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Abstract 

Information extracted from microbiome sequences through deep-learning techniques can 

significantly improve protein structure and function modeling. However, the model training and 

metagenome search were largely blind with low efficiency. Built on 4.25 billion microbiome 

sequences from four major biomes (Gut, Lake, Soil and Fermentor), we proposed a MetaSource 

model to decode the inherent link of microbial niches with protein homologous families. Large-

scale protein family folding experiments showed that a targeted approach using predicted biomes 

significantly outperform combined metagenome datasets in both speed of MSA collection and 

accuracy of deep-learning structure assembly. These results revealed the important link of biomes 

with protein families and provided a useful bluebook to guide future microbiome sequence database 

and modeling development for protein structure and function prediction. 
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Given the rapid explosion of protein sequences, computer-based approaches play an 

increasingly important role in protein structure determination and structure-based function 

annotations (1, 2). Two types of strategies have been widely considered for protein 3D structure 

prediction (2): the first is template-based modeling (TBM), which constructs structural models using 

solved structures as templates, where its success requests for the availability of homologous 

templates in the Protein Data Bank (PDB); the second is template-free modeling (FM) approach (or 

ab initio modeling), which dedicates to model the “Hard” proteins that do not have close 

homologous structures in the PDB. Due to the lack of reliable physics-based force fields, the most 

efficient FM methods, including Rosetta (3), QUARK (4), and I-TASSER (5), rely on a prior spatial 

restraints derived, usually through deep neural-network learning (6, 7), from the co-evolution 

information based on multiple sequence alignments (MSA) of homologous proteins (8). Hence, to 

model 3D structure of the “Hard” proteins, a sufficient number of homologous sequences is critical 

to ensure the accuracy of deep machine-learning models and the quality of subsequent 3D structure 

constructions (9). 

Considerable effort was recently paid to the utilization of metagenome sequence data to enhance 

the MSA and FM model constructions. For example, Ovchinnikov et al. used the Integrated 

Microbial Genomes (IMG) database to generate contact-map predictions and create high-confidence 

models for 614 Pfam protein families that lack homologous structures in the PDB (10). Using 

UniRef20 (11), Michel et al. combined contact-map prediction with the CNS folding method (12) 

to model protein structure for 558 Pfam families of unknown structure with an estimated 90% 

specificity. Most recently, Wang et al. examined the usefulness of the Tara Oceans microbial 

genomes and found that the microbiome genomes can provide additional help on high-quality MSA 

construction and protein structure and function modeling (13). This result demonstrated a significant 

role of the microbiome sequences, which represent one of the largest reservoirs of microbial species 

on this planet, in FM structural folding and structure-based function annotations. 

Despite the success of metagenome-assisted 3D structure modeling, there are still thousands of 

Pfam families whose structure cannot be appropriately modeled with a satisfactory confidence. One 

critical reason is that despite the rapid accumulation of sequences, the current sequence databases 

are far from complete and very few homologous sequences are available for many of the FM targets. 

On the other hand, the metagenome sequence databases have become extremely large (e.g., the JGI 

database contains more than 60 billion microbial genes) (14, 15), which makes a thorough and 

balanced database search increasingly slow and difficult. In a recent study, Zhang et al. showed that 

using current data mining tools, the quality of MSAs from metagenome library is not always 

proportional to the effective number of homologous sequences (Neff, see Eq. S3 in Supplemental 

Materials), partly due to the complexity of the sequence family relations and the bias of sequence 

database searches (8). The recent CASP experiments also witnessed various examples where the 

folding simulations for FM targets are negatively impacted by the contact/distance predictions due 

to the biased MSAs from the large metagenome datasets despite the high Neff value (16, 17). 

Therefore, a deeper understanding of the inherent links between the metagenome and protein 

families, if exist, should be of critical importance to help improve the efficiency of sequence 

database searching and the subsequent 3D structure modeling.  

