terms which as a minimum includes 561 

the overall mean, u is a vector of random effects and contains the GEBVs of all genotyped 562 

individuals, e is the vector of residual effects, and X and Z are design matrices of fixed and 563 

random effects, respectively. 𝑢	～𝑁(0, 𝐺	𝜎1")and 𝑒	～𝑁(0, 𝐼	𝜎0") where G is the GRM, I is an 564 

identity matrix,𝜎1"is the additive genetic variance and 𝜎0"is the residual variance. 565 

Using the GBLUP we modeled the gpd response as follows: 566 

𝑦	 = 	µ	 + 𝑍&𝑔	 + 𝑒 (9) 567 

Where y is a vector of 145 observations for the yield-related trait, µ is the overall mean, g is a 568 

vector of additive genetic effects from the GRM , and Z and e are as in (8). The GBLUP 569 

model was fitted using the BGLR R-package where the total number of iterations was 20,000 570 

and the burn-in was 5000 (Pérez & de los Campos, 2014).  571 

In the second approach used for yield prediction the first step included a GWAS performed 572 

using a python implementation of the EMMAX algorithm followed by p value adjustment 573 
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using EMMA on the top 200 most significant markers (Kang et al., 2008, 2010). The MAC 574 

parameter was set to 6. The implementation can be found here: 575 

https://app.assembla.com/spaces/atgwas/git/source. Markers were then ordered from lowest 576 

to highest p values, and a genotype file based on n top markers, or n random markers were 577 

produced. n was set to 25 or 200. In the second step this genotype file was used as the input 578 

for the RF ML algorithm proposed by Breiman (Breiman, 2001). The RF algorithm was 579 

implemented in R using the package “caret” (Max Kuhn, 2020) with the ranger method. The 580 

importance of each marker was estimated by using the in-built permutation variable 581 

importance approach, which permutes the genotypic values associated with a given marker 582 

and then tests the accuracy of the resulting trees and compares it with the accuracy of the tree 583 

produced before permutation. The variable importance is then estimated as the difference 584 

between the accuracy values and finally scaled to be between 0 and 100 (Wright & Ziegler, 585 

2017; Max Kuhn, 2020).  586 

Cross-validation 587 

The performance of the prediction models were evaluated using a 6-fold cross validation 588 

scheme that was repeated 100 times. In this scheme phenotyped individuals were randomly 589 

divided into 6 non-overlapping subsets of similar sizes. Each subset (⅙) then took turns 590 

functioning as the testing population by having phenotype values masked and predicted from 591 

the phenotypes and genotypes of the remaining (⅚) individuals contributing the training 592 

population. In the GWAS+RF method, the testing populations were excluded from the 593 

GWAS study, meaning that top SNPs were estimated based on the training population alone. 594 

The predictive ability was estimated calculating the Pearson correlation between genomic 595 

estimated breeding values (GEBVs) and the observed phenotypes. The significance of a 596 

correlation was tested using the agricolae package in R (de Mendiburu, 2010).  597 

The prediction accuracy was calculated by dividing the predictive ability with the square root 598 

of the narrow sense heritability (equation 9): 599 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 -4.(5678,:)
√<%

   (10) 600 

We also set up a validation system to predict yield across generations. This was done by 601 

having the 4 to 6 parents of an F1 population constitute the testing population and have the 602 

remaining 141 to 139 accessions constitute the training population using their gpd traits and 603 

genotypes to train the model. To assess the predictive ability of the cross-generation 604 

prediction, Pearson correlations were calculated between the average dry weight and the 605 
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average parental GEBV of the nine F1 populations, naively assuming that all parents had 606 

contributed equally to an F1 population. 607 

 608 

Statistical tests for comparison of prediction methods and F1 means 609 

To test whether prediction methods differed significantly in their predictive ability the 610 

following sign test were applied: 611 

First we set up a null hypothesis stating that the predictive ability of method A and method B 612 

did not differ in performance. That is on average we would expect the correlation of method 613 

A to come out higher than method B in 50% of the cases and lower in the remaining 50% of 614 

the cases due to randomness. We viewed the distribution as binomial, calculating the number 615 

of successes (x) as the observed number of times method A outperformed method B in the 616 

