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ABSTRACT

Motivation: Combination therapies have emerged as a powerful treatment modality to overcome
drug resistance and improve treatment efficacy. However, the number of possible drug combinations
increases very rapidly with the number of individual drugs in consideration which makes the
comprehensive experimental screening infeasible in practice. Machine learning models offer time-
and cost-efficient means to aid this process by prioritising the most effective drug combinations for
further pre-clinical and clinical validation. However, the complexity of the underlying interaction
patterns across multiple drug doses and in different cellular contexts poses challenges to the
predictive modelling of drug combination effects.
Results: We introduce comboLTR, highly time-efficient method for learning complex, nonlinear
target functions for describing the responses of therapeutic agent combinations in various doses
and cancer cell-contexts. The method is based on a polynomial regression via powerful latent
tensor reconstruction. It uses a combination of recommender system-style features indexing the
data tensor of response values in different contexts, and chemical and multi-omics features as
inputs. We demonstrate that comboLTR outperforms state-of-the-art methods in terms of predictive
performance and running time, and produces highly accurate results even in the challenging and
practical inference scenario where full dose-response matrices are predicted for completely new
drug combinations with no available combination and monotherapy response measurements in any
training cell line.
Availability and implementation: comboLTR code is available at https://github.com/aalto-ics-
kepaco/ComboLTR
Contact: tianduanyi.wang@aalto.fi; juho.rousu@aalto.fi

1 Introduction
Combination therapies, involving two or more drugs, offer several advantages over standard
monotherapies, including higher treatment efficacies and overcoming resistance mechanisms by
modulating multiple targets and signalling pathways. This is especially important in combating
complex multifactorial diseases, such as cancer, and cardiovascular, neurological and autoimmune
disorders. Moreover, drugs in combination can often be administered in lower individual doses
which, in turn, results in reduced risk of adverse reactions (Pemovska et al., 2018; Al-Lazikani et al.,
2012). The number of US Food and Drug Administration (FDA)-approved drug combinations has
been continuously growing since the first approvals for co-administration of drugs to treat nervous
and respiratory system disorders in 1940s (Das et al., 2018). Currently, most of the ongoing research
and development is focused on combinatorial therapies for different cancer types (Pemovska et al.,
2018). The development is, however, very challenging as the number of possible pairwise combina-
tions increases very rapidly with the number of individual drugs, not even mentioning the enormous
size of the chemical universe that could be explored (Reymond and Awale, 2012).
Computational approaches offer cost-effective means for large-scale, fast, and systematic pre-
screening and prioritisation of potential drug combinations for further experimental validation. Most
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of the machine learning models introduced to date and benchmarked in crowdsourced DREAM
Challenge competitions (Bansal et al., 2014; Menden et al., 2019) focus directly on the predic-
tion of synergistic drug combinations (Preuer et al., 2018; Tonekaboni et al., 2018; Li et al., 2019;
Sidorov et al., 2019; Yang et al., 2020). Nonetheless, modeling the full dose-response matrices of
drug pairs offers more in-depth view of their complex response landscapes, and allows to calculate
different synergy metrics as a follow-up step. This is important especially for translational applica-
tions, where knowledge of optimal dose combination regions is often critical (Ianevski et al., 2020;
Tang et al., 2015).
Here, we introduce comboLTR, a new polynomial regression-based framework for modeling anti-
cancer effects of drug combinations in various doses. We compare the performance of comboLTR
to random forest and recently introduced method by our groups, the comboFM method (Julkunen
et al., 2020), using the NCI-ALMANAC dataset (Holbeck et al., 2017) generated by the US National
Cancer Institute (NCI). Both comboLTR and comboFM exploit the fact that dose-response matrices
of drug combinations can be represented as a higher-order tensor indexed by drugs, drug concentra-
tions, and cell lines. To predict the response values within the data tensor, a highly non-linear poly-
nomial model is needed in order to capture the multi-way interactions. To learn the parameters of
multivariate high-order polynomials, tensor factorization approaches are effective. comboFM mod-
els the drug combination effects by learning latent factors of the tensor using factorization machines
that estimate nonlinear target functions using symmetric polynomials and factorized parametriza-
tion (Blondel et al., 2016). On the other hand, comboLTR is based on Latent Tensor Reconstruction
(LTR) method (Szedmak et al., 2020) which can be also considered as an alternative of factorization
machines which extends the range of functions that can be learned by removal of the assumption of
the symmetry imposed on the polynomials. Moreover, due to only linear dependence on the design
parameters separately, a straight, gradient-based algorithm can be applied which can also exploit
advanced update rules, e.g. ADAM (Kingma and Ba, 2014). As a consequence, comboLTR can
process much larger datasets than comboFM, in the number of both examples and features, with
significantly reduced running time.
In summary, this paper makes the following contributions.

• We introduce comboLTR, a new time-efficient framework for modeling drug combination re-
sponses in cancer cell lines based on a polynomial regression model where the function learning
problem is transformed into a tensor reconstruction problem, with the tensor indexed by drugs,
drug concentrations, and cell lines. The algorithm implements mini-batch data processing and
allows learning complex, highly nonlinear target functions from large scale data sets with a
constant memory complexity and linear running time in all important parameters (degree, rank,
sample size, number of variables).