In this work, we aim to decipher the relationship between microbial niches (biome), sequence 

and Pfam homology families through large-scale sequence-based structure folding analyses. We first 

collected 4.25 billion microbiome sequences from the EBI metagenomic database (MGnify database) 
(18) that cover four major biomes (Gut, Lake, Soil and Fermentor), to examine their capacities for 

assisting 3D protein structure prediction on unsolved Pfam families. The “marginal effect” analyses 

showed profoundly different effects of specific biomes on supplementing homologous sequences 

for different Pfam families. A machine learning model named MetaSource is then developed to 

predict the source biome of target proteins, which can significantly improve the speed and memory 

request of MSA search and subsequent 3D structure modeling accuracy. These results have validated 

the important biome-sequence-Pfam associations, leading a novel way towards better efficiency and 

effectiveness of the microbiome-based targeted approach to protein structure and function 

predictions. 
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Results and Discussions 

Biome-specific microbiome samples contain billions of different 

functional genes from thousands of genera 
1,705 microbiome samples were collected from four typical microbial niches (biomes) (Gut, 

Lake, Soil and Fermentor, Figure 1A). Processed by the EBI pipeline version 4.1, a total of 4.25 

billion protein sequences (functional genes) were predicted from these biomes, where a biome-

specific taxonomic profile can be observed in Figure 1B.  

Among the 1,705 microbiome samples, 169 phyla were identified, covering the common 

members in the kingdom of Bacteria and Archaea. Further classification on the genus level, 8,721 

genera were identified, and different top five genera ranked by relative abundance in four biomes 

also illustrate a biome-specific taxonomic profile (Figure 1C). These results indicate that the biomes 

host different microbiome cohorts and further investigation revealed the correlation between 

microbial communities’ taxonomic profile and their living environment: In the Gut biome, for 

example, Firmicutes (average relative abundance: 0.41±0.28) and Bacteroidetes (average relative 

abundance: 0.26±0.14) were the dominant phyla. Members in phylum Firmicutes were involved in 

energy resorption associated with reduced low-grade inflammation in obesity (19). Bacteroidetes 

play an important role in the development of immune dysregulation and systemic disease (20, 21). 

In Lake and Soil biome, phylum Proteobacteria is the dominant phylum (average relative abundance: 

0.23±0.18 and 0.35±0.16, respectively), which takes part in nitrogen fixation and oxidation of iron, 

sulfur, and methane (22). In the Fermentor biome, phylum Firmicutes is the dominating phylum 

(average relative abundance: 0.46±0.36), in which most members play the role of anaerobic 

fermentation (23), the main function of most Fermentor.  

To illustrate the divergence among the biomes, statistical tests were performed based on the 

species distribution: The Wilcox-test (nonparametric statistical test, single-tail test) for each pair of 

four biomes indicate a statistical difference among four biomes (Table S1 in Supplementary 

Information, SI). Furthermore, the Principal Coordinates Analysis (PCoA) indicates a biome-

specific taxonomic profile for 1,705 microbiome samples (Figure 1D): samples collected from the 

same biome could cluster into one group (reflected by a concentrated confidence circle). Moreover, 

samples from the Lake biome were closer to those of the Soil biome, while those of the Gut biome 

and Fermentor biome were closer. This phenomenon could be attributed to the similar environments 

between Gut and Fermentor (oxygen-limited environment), as well as between Lake and Soil 

environment (open-air environment). 

Among the 4.25 billion protein sequences obtained from these four biomes, we observed the 

biome-specific functional profiles. In total, 1.25 billion proteins could be annotated by GO database. 

Similar to taxonomic profile, these four biomes host different functional annotations (Figure 1E): 

0.36 billion (68.4%) annotations were only detected in Gut biome, 0.038 (29.9%) billion annotations 

only in Lake biome, 0.32 (62.7%) billion annotations only in Soil biome and 0.016 billion (24.2%) 

of gene annotations only in Fermentor biome. The PCoA result based on functional profiles present 

clear differences among these four biomes (Figure 1F). Again, samples from Gut and Fermentor 

biomes were closer, while samples from Lake and Soil were closer, similar with the PCoA result 

based on taxonomic profiles. 