100 repeats (n). We then used the inbuilt pbinom function in R to calculate the cumulative 617 

probability of x successes or less in n observations given a probability of 0.5. This probability 618 

was reported as the p value. For x > 50 we calculated p as 1 subtracted the cumulative 619 

probability of x successes in n trials given probability 0.5. Consequently, p values report the 620 

probability of the observed or something more extreme. 621 

The means of F1 population dry weights were compared with a Tukey test in R using the 622 

built‐in Tukey honestly significant difference (HSD) function. 623 

All scripts used for statistical analyses and visualisation of data is available at: 624 

https://github.com/cks2903/White_Clover_GenomicPrediction_2020 625 

 626 

Replicate reduction 627 

Prior to the replicate reduction analyses, the full data set (n = 2304) was filtered to include 628 

only genotypes with at least 10 replicates which included a total of 142 genotypes. 629 

Subsequently, random replicates were removed for each genotype until only 10 replicates 630 

were left per genotype. Phenotypes were then averaged for genotypes, and a six-fold cross 631 

validation was used to estimate the Pearson correlation between the observed phenotypes of a 632 

yield trait and the predicted GEBV. Replicate reduction then followed in a stepwise manner 633 

which removed one additional random replicate pr. genotype in each step, calculated the 634 

resulting genotype mean, and tested the resulting correlation. The full stepwise reduction was 635 
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repeated 100 times. The replicate reduction was applied to the cross-generation prediction as 636 

well.  637 
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Figures  813 

 814 

Figure 1. Characterization of the white clover population. A: White clover origin, range, and 815 

out-crossing mating habit. B: Heat map of genomic relationship matrix (GRM) for the 148 816 

clover genotypes. C: Population structure of the 148 clover genotypes by the first two 817 
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principal components of the GRM. D: LD (R2) for the RNAseq SNP dataset. E: 818 

Heterozygosity of individuals. 819 

 820 
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Figure 2. Experimental setup. A: Clonal propagation of 148 clover mother plants and the 824 

potting method. Each pot was inoculated with either one of 170 individual, characterised Rlt 825 

strains or a mix of 10 genetically diverse strains. B: Individual pot setup and drip watering 826 

system. C: Picture from the greenhouse showing the setup. D-F: Histograms of raw data after 827 

filtering for D: initial size (iSize, n = 2392), E: growth per day (gpd, n = 2392), and F: 828 

growth rate during nitrogen fixation (gpi, n = 2203).   829 
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 830 

Figure 3. Phenotypic data and trait heritabilities. A: Growth curves and masks of individual 831 

plants from the clover genotype Banna_0204 at the end of the 10 day initial size interval, 832 

after 25 days, and after 40 days. Growth curves indicate the days past inoculation (dpi) used 833 

to extract the different phenotypes; day 1-10: iSize (purple), day 11-20: gpi (red), and day 0-834 

harvest: gpd (teal). B: Pairwise correlation of traits. The diagonal shows histogram of each 835 

trait. Left of the diagonal: scatter plots of pairwise comparisons between gpd, gpdCor, gpi, 836 

gpiCor, and iSize. Right of the diagonal: Pearson product moment correlation coefficients. n 837 

= 2304. C-D: Estimation of variance components and heritabilities of different yield-related 838 

traits. Estimates (dots) and their 95% highest posterior density intervals (lines) are coloured 839 

by trait. C: The estimated percentage of phenotypic variance explained by clover, rhizobium 840 
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or the clover x rhizobium interaction using all observations, n = 2304. D: The estimated 841 

narrow sense heritability (h2) of the traits when averaging across clover genotypes, n = 145. 842 

Note that (C) is based on individual plant phenotypes, whereas (D) is based on clover 843 

genotype means. This is why the narrow sense heritability is larger than the broad sense 844 

heritability for some traits. 845 

 846 
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Figure 4. Genomic prediction of gpd, gpdCor, gpi, gpiCor, and iSize. A: Boxplot of 848 

prediction accuracies based on 100 rounds of GBLUP. B: Correlations of traits and their 849 

GBLUP-produced GEBVs. Confidence intervals of correlation coefficients are given in 850 

parentheses and asterisks indicate significance of correlations *, p < 0.05; **, p < 0.01; ***, p 851 