• We demonstrate that comboLTR provides highly accurate cell line context-specific results un-
der various prediction scenarios, including more challenging and practical settings where dose-
response matrix predictions are made for (i) new drug combinations with no available combi-
nation response measurements in any cell line, and (ii) when response measurements of indi-
vidual drugs are also lacking from the training data. Moreover, we show that drug combination
synergy scores can be recovered with high accuracy based on the predicted dose-response ma-
trices.

• comboLTR can work with large feature sets, including chemical descriptors and multi-omics
cell line features, such as gene expression, copy number variation, CRISPR-Cas9 gene knock-
outs, and proteomics data.

2 Methods
2.1 Notation
In the text, ⊗ denotes the tensor product of vectors, 〈,〉 is the inner product, and || || is the norm in a
Hilbert spaceH. The notation 〈,〉 is also applied for the Frobenius inner product of tensors, ◦ denotes
the pointwise product of tensors with the same shape of any order. 1m is a vector of dimension m
whose all components equal to 1. The set 1, . . . , n for a given n is denoted by [n]. The matrix Du

is a diagonal matrix whose diagonal is equal to the vector u. Ai denotes the row i of matrix A.

2.2 Data representation
In the learning problem, we have a sample of examples given by input-output pairs S = {(xi,yi)|i ∈
[m], xi ∈ Rn, yi ∈ Rny} taken from an unknown joint distribution of input and output sources.
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Prediction Learning

Given : T tensor, x
Output : y
π(x) = 〈T,⊗ndx〉 ⇒ y

Given : {(yi,xi)|i ∈ [m]}
Output : T tensor
minλ,P

∑
i ||yi − 〈T,⊗ndxi〉 ||2

s.t. T =
∑nt

t=1 λt ⊗
nd

d=1 p
(d)
t

Table 1: The general scheme of Latent Tensor Reconstruction-based regression (LTR). Given an nd-order parameter
tensor T and data point x, the prediction entails computing an inner product between T and an nd-order tensor
product of the data point with itself. Learning entails finding a factorization of T =

∑nt

t=1 λt ⊗
nd

d=1 p
(d)
t with the

lowest regression error.

The rows of the matrix X ∈ Rm×n contain the vectors xi, and similarly the rows of Y hold the
output examples, yi, for all i.

2.3 Background: learning polynomial regression models

In this paper, we consider learning polynomial regression models

π(x) =
n∑
j=1

wjxj +
n∑

j,k=1

wjkxjxk + · · ·

+

n∑
j1,j2,...,jnd

=1

wj1,...,jnd
xj1 · · ·xjnd

,

(1)

where w’s are the regression coefficients to be learned, n is the number of input variables and nd is
the degree of the polynomial.
Polynomial regression models are known to have high representation power, capable of accurately
representing continuous functions with a fixed L∞ norm-based tolerance. This fact allows us to
exploit the Stone-Weierstrass theorem and its generalizations, (Prenter, 1970), to approximate those
functions by polynomials on a compact subset with an accuracy not worse than a given arbitrary
small error.
However, estimating high-degree multivariate polynomial functions presents challenges. An ar-
bitrary multivariate polynomial defined on the field of real numbers can be described by

(
n+nd

n

)
parameters, where n is the number of variables, and nd is the maximum degree of the polynomial.
Thus, the complexity relating to the size of the underlying parameter tensor is O(nnd), which grows
exponentially in the number of parameters.
This exponential complexity in the polynomial degree presents both statistical and computational
challenges: there is often not enough data to reliably estimate all the coefficients, and the exponential
time and space complexity forbids processing sufficiently large training sets.
The key approach to tackle this exponential complexity in higher-order factorization machines
(HOFM) (Rendle, 2010; Blondel et al., 2016) is a special representation of the coefficients as in-
ner products of factors: e.g., for the second order terms

wi1,i2 = 〈pi1 ,pi2〉 =
nt∑
j=1

pi1,jpi2,j

where pi ∈ Rnt encodes the participation of i’th variable in nt factors. For higher degree terms, the
same is given by a generalized inner product

wi1,...,im = 〈pi1 , . . . ,pim〉 =
nt∑
j=1

pi1,j · · · pim,j .

This factorized representation drastically reduces the number of parameters toO(nd ·nt ·n) (Blondel
et al., 2016). The HOFM was recently demonstrated to be able to accurately predict drug combina-
tion responses (Julkunen et al., 2020). However, HOFMs are constrained to symmetric polynomials,
that is, functions that are invariant to permutation of features, which restricts the HOFM model as a
general regression model.
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In this work, we follow an alternative approach for factorizing the parameter representation, called
Latent Tensor Reconstruction (LTR) (Szedmak et al., 2020), that starts from the full-order tensor
representation of the unknown regression coefficients and learning a factorization into rank-one
tensors (of full order) that optimizes the regression error (Table 1). Importantly, the LTR model lifts
the limitation of symmetricity of the learned polynomial, and can therefore tackle a wider class of
learning problems.

2.4 Tensor-based representation of polynomial functions
A polynomial function over the real numbers with degree nd and with n variables can also be written
in a compact form

π(x) = 〈T,x⊗nd

d=1 x〉 , (2)
where T is a symmetric tensor of order nd, and with dimension ×nd

d=1n. If the vector x is given
in homogeneous form, extended with a constant 1, then (2) covers all possible polynomials up to
degree nd. The tensor T can be given in a decomposed, HOSVD form, (Lathauwer et al., 2000;
Kolda and Bader, 2009),

T =

nt∑
t=1

λt ⊗nd

d=1 p
(d)
t

s.t. ||p(d)
t || = 1, p

(d)
t ∈ Rn, t ∈ [nt].