 

Metagenome-sourced proteins assisted successful structure modeling 

for thousands of protein families without homologous templates 
Recent studies have shown that metagenome sequences can help improve the performance of 

protein structure prediction (10, 13), especially for the Pfam families without solved structures. Here, 

we selected 2,214 Pfam families with the Neff of MSA >16 from 8,700 Pfam families that have no 

member with solved structures. These Pfam families were all categorized as Hard targets by 

LOMETS because no homologous templates could be detected from the PDB by threading (24). We 

extended the contact-assisted I-TASSER method, C-I-TASSER (17), to predict structure models for 

the 2,214 unsolved Pfam families. Based on the benchmark results showing that models with a C-

score >=-2.5 usually have a correct fold (see Eq. S2 and Figure S1), 47% (1,044/ 2,214) of the 

Pfam families were found to be foldable by C-I-TASSER (Figure 2A). In Figure 2B, we presented 
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the C-score histogram distribution of the C-I-TASSER models on the 2,214 unknown Pfam families. 

Considering false discovery rate (FDR) obtained from the benchmark tests (see Materials and 

Methods), there should be around 971 (=1,044*(1-6.96%)) Pfam families with high-confidence 

models. 

The C-I-TASSER modeling was performed on the Pfam database version 32.0 released in 

September 2018. The Pfam version 33.0 (released in March 2020) reported 28 new families with 

solved structures for at least one member among the 2,214 modeled Pfam families, which provides 

an opportunity to assess the performance of the prediction. Since only one member from each Pfam 

family was modeled by C-I-TASSER, the modeled member may be different from the member with 

solved structure. For these cases, we superposed the solved structure to the C-I-TASSER model 

using TM-align (25) and calculated the TM-score between the C-I-TASSER model and the 

experimental structure. The comparison between the C-I-TASSER models and the solved 

experimental structures is listed in Table S2. Although all the families are non-homologous to the 

PDB structures, 50% of the C-I-TASSER models have been correctly folded with TM-scores >0.5. 

This result is roughly consistent with the estimation that 47% of the 2,214 Pfam families are foldable 

by C-I-TASSER. Figure 2D presents the 14 Pfam families with successfully folded C-I-TASSER 

models, where C-I-TASSER models for all 2,214 unknown Pfam families are downloadable at 

https://github.com/HUST-NingKang-Lab/MetaSource. 

 

Enrichment of homologous sequences from different biomes 
For the 1,044 Pfam families foldable by C-I-TASSER, an enrichment of homologous sequences 

from a specific biome can be observed, i.e., 964 Pfam families (964/1,044, 92.3%) could be 

identified with a single biome whose Neff value is larger than the other three biomes, including 105 

families for Gut, 116 families for Lake, 617 families for Soil, and 126 for Fermentor (Figure 3A). 

For the remaining 80 Pfam families, two or more biomes contributed equally, which may be caused 

by the limited number of metagenome sequences (average 8.3±3.1 metagenome sequences) aligned. 

We observed that sequences from the Soil biome could assist in folding more Pfam families than 

other biomes, i.e., 39.6% sequences in the Soil biome could be aligned to Pfam families, while only 

33.1% for the Gut biome, 30.8% for the Lake biome, and 24.3% for the Fermentor biome. These 

results are understandable as the metagenome in the Soil biome has been shown to have the highest 

species richness and most functional genes among these four biomes (26). However, it is worth 

mentioning that though microbiome sequences from Soil biome could supplement more Pfam than 

sequences from other biomes, this is not a winner-take-all situation: other biomes still work better 

than Soil biome for specific Pfam families. 