< 0.001. n =145.  852 

 853 

 854 
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 855 

Figure 5. GWAS and genomic prediction using top GWAS markers. A-D: Manhattan plots 856 

coloured by how often a given SNP occurs in the 25 most significant GWAS SNPs and 857 

scaled by the predictive importance given by the RF algorithm. Frequency of occurrence 858 

(Freq.) is calculated as a fraction of the 600 times a GWAS was run. Only SNPs with a top 25 859 

frequency > 0.10 were coloured. A: Prediction of iSize based on iSize GWAS. B: Prediction 860 

of iSize based on gpd GWAS. C: Prediction of gpd based on iSize GWAS. D: Prediction of 861 
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gpd from gpd GWAS. E-F: Correlation between predicted GEBVs and observed phenotypes 862 

when using different methods for prediction of iSize (E) or gpd (F). The red bars display the 863 

correlation obtained when using the top 25 or 200 most significant SNPs obtained by 864 

performing GWAS using either iSize or gpd. The trait used for GWAS is specified below the 865 

x axis. The blue bars display the correlation obtained using GBLUP on all markers. Grey bars 866 

display the correlation obtained when using 25 or 200 random SNPs as input in the RF 867 

model. Error bars display standard errors obtained when repeating the experiment 100 times 868 

with 100 different divisions into test and training populations. The numbers at the very top of 869 

the plot indicate the fraction of times out of 100 that the given method was outperformed by 870 

the GBLUP method. The asterisks following the fractions indicate whether the model 871 

performed differently from GBLUP according to a paired sample sign test. ***, p < 0.001. 872 

The numbers comparing the red and grey bars indicate the fraction of times out of 100 that 873 

the method built on random SNPs outperformed the method built on top GWAS SNPs. The 874 

asterisks following the fractions indicate whether the top SNPs performed differently from 875 

random SNPs according to a paired sample sign test. ***, p < 0.001. 876 

 877 
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 878 

Figure 6. F1 crossing and genomic prediction strategy. A: Experimental and prediction 879 

setup. B: Boxplot for F1 phenotypic data for the 9 polycrosses. F1 population means with 880 

different letters differ at p < 0.05 according to Tukey honestly significant difference (HSD). 881 

C-F: F1 cross generation prediction. C-D: Correlation between average F1 population yield 882 

and average GEBVs of gpd (C) or iSize (D). E-F: Correlation between average F1 883 

population yield and average parental phenotypes of gpd (E) or iSize (F). 884 

 885 

 886 
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Supplementary tables 887 

Supplementary table 1. Estimation of variance components of different yield-related traits. 888 

Variance estimates include clover, rhizobium, interaction between clover and rhizobium 889 

(Clover x Rhizobium) and residual variance. n = 2304.  890 

  Variance 

Trait  Clover Rhizobium Clover x Rhizobium Residual 

gpd 
Estimate 1.2E-02 4.2E-04 3.2E-04 2.6E-02 

HPDI (8.6E-03, 1.5E-02) (0.0, 1.2E-03) (2.0E-05, 7.6E-04) (2.4E-02, 2.8E-02) 

Variance explained (%) 30.6 1.1 0.8 67.5 

gpdCor 

Estimate 5.4E-03 4.8E-04 1.8E-04 1.5E-02 

HPDI (3.9E-03, 6.9E-03) (0.0, 1.0E-03) (2.8E-05, 4.3E-04) (1.4E-02, 1.6E-02) 

Variance explained (%) 25.3 2.3 0.8 71.6 

gpi 

Estimate 4.3E+05 1.8E+04 1.5 1.2E+06 

HPDI (4.3E+05, 7.5E+05) (0.0, 4.7E+04) (0.6, 2.9) (1.1E+06, 1.3E+06) 

Variance explained (%) 32.4 1.0 0.0 66.6 

gpiCor 
Estimate 3.7E+05 3.0E+04 2.5 1.0E+06 

HPDI (2.7E+05, 4.8E+05) (0.0, 6.4E+04) (0.9, 4.6) (9.6E+05, 1.1E+06) 