(3)

This representation is generally not unique, see (Lathauwer et al., 2000; de Silva and Lim, 2008). By
replacing T with its decomposed form, the polynomial function turns into the following expressions

π(x) =

nt∑
t=1

λt 〈⊗nd

d=1p
(d)
t ,⊗nd

d=1x〉 =
nt∑
t=1

λt

nd∏
d=1

〈p(d)
t ,x〉 ,

where we exploit the well known identity connecting the inner products and the tensor products
(Golub and Loan, 2013). This form only consists of terms of scalar factors, where each scalar is the
value of a linear functional acting on the space X . This transformation eliminates the difficulties
which arise in working directly with full tensors. Observe that the function π is linear in each of the
vector-valued parameters, p(d)

t , t ∈ [nt], d ∈ [nd].
We can further transform the polynomial representation, (2.4), into a form which does not contain
any reference to tensor product. We have a following simple statement, which allows us to introduce
an additional factorization within the polynomial function to reduce further the number of parame-
ters.
Proposition 1. The polynomial function π(x) can be expressed only by the help of matrix and
pointwise, Hadamard, products, namely

π(x) =

nt∑
t=1

λt

nd∏
d=1

〈p(d)
t ,x〉 = λT ◦nd

d=1 P
(d)x, (4)

where P(d) is a matrix of size nt × n for any d, whose rows are given as P(d)
t = p

(d)
t , and λ is a

vector with components λt, t ∈ [nt].

Proof. The matrix-vector product P(d)x yields a vector with components
(〈p(1)

t ,x〉 , · · · , 〈p(nd)
t ,x〉), and after a rearrangement, the original form can be restored.

2.5 Latent Tensor Reconstruction - basic form
comboLTR is built upon the LTR-based polynomial regression method (Szedmak et al., 2020). LTR
exploits the representation shown in Proposition 1, which leads to the following optimization prob-
lem:

min
1

mny

m∑
i=1

∥∥∥yi − (◦nd

d=1P
(d)xi

)
DλQ

∥∥∥2
+

Cp
ntndn

||P(d)||2 + Cq
ntny

||Q||2

w.r.t. λ,Q, P(d), d ∈ [nd],

(5)

where Cp and Cq are penalty constants, and matrix Q projects the vector given by the polynomial
function of dimension nt into the output space.
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2.6 Reparametrization of the polynomial representation

In the LTR model, the predictor is implemented via a polynomial function π acting on vectors x of
dimension n. The parameter space corresponding to matrices P(d), d ∈ [nd] has dimension ndntn
which is large enough to fit the polynomial to a nonlinear function with complex structure, but it
requires a large sample to achieve a proper estimation of those parameters. The LTR framework can
be extended to increase the flexibility, and in the same time, to reduce the dimension of the parameter
space. To this end, let the polynomial function of (4) be reformulated

π(φ(x)) =

nt∑
t=1

λt

nd∏
d=1

〈v(d)
t ,A(U(d)Tx)〉

= λT ◦nd

d=1 V
(d)A(U(d)Tx),

(6)

whereA is a pointwise activation function, and the matrix U(d)T is a linear transformation projecting
the original input vector into a space with lower dimension, nk, for each d ∈ [nd]. That projection
can enforce a bottleneck within the polynomial function. This modification preserves the linear
dependence on the matrix valued parameters. The expression φ(x) = A(U(d)Tx) might be viewed
as a layer of a neural network. The main difference is that the layers within the LTR are joined by a
polynomial function in a parallel way instead of being connected sequentially.
The following table summarizes the matrices describing the extended LTR problem.

Polynomial parameters V(d) d ∈ [nd] ∈ Rnt×nk ,
Output projection Q ∈ Rnt×ny ,
Scaling Dλ = diag(λ) ∈ Rnt×nt ,

In layers projection U(d) d ∈ [nd] ∈ Rn×nk ,
scaling Dλ(u)= diag(λ(u)) ∈ Rn×n,
value A(d) = A

(
XDλ(u)U(d)

)
∈ Rm×nk ,

Full polynomial F = ◦nd

d=1A
(d)V(d)T ∈ Rm×nt ,

Error E = Y − FDλQ ∈ Rm×ny .

The parameter λ corresponds to the singular values of the tensor decomposition, see in (3).
The extended LTR problem now takes the following form

min
1

2mny
‖Y − FDλQ‖2F +

Cλ
2nt
||λ||22

w.r.t. U(d), λ(u), V(d), λ, Q, d = [nd],

s.t. ||U(d)
j || = 1, ||λ(u)|| = 1,

||V(d)
t ||2 = 1, ||Qt|| = 1,

j ∈ [n], t ∈ [nt], d ∈ [nd],

(7)

where Cλ is a penalty constant relating to the scale factor λ.

2.7 Projection-based algorithm

The optimization problem of (7) is solved by an iterative algorithm which maintains the constrains
imposed on the rows of parameter matrices by projecting them onto the unit sphere.