To assess the utilization efficiency (UE) of metagenome sequences in Pfam structure modeling, 

we define 𝑈𝐸 = ∑ (𝑛𝑖𝑖 /𝑁), where 𝑛𝑖 is the number of sequences from the metagenome datasets 

that are homologous to the ith Pfam family, and 𝑁 is the total number of metagenome sequences 

considered. In Table 1 (Column 7), we list the UE values for different metagenome datasets on the 

Pfam families that are foldable by C-I-TASSER. It is shown that the utilization efficiencies of the 

three single biomes (Lake, Soil and Fermentor with UE=0.19, 0.49 and 0.94, respectively) are 

considerably higher than that from the combined dataset (0.15), although Gut’s UE are relatively 

low (0.04). If we count the number of Pfam families assisted by specific biomes, Soil and Fermentor 

assisted 907 and 2,000 families foldable per TB sequences, respectively, which are 2-5 times higher 

than that of the combined dataset, where the latter is comparable to those in previous metagenome 

structure modeling works (10, 13). These results suggest that targeted MSA collections from specific 

microbial biomes could improve the utilization efficiency of metagenome sequences compared to 

the approach that simply combines all available sequence datasets. 

To decipher the important role of the solved Pfam families in their living environment, 

taxonomic profile and functional composition analyses were applied for each of the 964 Pfam 

families with single corresponding biome (Figure 3). The taxonomic profile for the 964 Pfam 

families illustrates specificity of contributions of microbial biome’s sequences to Pfam structure 

modeling (Figure 3B). Overall, similar to microbiome samples (Figure 1B), the heterogeneous 

species distribution reflects a biome-specific enrichment pattern for the 964 Pfam families. 

Moreover, the dominating species in specific Pfam families are often the dominating species in 

assisted microbiome samples for MSA constructions. For example, In Pfam families labeled with 
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Gut biome (Figure 1B and Figure 3B), phylum Firmicutes and Bacteroidetes (both belonging to 

Gut) were the dominate phyla in Pfam families (0.41±0.28 and 0.26±0.14, respectively) and 

corresponding source biome (0.48±0.31 and 0.31±0.15, respectively), which indicates that this 

biome-specific enrichment pattern was influenced by the species composition of the microbiome 

samples. 

In addition to structure modeling, the functional composition for the 964 Pfam families 

provides a useful insight into this biome-specific enrichment pattern. Based on the GO annotation, 

for example, 368 Pfam families were aligned to GO level-3 Biological Process (286), Molecular 

Function (90), and Cellular Component (189) (Figure 3, D-F). By analyzing the functional 

annotations for these Pfam families, the biome-specific enrichment pattern could also be detected, 

reflected by the fact that many function annotations were only detected in a single biome, including 

129 (45.1%) for Biological Process, 69 (76.7%) for Molecular Function, and 109 (57.7%) for 

Cellular Component (Table S3). 

Further functional analysis based on the biological process annotations reveals their important 

roles in helping the host species to adapt to their environment (Figure 3D). In Gut and Fermentor 

biomes, for example, the main functions are associated with Anaerobic energy metabolism (52.7% 

and 68.7% annotations for Gut and Fermentor, respectively). Enrichment of these functions could 

help their host to efficiently utilize the carbon sources to live in the oxygen-free environment and 

produce metabolites to interact with their host (27, 28). In the Lake biome, the main functions are 

associated with bacteria-specific cell motility (60.3%), to help their host adapt to the flowing water 

environment (29). Moreover, in the Soil biome, the functional roles of Pfam families with a C-

score >= -2.5 were connected to such processes as nitrogen fixation (28.8%) and oxidation of iron 

(20.3%), sulfur (16.8%), and methane (10.3%), to take part in the soil chemical element cycle or 

adapt to the iron-enriched environment (30-32). 