Variance explained (%) 26.1 2.1 0.0 71.8 

iSize 
Estimate 1.0E+07 3.1E+06 1.5 5.8E+07 

HPDI (7.0E+06,1.4E+07) (0.0, 5.7E+06) (0.6, 2.9) (5.4E+07,6.2E+07) 

Variance explained (%) 14.6 4.3 0.0 81.1 

 891 

Note: HPDI, 95% Highest Posterior Density Interval.  892 
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 893 

Supplementary table 2. Results from multiple linear regression analyses 894 

  
p value 

model 
iSize  

GEBVs 
gpi  

GEBVs 
gpiCor  
GEBVs 

gpdCor  
GEBVs 

gpd = iSize GEBVs + gpi GEBVs + e *** N.S. - - 

gpd = gpi GEBVs + e - ** - - 

gpd = iSize GEBVs + gpiCor GEBVs + e *** - N.S. - 

gpd = gpiCor GEBVs + e - - ** - 

gpd = iSize GEBVs + gpdCor GEBVs + e *** - - N.S. 

gpd = gpdCor GEBVs + e - - - N.S. 

 895 
N.S., Not significant; *, p < 0.05; **,< 0.01; ***, < 0.001  896 
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Supplementary table 3. GWAS candidate genes. SNP position interval denotes the most 897 

significant SNPs in the peak coloured in Figure 5A-D. %identity refers to the identity with 898 

the closest Medicago truncatula homolog. The annotation column shows the species the gene 899 

was annotated based on; [Mt]: Medicago truncatula, [Tp]: Trifolium pratense, [Ca]: Cicer 900 

arietinum.  901 

 902 

   Gene position    

Chr. SNP 
position 

Gene Start End Annotation %identity  Phenotypic 
trait(s) 

1 1910067 
- 
1909821 

chr1.jg240.t1 1909818 1918815 small RNA degrading 
nuclease [Mt] 

86.36% iSize 

3 28987454 
- 
28989233 

51 bp from stop codon: 
chr3.jg4449.t1 

28989826 28987505 u6 snRNA-associated-like-
Smprotein [Mt] 

73.83% iSize+gpd 

6 27501506 chr6.jg4045.t1 27504540 27500993 E3 ubiquitin-protein ligase 
rhf2a-like protein [Tp] 

86.89% iSize 

7 19892133  
- 
20181795 

chr7.jg3208.t1 20181419 20182720 extracellular dermal 
glycoprotein [Mt] 

88.45% gpd 

7 29979844 
- 
30231861 

342bp from stop 
codon: chr7.jg4843.t1 

30236357 30232200 bag family molecular 
chaperone regulator 4-like 
protein [Tp] 

80.09% gpd 

7 51953440  
- 
51953748 

upstream 790bp: 
chr7.jg8266.t1 
 

51958855 51955400 WD repeat-containing protein 
GTS1 [Ca] 

86.89% iSize+gpd 

8 32983608  
- 
32988584 

chr8.jg4570.t1 32989033 32984274 kinetochore protein spc25-like 
[Tp] 

92.41% gpd 

13 4876408- 
4876434 

66bp from stop codon: 
chr13.jg754.t1 

4879246 4876474 transcription factor S-II, 
central domain protein [Mt] 

83.47% iSize 

  903 
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Supplementary table 4. Composition of peat used for the greenhouse experiments. 904 

Ingredient Quantity added per m3 

 Sphagnum   0.8 m3 

 N-P-K-0-7-22 + micro   1.2 kg 

 Superphosphate (crushed)   0.4 kg 

 Micromax   0.05 kg 

 Calcium   2.4 kg 

 Perlite type 3 (2-6 mm)   200 l  

 BARA clay (2-6 mm)   60 kg  

 NO3-N   0.00 g 

 K   268.80 g 

 Mo   3.27 g 

 Zn   1.10 g 

 NH4-N   0.00 g 

 Mg   59.10 g 

 Cu   2.42 g 

 Fe   8.94 g 

 P   117.60 g 

 B   0.58 g 

 Mn   3.77 g 

 S   59.00 g  

  905 
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Supplementary table 5. Overview of F1 populations with information about their average dry 906 

weights, number of established plants, parents used to generate the polycrosses and their 907 

average iSize, gpd, GEBV. 908 

  avg. parental   

Cross Parents gpd iSize gpd GEBV  iSize GEBV  avg.dry weight 

(g) 