• Step 1 Let ` = 0, and the learning speed be 0 < γ < 1.
• Step 2 Initialize the parameters

λ(u)[`] = 1n, λ[`] = 1nt ,
U(d)[`]jk, V

(d)[`]tk, Q[`]ts ∼ N (0, 1),
d ∈ [nd], j ∈ [n], k ∈ [nk], t ∈ [nt], s ∈ [ny],

(8)

where N (0, 1) is the standard normal distribution.
• Step 3 Normalize the rows of the optimization parameters by L2 norm. Only the vector λ[`]

will be unnormalized.
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• Step 4 Set the scale value for the unnormalized vector λ by assuming that all other parameters
are fixed. Compute

F[`] =
(
◦nd

d=1A
(
XDλ(u)[`]U(d)[`]

)
V(d)T [`]

)
(9)

and solve the linear least square problem for λ[`]

minλ[`] ||Y − F[`]Dλ[`]Q[`]||2. (10)

• Step 5 Compute the value of the objective function of the extended LTR problem given by (7)

h(uv)[`] = ||Y − F[`]Dλ[`]Q[`]||2. (11)

• Step 6 Compute the partial gradients of h(uv) by applying (15),

∇U(d)h(uv), ∇V(d)h(uv), d ∈ [nd],
∇λ(u)h(uv), ∇λh(uv), ∇Qh

(uv).
(12)

• Step 7 Update the parameters

λ(u)[`+ 1] = λ(u)[`] +γ∇λ(u)[`]h
(uv),

λ[`+ 1] = λ[`] +γ∇λ[`]h(uv),
U(d)[`+ 1] = U(d)[`] +γ∇U(d)[`]h

(uv), d ∈ [nd],

V(d)[`+ 1] = V(d)[`] +γ∇V(d)[`]h
(uv), d ∈ [nd],

Q[`+ 1] = Q[`] +γ∇Q[`]h
(uv).

(13)

• Step 8 Normalize the optimization parameters in L2 norm.
• Step 9 ` = `+ 1.
• Step 10 Go to Step 5.

For large-scale applications, the above algorithm is further extended by partitioning the training
examples into mini-batches, and processing them sequentially. A single run of the cycle based on
mini-batches is taken as an epoch, and repeated. To reduce the variance caused by the partition, a
momentum-based update can be applied, e.g., Nestorov Accelerated Gradient method, or the ADAM
method frequently applied for Deep Neural Networks (Polyak, 1964; Nesterov, 2005; Kingma and
Ba, 2014).

2.7.1 Gradients
Let the matrix H(d) ∈ Rm×nk contain the partial derivatives of the activation function with respect
to the components of the matrix XDλ(U)U(d), where we exploited that the activation function is a
pointwise map of the matrix in its argument. We exploit the following expressions to shorten the
gradient formulas

F\d = ◦nd

b=1,b6=dA
(b)V(b)T ,

B(d) = EQT ◦ F\d,
C(d) = XT

(
B(d)

(
V(d) ◦ λ1Tnk

)
◦H(d)

)
.

(14)

Then, the gradients are expressed in a compact form

∇λ(u)h(uv) =
1

mny

∑nd

d=1

(
C(d) ◦U(d)

)
1nk

,

∇U(d)h(uv) =
1

mny

(
C(d) ◦ λ(u)1Tnk

)
,

∇V(d)h(uv) =
1

mny

(
B(d)TA(d) ◦ λ1Tnk

)
,

∇λh(uv) =
1

mny

(
F ◦EQT

)T
1m +

Cλ
nt

λ,

∇Qh
(uv) =

1

mny

(
FTE ◦ λ1Tny

)
.

(15)
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2.8 Dataset

In order to evaluate the performance of comboLTR, we used the drug combination responses in
human cancer cell lines from the NCI-ALMANAC study (Holbeck et al., 2017). To exploit more
data sources, especially multi-omics profiles of the cancer cell lines, we filtered the data to include
only the cell lines for which gene expression, copy number variation (CNV), CRISPR-Cas9 gene
knock-outs, and proteomics data were available. The resulting dataset consisted of 828 324 response
measurements of 5 035 drug combinations and 15 396 monotherapies in 19 cancer cell lines orig-
inating from 9 tissue types. Each drug combination has been screened using 4×4 dose–response
matrix design. The response measurements are given in the form of percentage growth of the cell
lines with respect to a control. The distribution of our drug combination response dataset in 19 cell
lines was identical to the distribution of all drug combination responses from the NCI-ALMANAC
study, as shown in Figure S1.

2.9 Feature representation

Each drug combination response is uniquely determined by five components, that is, two drugs, their
concentrations, and a cell line. Such drug combination responses indexed by quintuplets form a fifth-
order tensor (Figure 1a). To flatten the higher-order tensor into a feature matrix, each such quintuplet
is assigned a unique codeword by one-hot encoding the five components. The resulting tensor index
features are similar to ones used in recommender systems (e.g. recommending movies to users). In
addition to the tensor index features, the feature matrix also consists of auxiliary features, such as
chemical and cell line descriptors, to include more available data sources (Figure 1b).
As for chemical features, we used standard MACCS fingerprint which consists of 166 chemical
substructures. Each drug was matched with the substructures and represented as a binary feature
vector describing whether a substructure was contained in the drug. Substructures present in all or
none of the drugs were removed from the feature set, leaving 148 substructures in the end. For cell
line features, multi-omics data including gene expression, copy number variation, CRISPR-Cas9
gene knock-outs, and proteomics data were incorporated from DepMap data portal (Meyers et al.,
2017; Ghandi et al., 2019; Nusinow et al., 2020) to represent cell lines. Due to the large size of multi-
omics data, in this case more than 70 000 features, only 1% of the omics features with the highest
variance across the 19 cell lines were selected, which resulted in 191 gene expression features, 276
CNV features, 174 CRISPR-Cas9 gene knock-out features, and 69 proteomics features.