A typical example for supplementing homologous sequence for Pfam family 3D structure and 

function prediction is on a previously unsolved Pfam family PF09828, which contained 713 

homologous sequences in the family and 98.3% sequences (701/731) of them are identified as 

bacteria (Figure 3C). After the sequences from the four biomes were included in the MSA 

construction search, the number of homologous sequences in the MSA for this family increased 

from 713 to 5,582 (Soil: 5,348, Lake: 151, Gut: 4, Fermentor: 79), resulting in a relatively high-

accuracy contact-map and 3D structure prediction (C-score=-1.43). Interestingly, 526 sequences of 

the bacteria-sourced sequences in Pfam sequences (73.8%=526/713) are classified into phylum 

Proteobacteria, the dominant phyla in the Soil biome that counts for 93.0% of the homologous 

sequences supplemented in the MSA (Figure 3B). Further functional analysis reveals its role in the 

Soil biome: Bacteria that hosts in plant produce the proteins identified as PF09828 to reduce the 

accumulation of chromate in plant (33). The reduction of chromate in plant could promote the 

growth of plant and prevent the transmission of cadmium to humans through the food chain leads 

to cadmium poisoning (34). In Text S1 and Table S4, we list ten other examples to showcase the 

biome-sequence-Pfam relationships. Taken together, these data illustrate potential correlations 

between the composition of the Pfam families and the source biomes used to supplement the MSAs 

for structure and functional modeling. 

 

Marginal effect analyses reveal biome-sequence-Pfam relationship 
The results above have strongly indicated that the protein sequences from different biomes have 

profoundly different effects on supplementing homologous sequences of different Pfam families. 

To quantitatively examine the effect, we define the marginal effect of ith biome on jth Pfam family 

by 𝑀𝐸𝑖𝑗 = 𝑛𝑖𝑗/𝑚𝑗, where 𝑛𝑖𝑗 is the number of homologous sequences for the jth family when 

searching the query through ith biome dataset, and 𝑚𝑗 is the number of homologous sequences in 

the jth family from the Pfam database. In Table S5, we list the marginal effects of the four biomes 

on all the 8,700 unknown Pfam families; the data shows that the contributions of different biomes 

to a specific Pfam can be drastically different, as reflected by their ME values. In Figures 4A-D, we 

present the contribution of biomes on the MSA collections for 4 examples from PF04213, PF10785, 

PF13864 and PF12357, where the microbiome samples were randomized for the MSA collections 

at different sequence numbers. For different Pfam families, the sequence homology pools are 

dominated by different biome datasets, suggesting again a strong link between biome and Pfam as 
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regard to homologous sequence supplement. 

To examine the overall trend of marginal effect, we plot in Figure 4E the (𝑛𝑖𝑗 + 𝑚𝑗) vs 𝑚𝑗 

values for all 8,700 Pfam families from 4 microbial biomes. For each biome, a linear regression was 

established based on the marginal value distribution of the 8,700 Pfam families. The correlation 

coefficients of simulated curve for four biomes are 0.678, 0.542, 0.321 and 0.215 for Soil, Lake, 

Gut and Fermentor, respectively, suggesting that the metagenome sequences are estimated to 

process a statistically positive effect to supplement the homologous sequences for Pfam families. 

On average, the marginal effect value is 5.28±3.25, 3.85±2.96, 3.48±3.11 and 4.12±1.65 for Soil, 

Lake, Gut and Fermentor, respectively. This rank of average marginal values for four biomes are 

largely consistent with the rank of species richness for the four biomes (Figure S2). Although the 

Soil biome has the highest overall marginal effect value, there are several hundreds of the Pfams 

families which have their highest marginal value from other three biomes, suggesting again the 

importance of biome-specific metagenome sequence selection to maximize the efficiency of MSA 

collection. 

In Figure 4F, we split Pfam families into two groups based on C-I-TASSER folding results. It 

was shown that the ME value for the families with C-score ≥-2.5 is much higher than that with C-

score<-2.5 (5.27±3.44 vs. 1.28±0.85 with a p-value=3.86e-26 in Student’s t-test). Therefore, 

marginal effect value is also strongly correlated with the ability of biome-specific metagenome 

sequence to assist the 3D structure assembly simulation through supplementing more homologous 

sequences. 