N 
plants 

1 Aoost_01, Aoost_08, 
Aoost_09, Banna_02, 
Banna_03, Banna_07 

6.06E-01 2.12E+04 2.52E-02 1.22E+03 4.61 48 

2 Aoost_02, Ilona_09, 
Llanc_09 , Sster_01  

5.20E-01 1.67E+04 1.57E-02 8.38E+02 4.33 40 

3 Ilona_05, Kdike_09, 
Llanc_09 , Aalon_03  

3.83E-01 1.83E+04 -8.25E-03 -6.63E+02 3.60 38 

4 Ancor_10, Borek_06, 
Ctain_09, Rbani_02  

5.00E-01 1.83E+04 3.02E-03 6.00E+02 3.89 48 

5 Ancor_04, Aoost_10, 
Clfin_08, Kdike_08 

4.56E-01 1.45E+04 1.07E-02 2.19E+02 3.95 48 

6 Aearl_08, Ccyma_03, 
Llanc_06, Aaran_08  

2.90E-01 1.26E+04 -1.94E-02 -9.31E+02 2.93 11 

7 Aearl_05, Clfin_02, 
Ctain_05, Mrida_04  

3.20E-01 1.26E+04 -1.26E-02 -6.24E+02 2.87 13 

8 Clfin_03, Ctain_05, 
Volin_01, Aaran_04  

3.72E-01 1.33EE+04 -1.80E-03 1.53E+02 3.95 46 

9 Aoost_01, Aoost_08, 
Banna_02, Rbani_02, 
Sster_01, Sster_06 

6.46E-01 2.31E+04 2.00E-02 1.37E+03 4.60 48 

  909 
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Supplementary Figures 910 

 911 
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Supplementary figure 1. A-B: Manhattan plots showing results of GWAS of A: iSize or B: 912 

gpd (n = 145). The genetic model is set to diploid. The red dotted line indicates the 913 

Bonferroni threshold at 6.9. Effect plots for the most significant SNP for each peak indicated 914 

with an orange arrow is shown in C-L. C-G: Effect plots for the most significant SNP in each 915 

peak for iSize. H-L: Effect plots for the most significant SNP in each peak for gpd.   916 
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 917 

Supplementary figure 2. F1 parental distribution of GEBVs of gpd (A) or iSize (B). Colors 918 

refer to Figure 6.  919 
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 920 

 921 

Supplementary figure 3. Replicate reduction. Correlation between GEBVs and phenotypes 922 

for the dataset using only clover genotypes with at least 10 replicates. Error bars display 923 

standard errors. The fractions above the data points refer to the frequency that using the 924 

indicated number of replicates performed better than using 10 replicates for prediction. The 925 

numbers in parentheses indicate the p value that the indicated number of replicates led to a 926 

prediction performance equal to that of using 10 replicates (paired sample sign test). A-B: F0 927 

prediction of gpd using (A) gpd and (B) iSize. C-D: F1 prediction of gpd using (C) gpd and 928 

(D) iSize 929 
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Supplementary figure 4. Variation in QTL genotypes (0, homozygous reference; 1, 931 

heterozygote; 2, homozygous alternative. Each line reports the genotype, average iSize, gpd 932 

and the clover genotype. Genotypes are coloured by their effect on iSize. Black blocks 933 

indicate the allele with the largest median iSize, red blocks indicate the allele with the lowest 934 

median iSize, orange blocks indicate heterozygosity. Accessions are grouped into blocks 935 

row-wise according to variety and sorted within variety according to iSize.  936 

 937 
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Supplementary files 939 

Supplementary file 1: Raw growth data 940 

 941 

Supplementary file 2: Observations of single plants data 942 

 943 

Supplementary file 3: Average phenotypes and GEBVs 944 

 945 

Supplementary file 4: Imputed genotype file  946 

 947 

Supplementary file 5: GWAS results, top 200 most significant SNPs 948 

 949 

Supplementary file 6: Dry weight of F1 plants 950 
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