3 Results
We evaluated the performance of comboLTR in four practical prediction scenarios (Figure 2):

• Filling in the gaps in partially measured dose–response matrices (S1).
• Prediction of complete dose-response matrices of new drug combinations with no available

combination response measurements in any cell line, monotherapy response values present for
both drugs (S2).

• Prediction of complete dose-response matrices of new drug combinations with no available
combination and monotherapy response measurements in any cell line (S3).

Based on the results by (Julkunen et al., 2020), predicting dose-response matrices of completely
new drug combinations is the most challenging task from the above. Thus, we aimed to test our
comboLTR framework under the difficult prediction scenario S2, and furthermore, under even more
challenging prediction scenario S3. As shown in Figure 2, S3 has the least information available
for a drug combination, since even monotherapy responses of single drugs are not present. Scenario
S1 forms a relatively easy task, and thus it was considered as the reference prediction scenario.
For completeness, in addition to these three scenarios, following (Julkunen et al., 2020), we also
considered the scenario of predicting dose-response matrices of previously untested drug-drug-cell
line triplets in the case where the response matrices of the same drug combination in other cell
lines are known. However, as it was not our main focus in the present study, the results for this
prediction scenario are included in the Supplementary material only (Table S1 and Figure S2). We
also benchmarked the performance of comboLTR against random forest and comboFM.

3.1 Model optimization via 5-fold cross validation

We applied 5-fold cross validation (CV) in all prediction scenarios in order to tune the model pa-
rameters and evaluate the predictive performance. In scenario S1, for each dose-response matrix,
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Figure 1: Illustration of the drug combination response tensor and its feature representation. (a) drug com-
bination responses form a fifth-order tensor indexed by drugs, their concentrations and the cell lines. (b) The drug
combination response tensor can be flattened into a tensor index feature matrix via one-hot encoding and accompanied
by chemical and biological information.

combination responses were randomly selected into test sets. In scenario S2, dose-response matrices
of certain drug combinations in all cell lines were randomly selected into test sets. All monotherapy
responses were kept in the training sets for S1 and S2 prediction scenarios. S3 is similar to S2 but
with all monotherapy responses excluded from training set.

Based on our previous research, the degree of the polynomial function in comboLTR was set to 5
to model the interactions between the five components, that is, two drugs, their concentrations and
the cell line, which uniquely determine each drug combination response in the drug combination
response tensor. 20 drugs were randomly selected to subsample the full dataset for comboLTR
parameter tuning. The subsampled dataset contained 31 095 response measurements of 208 drug
combinations and 1 901 monotherapies in 19 cell lines. The subsampled drug combination responses
had almost identical distribution as our full dataset and also the whole dataset from NCI-ALMANAC
study (Figure S1). Once parameters were determined, the performance of the model was evaluated
using 5-fold CV on the full dataset, with the exception that the subsampled dataset was present in
the training set only. comboLTR was evaluated using 5-fold CV for up to the 9th order with rank
200. Only very slight overfitting was observed in the highest order models.

We used a python implementation of random forest from scikit-learn (Pedregosa et al., 2011) and
its default parameters for training and prediction. Parameters for comboFM were taken from the
original publication (Julkunen et al., 2020). In addition to fully evaluate the predictive performance
of comboFM and random forest, in the most challenging prediction scenario S3, their parameters
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Figure 2: Illustration of different drug combination response prediction scenarios. (a) filling in the gaps in
partially measured dose-response matrices (S1); predicting dose-response matrices of new drug combinations (b) with
monotherapy responses (S2) and (c) without monotherapy responses (S3).

were also optimized using the subsampled drug combination responses. The models with optimal
parameters were then applied on the full dataset in the prediction scenario S3.

3.2 Prediction of anticancer effects of drug combinations

We used different feature combinations to train comboLTR model, as shown in Table 2. Since the
one-hot encoded tensor indices are only positional features of the quintuplets, MACCS fingerprint
and multi-omics data were used as auxiliary features to provide additional information on drugs and
cell lines. In scenario S1, when filling in the gaps in partially measured dose-response matrices,
the performance difference between feature combinations was negligible. Using only tensor index
features resulted in the Pearson correlation between predicted and measured responses of 0.915,
whereas adding auxiliary chemical and biological features led to the Pearson correlation of 0.922.
However, in scenarios S2 and S3, when predicting the responses of completely new drug combi-
nations, even without monotherapy responses present, adding auxiliary features clearly increased
the prediction performance. In particular, in the most challenging scenario S3, using tensor indices
only and additionally including auxiliary features, resulted in the Pearson correlations of 0.893 and
0.915, respectively. With the advantage of handling large feature vectors, comboLTR can harness
data from different sources for the improved prediction performance. Thus, tensor index features,
chemical and multi-omics auxiliary features were used in all further experiments.
We used random forest and comboFM as comparison methods in all prediction scenarios. Scatter
plots of the predicted and measured drug combination responses are shown in Figure 3. As expected,
in scenario S1, all three methods achieved comparable prediction performance. Pearson correlations
for comboLTR, comboFM and random forest were 0.922, 0.915 and 0.923, respectively. However,
the difference in the performance of the methods became clearly visible in the most challenging and
practical scenarios of predicting dose-response matrices of completely new drug combinations with
and without monotherapy responses available (S2 and S3). Notably, under scenario S3, comboLTR,
with a Pearson correlation of 0.915, clearly outperformed comboFM and random forest (Pearson
correlations of 0.878 and 0.896, respectively). It demonstrates that monotherapies play an important
role in predicting higher-order interactions by comboFM. On the other hand, comboLTR produced
more accurate predictions with fewer experimental measurements, which makes comboLTR more
practical and applicable in recommending combination therapies.
To further study the prediction performance of those three methods, we investigated Pearson cor-
relations for drug pairs in different drug classes and cell lines from different tissue types (Figure
4). In general, comboLTR showed higher average Pearson correlation in most tissue types and drug
classes. It was also corroborated by the violin plots that comboLTR shows better and more sta-
ble prediction performance across different drug classes and tissue types, particularly in the more
challenging scenarios S2, and even S3 where less information was available.
Next, we evaluated the performance of the methods in quantifying the level of synergy and iden-
tifying highly synergistic drug combinations based on the predicted dose-response matrices. To
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S1: Filling in the gaps in partially measured dose-response matrices