 

MetaSource prediction model for effective homologous sequence 

supplements 
A targeted model with correct metagenome selection could effectively assist the homologous 

sequences supplement and 3D structure prediction for unsolved Pfam families. Here we proposed 

the MetaSource prediction model to identify one or a set of biomes which can better supplement 

homologous sequences for specific Pfam families. First, to determine whether the source biome of 

the query Pfam family is one of the four biomes, a binary classification model was constructed, by 

using the 964 Pfam families labeled with a single biome as the training dataset, and 7,736 (=8,700-

964) Pfam families with unsolved structures as the testing dataset. As shown in Figure 5A, 

MetaSource achieves an AUC of 0.96 under 0.001 permutation p-value on the binary classification 

test. Second, to predict the most probable source biome out of the four biomes for a Pfam family, 

the multi-class Random Forest algorithm was chosen to construct this model. In this context, biome 

that could supplement the largest number of homologous sequences were considered as “correct” 

biome. The 964 Pfam families labeled with a single biome was used, with 20 cross-validation 

iterations (Figure 5B), showing a strong predictive power of MetaSource for the Pfam families, 

with a micro-average AUC of 0.94, under 0.001 permutation p-value. The top 20 important features 

used in MetaSource were supplied in Figure S3. 

To further examine the practical usefulness of the MetaSource model in 3D structure modeling, 

we incorporated the Pfam families with known structure into our analysis as the validation dataset 

(Figure 5C). First of all, as listed in Table S6, MetaSource was able to predict the biome which is 

identified with highest Neff (or based on TM-score) with an accuracy of 79.9% (or 80.2% for TM-

score) (permutation p-value: 0.001). In Figure 5D, we compare the average TM-score of the C-I-

TASSER models when using MSAs collected from the combined dataset and the dataset chosen by 

MetaSource. It was shown that, although the volume of the sequence database is much smaller (0.74 

TB/per target and 2.40 TB/per target for MetaSource and Combined datasets respectively), using 

the targeted dataset from MetaSource results in a higher TM-score (0.625) than that of the combined 

dataset (0.609), which corresponds to a p-value=6.3E-6 in Student’s t-test. Accordingly, the speed 

of MSA search based on MetaSource (1.65 hours/per target) is also faster than that from the 

combined dataset (5.44 hours/per target). The result may be understandable because sequences from 

the “wrong” source biome can produce “noise” to the MSA collection and deep-learning-based 

contact prediction, where the identification of correct source biomes could help depress such noises. 

In Figure 5E, we present two Pfam examples from PF08941 and PF00737 with known structure, 

for which MetaSource predicted Soil and Lake as the best source biome, respectively. In both cases, 

only the models with the MetaSource predicted biomes could create a model with TM-score above 
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0.5. We also noticed that, although the MSA from the combined biome contains more sequences 

than single biome, the structure models are clearly worse than the MSA from some single biome 

(Soil or Lake), probably due to the noise contribution from irrelevant metagenome sequences. 

Taxonomic profile analyses also showed that PF08941 and PF00737 are mainly composed with 

proteins from phylum Proteobacteria and Cyanobacteria, which dominate in Soil and Lake biomes, 

respectively(22, 35). Taken together, these results demonstrated again that the intrinsic links among 

biome-sequence-Pfam can be used as a useful means to enhance effectiveness and efficiency of the 

targeted approach for metagenome data on protein structure prediction and function annotations. 

 

Conclusion 
As a grand reservoir of novel genes and proteins, microbial communities contain a large number 

of uncultured species that are unique for adapting their living environments. Nowadays, the 

metagenome sequencing technology has been advanced enough to sequence microbial communities 

in many of the known biomes on Earth, while more complete gene catalogs of microbial 

communities have been obtained from some biomes than others due to the accessibility of the 

species as well as their functional genes. While these microbiome sequences have been shown useful 

for boosting the accuracy and capacity of deep learning-based protein structure and function 

predictions, the model training and metagenome search were largely blind and fall short in efficiency 

in source tracking the most relevant biome datasets for specific protein targets. For designing a more 

effective targeted approach, deeper insights should be obtained to link microbiome biomes with 

protein family homologous sequences.  

In this study, we utilized 2.4 TB of the microbiome sequencing data, representing 4.25 billion 

microbiome sequences, to investigate the usefulness of metagenome sequences from specific 

biomes for protein structure prediction of individual Pfam families. The microbiome sequences from 

the four biomes (Gut, Lake, Soil and Fermentor) boosted multiple sequence alignments with 

credible multiplicity for 2,214 out of 8,700 Pfam families with unsolved structures. By applying C-

I-TASSER ab initio structure folding pipeline, highly reliable folds were constructed for 1,044 Hard 

Pfam families, which account for 12% of all unknown Pfam families. 

To further examine the association between the metagenome sequences and Pfam families, we 

quantified the marginal effect of metagenome sequences on Pfam families, where the data shows 

that metagenome sequences from different biomes have drastically discriminable power to different 

Pfam families. Accordingly, a machine-learning model, MetaSource, was constructed for source 

tracking the most relevant biome datasets for specific Pfam family structure modeling. The 

utilization of the MetaSource predicted biomes have resulted in 3.2-fold reduction in the database 

size and 3.3-fold increase in MSA construction speed, but with 3% of TM-score increase in the C-

I-TASSER final models. This result is particularly encouraging in this postgenomic era when the 

number of genome and metagenome sequences increases exponentially, and the speed and memory 

requests become a major bottleneck for sequence mining and MSA collection through large-scale 

sequence database searching (8). These findings could be used as a useful bluebook to guide the 

modeling of protein structure and function based on the deeper insights into the biome-protein 

association. 

Finally, we should emphasize that this study only considers four microbiome biomes (Gut, Lake, 

Soil and Fermentor) with C-I-TASSER structure modeling method as an illustration. Much more 

metagenome datasets could be straightforwardly incorporated into this model. Moreover, with the 

rapid progress of the field, C-I-TASSER considering only contact-map restraints no longer 

represents the state of the art of protein structure prediction. With more advanced methods, including 

Alphafold (36), D-I-TASSER (37) and trRosetta (38), which consider more thorough sequence-

based restraints armed with more advanced deep-learning methods, we expect that the targeted 

metagenome selection approach should have more sensitive and pronounced impact on the 

efficiency and effectiveness of the protein structure prediction and structure-based protein function 

annotations. 
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Tables 
Table 1. Summary of utilization efficiency of metagenome sequences. For predicted Pfam 

families with unsolved structures, the statistic results for metagenome sequence utilization 

efficiency were calculated for results based on combined dataset (metagenomes from all of the four 

biomes), four single biomes, compared to datasets from previous studies. 

 

Dataset Va Npb Nfc Nf/Vd Nf/Npe UEf P-value (IMG/Tera/Comb)g 

IMG 1.41 2.25 614 435.5 272.9 0.10 NA/NA/NA 

Tera Oceans 0.15 0.20 68 453.3 348.7 0.30 NA/NA/NA 

Combined 2.4 4.3 1044 435.0 245.7 0.15 4E-19/E-26/NA 

Gut 1.4 2.1 105 75.1 50 0.04 5E-20/9E-18/6E-23 

Lake 0.3 0.7 116 386.7 178.5 0.19 4E-22/3E-17/8E-22 

Soil 0.68 1.4 617 907.4 440.7 0.49 9E-20/3E-19/5E-20 

Fermentor 0.06 0.1 126 2000.0 1326.3 0.94 9E-21/5E-19/8E-20 

 

Va: Volume size of protein sequence datasets (in TB) 

Npb: Number of protein sequences (in billions) 

Nfc: Number of foldable Pfam families with C-score >-2.5 

Nf/Vd: Number of foldable Pfam families/Volume size of dataset 

Nf/Me: Number of foldable Pfam families/Number of sequences (per billion sequence) 

UEf: Utilization efficiency of metagenome sequences in Pfam structure modeling (per 1000 

metagenome sequences) 

P-valueg: P-value calculated on the UE values relative to ‘IMG’, ‘Tera Oceans’ and ‘Combined data’ 

respectively. 
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Figures 

 
Figure 1. Taxonomic and functional profiling for different microbiome samples. (A) The basic 

statistics of microbiome samples collected from the four biomes. (B) Species distribution on phylum 

level for samples in four biomes. The species distribution is categorized by their biomes and labeled 

with different colors. For all the samples, the top 10 phyla ranked by the average counts among all 

samples are illustrated. “Unassigned” means the species cannot be identified by a known phylum. 