S2: Predicting dose-response matrices of new drug combinations

S3: Predicting dose-response matrices of new drug combinations w/o monotherapy responses

Figure 3: Predictive performance of comboLTR, comboFM and random forest in three drug combination re-
sponse prediction scenarios. Scatter plots between the predicted and measured dose-dependent drug combination
effects in the form of %-growth of cancer cell lines. The predictions were made under three scenarios of (a) filling
in the gaps in partially measured dose-response matrices, inferring dose-response matrices of completely new drug
combinations with (b) and without (c) monotherapy responses available. Root mean squared error (RMSE), Pearson
correlation and Spearman correlation are reported as averages ± standard deviations over 5 CV folds. Diagonal line
and linear fit are also displayed in each scatter plot. Note different x- and y-axes ranges in the plots that are consistent
across the panels.

calculate the synergy scores, we applied the NCI ComboScore introduced along with the NCI-
ALMANAC dataset (Holbeck et al., 2017). Scatter plots and Pearson correlations between the
NCI ComboScores calculated based on the complete measured and predicted dose-response matri-
ces of the three methods are shown in Figure S3. Random forest performed particularly well in the
simplest scenario S1, but comboLTR clearly outperformed the other two methods in the more chal-
lenging scenarios, for example, with a Pearson correlation of 0.67 compared to 0.57 (comboFM)
and 0.46 (random forest), in the S3 scenario. We also conducted discrimination analyses using the
precision-recall (PR) curves (Figure S4) and receiver operating characteristic (ROC) curves (Fig-
ure S5) to further evaluate the model performance in classifying drug combinations as synergistic
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Figure 4: Predictive performance of comboLTR, comboFM and random forest across tissue types and drug
classes in three drug combination response prediction scenarios. Violin plots were used to characterize Pearson
correlations of predicted and measured drug combination responses across tissue types (a-c) and drug classes (d-f).
Note that the order of tissue types and drug classes in the legends corresponds to their order in the violin plots.

vs. non-synergistic with varying thresholds for synergy, in the three prediction scenarios. comboLTR
showed very competitive performance in discriminating highly synergistic drug combinations across
several top-% synergy thresholds in the most challenging prediction scenarios. For example, in sce-
nario S3, the areas under the PR curve (AUPRC) at a synergy threshold of 5% for comboLTR,
comboFM and random forest were 0.25, 0.16, and 0.12, respectively (Figure S4).
To investigate the importance of multi-omics features, contribution of each type of omics data to
the model performance was evaluated by ”leave one type of omics data out” and ”adding only
one type of omics data” 5-fold cross validations (Table 3). First, from the feature set comprising
tensor indices, MACCS fingerprints and multi-omics data, each type of omics data were excluded
to test their contribution to the predictive performance. Then, the predictive performance was also
evaluated by including each type of omics data into the feature set, on top of tensor indices and
MACCS fingerprints. The prediction performance was relatively stable when including or excluding
certain types of omics data.
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Table 2: Performance of comboLTR, comboFM, and random forest (RF) under different prediction scenarios and
using different features. Pearson correlations between predicted and measured drug combination responses, reported
as averages across 5 cross validation folds ± standard deviations.

Features Method S1 S2 S3

Tensor indices
comboLTR 0.915±0.009 0.894±0.002 0.893±0.003
comboFM 0.920±0.010 0.914±0.003 0.907±0.004

RF 0.886±0.019 0.853±0.010 0.858±0.010

Tensor indices
+ MACCS

comboLTR 0.921±0.010 0.908±0.003 0.910±0.003
comboFM 0.923±0.012 0.923±0.005 0.913±0.005

RF 0.921±0.016 0.872±0.009 0.894±0.005

Tensor indices
+ Multi-omics

comboLTR 0.908±0.014 0.909±0.007 0.911±0.005
comboFM 0.910±0.027 0.904±0.014 0.870±0.064

RF 0.895±0.019 0.859±0.010 0.865±0.010
Tensor indices
+ MACCS
+ Multi-omics

comboLTR 0.922±0.011 0.914±0.006 0.915±0.005
comboFM 0.915±0.012 0.889±0.024 0.878±0.064

RF 0.923±0.015 0.873±0.009 0.896±0.005

Table 3: The 5-fold cross validation results of comboLTR, in the form of Pearson correlations, when leaving one type
of omics data out or including only one type of omics data, compared with using the full multi-omics data, on top of
tensor indices and MACCS fingerprints.

Multi-omics feature combination S1 S2 S3
Full multi-omics 0.922 0.914 0.915
Excluding gene expression 0.921 0.912 0.914
Excluding CNV 0.921 0.916 0.914
Excluding CRISPR knock-out 0.921 0.914 0.913
Excluding proteomics 0.920 0.914 0.914
Using only gene expression 0.921 0.912 0.911
Using only CNV 0.921 0.911 0.910
Using only CRISPR knock-out 0.921 0.909 0.911
Using only proteomics 0.921 0.910 0.910

To investigate the importance of individual features, after the model was trained, each feature column
was randomly permuted 20 times, and the average Pearson correlation difference between the models
with original and permuted feature matrices was calculated as a measure to evaluate individual
feature contribution to the predictive performance (Figure S6). Weights of features from trained
comboLTR model were also extracted and plotted in the form of a heatmap of L2-norm of each
feature set, including MACCS fingerprints, gene expression, CNV, CRISPR-Cas9 gene knock-outs
and proteomics data (Figure S6). In general, the most weight has been placed on tensor indices,
while MACCS fingerprints and multi-omics data had only a relatively minor contribution to the
model accuracy.

4 Discussion
Drug combinations are emerging as a powerful treatment modality to combat complex multi-
factorial disorders, including cancer. Machine learning models can significantly speed-up the search
for effective drug combination therapies by systematically prioritising the most promising combi-
nations for further experimental validation. Using existing drug combination response data, we de-
veloped comboLTR to efficiently recommend combination therapies for cancer. Table 2 shows that
comboLTR produces accurate and stable predictions even without monotherapy responses present in
the training data. Monotherapy responses, which contain individual drugs tested in different cancer
cell lines in various concentrations, are also costly and time-consuming to obtain in the lab. Without
such limitation, comboLTR is more applicable and practical, especially in clinical research.
We compared the performance of comboLTR to random forest and recently introduced comboFM
method. Both comboLTR and comboFM are based on polynomial regression. A performance dif-
ference between the two methods in prediction scenario S3, where dose-response matrices of com-
pletely new drug combinations without monotherapy responses are inferred, could be due to different
forms of polynomial functions to be learned. In comboLTR, a complete polynomial of degree nd
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Table 4: The time (h) and memory (GB) usage of comboLTR, comboFM and random forest in 5-fold cross validation.

Time (h) / Memory (GB)
Features comboLTR comboFM RF
Tensor indices 1.1 / 24 1.2 / 20 1.2 / 24
Tensor indices
+ MACCS 2.1 / 35 5.9 / 35 0.4 / 38

Tensor indices
+ Multi-omics 3.2 / 44 31.5 / 63 5.6 / 54

Tensor indices
+ MACCS + Multi-omics 3.1 / 74 39.0 / 73 2.1 / 74

is used, while in comboFM, it is restricted to the symmetric polynomials. Since the monotherapies
induce asymmetry in the drug representation, a method which can cover the full range of possible
polynomials has higher probability to combine both the symmetric and asymmetric relations. The
symmetry restriction of comboFM also eliminates the monomials with higher order occurrences
of the polynomial variables which could also reduce further the range of functions to be approxi-
mated. Thus, it could be hypothesized that comboFM may rely more on lower-order interactions,
such as monotherapy responses. The lack of such lower-order interaction information results in
a performance drop of comboFM in the prediction scenario S3. We note that comboFM is a bit
more competitive without using the MACCS and multi-omics features than when using them, which
may be at least in part caused by the symmetricity of the polynomials with respect to the variables.
Specifically, the tensor indices and the MACCS and multi-omics features are treated alike by com-
boFM, but not comboLTR. Tensor indices, however, do not allow any explanation of the predictions
in terms of underlying biological functions or processes, and hence models relying solely on them
might not be preferable in practical use.
Furthermore, in practical clinical applications, identification of synergistic drug combinations is of
high interest. Importantly, comboLTR outperformed comboFM and random forest in the most chal-
lenging prediction scenarios also in the task of discriminating highly synergistic drug combinations
based on the predicted complete dose-response matrices and when using a range of different top-%
synergy thresholds (Figures S4 and S5).
Since cross validation experiments were run on different machines, the longest running time and
median memory across all prediction scenarios were recorded (Table 4). Compared to comboFM,
which also learns from higher-order interactions, comboLTR is significantly more time-efficient,
especially in handling large feature vectors (Table 4). When training models using the full dataset
with tensor index features, MACCS fingerprints and multi-omics information, only 3.1 hours were
needed for a 5-fold cross validation using comboLTR, whereas comboFM took 39 hours. Most of
the memory was used for storing the data.
In this work, genomic, transcriptomic and proteomic data were used to provide additional infor-
mation on cancer cell lines. The complex interactions among and within multiple layers of omics
measurements form a comprehensive molecular network. For example, CNVs affect expression of
genes which, together with post-translational modifications, influence the quantity of proteins. Since
the full multi-omics dataset included over 70 000 features, we reduced the dimensionality of the data
by selecting only 1% of each type of omics data as auxiliary descriptors characterizing cell lines (see
Method 2.7).
As shown together in Table 2, Table 3, and Figure S6, the performance increase brought by integrat-
ing multi-omics data into the model was only modest. This phenomenon could be due to that only
1% of the full multi-omics dataset was taken into account, which represented only a small part of
the cell’s characteristics. Besides, the complex interactions of the molecular network was not taken
into consideration in this experiment. For example, different drugs at various concentrations may
result in multiple perturbations to the molecular network, which will change the cellular phenotype
into diverse states. The lack of integrating such complicated interactions could lead to less relevant
features selected for predicting drug combination responses. One of our future aims is to select cell
features based on their connections with tested drug combinations, for example to assign weights to
features based on their interaction strength with drugs.
On the other hand, MACCS fingerprint had slightly higher associated feature weights and perfor-
mance increase, when compared to the multi-omics features. MACCS fingerprint characterizes
drugs by the presence or absence of specific chemical substructures. As shown in Figure S7, dif-
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ferent drugs in our dataset have common substructures due to the limited number of substructures
defined by MACCS fingerprint. Such property is expected to be helpful especially in scenarios S2
and S3 where new drug combinations were predicted. It could be speculated that more weight would
be placed on the multi-omics features in the scenario of predicting drug combination responses in
the cell lines outside of the training data.

5 Conclusions

In this work, we have put forward a novel approach for predicting responses of cancer drug com-
binations. Our method, comboLTR, is based on representing high-degree polynomial regression
models through learning a factorization of the parameter tensor containing the unknown regression
coefficients. We demonstrated the competitive predictive performance and time efficiency of the
comboLTR method on the large NCI-ALMANAC dataset (Holbeck et al., 2017).
The results indicate that comboLTR is a practical tool for prediction and prioritisation of new drug
combinations for pre-clinical and clinical evaluation. The ability to predict full dose-response matri-
ces enables a detailed exploration of drug response landscapes and application of different synergy
models.
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Figure S1: Distributions of drug combination responses of the whole NCI-
ALMANAC data; full responses in 19 cell lines; and subsampled dataset.
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Figure S2: (a) illustration of prediction scenario: predicting dose-responses
of previously untested drug-drug-cell line triplets; for each drug combination,
the whole dose-response matrices were randomly selected into test sets, such
that drug combination is still present in the training set but in other cell
lines. (b) predictive performance of comboLTR, comboFM and random
forest in the illustrated scenario: scatter plots of predicted and measured
drug combination responses. Prediction performance of comboLTR across
(c) tissue types and (d) drug classes: violin plots of Pearson correlations of
predicted and measured drug combination responses in different tissue types
and drug classes.
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S1: Filling in the gaps in partially measured dose-response matrices

S2: Predicting dose-response matrices of new drug combinations

S3: Predicting dose-response matrices of new drug combinations w/o monotherapy responses

Figure S3: Predictive performance of comboLTR, comboFM and random
forest in predicting NCI ComboScores in three prediction scenarios. Scatter
plots between the NCI ComboScores calculated based on predicted and mea-
sured drug combination effects in the form of %-growth of cancer cell lines.
The predictions were made under three scenarios of (a) filling in the gaps in
partially measured dose-response matrices, inferring dose-response matrices
of completely new drug combinations with (b) and without (c) monotherapy
responses available. Diagonal line is displayed in each scatter plot.
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Figure S4: Precision-recall (PR) curves for comboLTR, comboFM and ran-
dom forest. PR curves were used to evaluate the model performance in
classifying drug combinations as synergistic vs. non-synergistic with vary-
ing thresholds for synergy, in the three prediction scenarios: (a) filling in the
gaps in partially measured dose-response matrices, inferring dose-response
matrices of completely new drug combinations with (b) and without (c)
monotherapy responses available. Area under the PR curve (AUPR) is
shown in parenthesis.
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Figure S5: Receiver operating characteristic (ROC) curves for comboLTR,
comboFM and random forest. ROC curves were used to evaluate the
model performance in classifying drug combinations as synergistic vs. non-
synergistic with varying thresholds for synergy, in the three prediction sce-
narios: (a) filling in the gaps in partially measured dose-response matrices,
inferring dose-response matrices of completely new drug combinations with
(b) and without (c) monotherapy responses available. Area under the ROC
curve (AUC) is shown in parenthesis.
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Figure S6: (a) feature permutation importance score of each feature; cal-
culated as the difference of Pearson correlations before and after randomly
permuting a feature of all samples. (b) comboLTR feature weights in dif-
ferent feature combinations; the L2-norm of the weights of each feature set
was used to measure the importance of that feature set.
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Figure S7: Heatmap of MACCS fingerprints across different drugs. Sub-
structures defined by MACCS fingerprint were matched with drug chemical
structures.
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2 Supplementary Tables

Table S1: comboLTR, comboFM, and random forest Pearson correlations
between predicted and measured drug combination responses for prediction
scenario: predicting dose-responses of previously untested drug-drug-cell line
triplets.
Feature combination comboLTR comboFM random forest

Tensor indices 0.897±0.007 0.904±0.007 0.898±0.008
Tensor indices + MACCS 0.903±0.006 0.898±0.045 0.899±0.009
Tensor indices + Multi-omics 0.867±0.012 0.884±0.031 0.888±0.007
Tensor indices + MACCS + Multi-omics 0.901±0.006 0.857±0.046 0.901±0.006

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.16.439989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.439989
http://creativecommons.org/licenses/by-nc-nd/4.0/