“Other” represent the combination of rest phyla. (C) Top five genera ranked by relative abundances 

for four biomes. (D) PCoA result based on taxonomic profile on genus level for samples from the 

four biomes. Samples from the same biome are labeled with the same color. The confidence intervals 

of samples in the same biome are marked in circles. (E) The shared and specific functional 

distribution for four biomes. The number labeled in the figure means the number (in billion) of 

specific or sheared sequences annotated by GO database. (F) PCoA result based on functional 

distribution for samples from the four biomes based on GO annotation. Samples from the same 

biome are labeled with the same color. The confidence intervals of samples in the same biome are 

marked in circles. 
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Figure 2. Structural modeling results for unknown Pfam Hard families. (A) Number of Pfam 

families at each stage of the analysis, where each set is a subset of the previous set. (B) The C-score 

distribution of the Pfam Hard families with Neff >16. (C) Structural models on 14 newly solved 

Pfam families with TM-score >0.5. In each case, the C-I-TASSER model is shown in rainbow color 

and the solved experimental structure of a member from the same Pfam family is shown in gray. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440088doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440088
http://creativecommons.org/licenses/by-nd/4.0/


13 

 

 

 
Figure 3. The taxonomic and functional properties of the Pfam families foldable by C-I-

TASSER. (A) C-score distribution for Pfam families after replenishing by metagenome sequences. 

The vertical axis represents the C-score. For each panel, horizontal axis represents the Pfam families, 

(25). (B) The relative abundance of species distribution for Pfam families which were foldable by 

C-I-TASSER. The species distribution is divided into four biomes and labeled with different colors. 

Calculated by the average count among all samples, the top 10 phyla are illustrated and ranked. 

“Other” represent the combination of the rest phyla. (C) Proteins in PF09828 are involved in the 

reduction of chromate accumulation and are essential for chromate resistance. Bacteria that hosts in 

plant produce the proteins identified as PF09828 to reduce the accumulation of chromate, resulting 

in the fast growth of the plant and preventing the transmission of cadmium to humans through the 

food chain leads to cadmium poisoning. For all the Pfam families which were foldable by C-I-

TASSER, after aligning the Pfam species to the Interpro database, their protein functions were 

annotated by GO annotations, classified by three top annotation: Biological Process (D), Molecular 

Function (E), and Cellular Component (F). 
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Figure 4. Evaluation of marginal effect for Pfam families. Collected from the four biomes, the 

homology sequences distribution of Pfam family (A) PF04213, (B) PF10785, (C) PF13864 and (D) 

PF12357 are illustrated, where the source biome of these Pfams was estimated by MetaSource. (E) 

The sequence distribution of metagenome data from the four biomes for all 8,700 Pfam families 

with unsolved structures. After the sequences from four biomes were aligned to 8,700 Pfam families 

with unsolved structures respectively, the marginal effect is estimated by comparison of the number 

of Pfam family’s homologous sequences before and after the use of the metagenome sequences. (F) 

marginal effect categorized by protein structure estimate scores.  
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Figure 5. The source biomes predicted by MetaSource for Pfam families. (A) The ROC analysis 

of binary-classification MetaSource model. This model was constructed to determine whether the 

source biome of the query Pfam family is one of the four biomes. (B) The ROC analysis of multiple-

classification MetaSource model. This model was constructed to predict the source biome for Pfam 

families. To evaluate the overall prediction accuracy, the micro-average (obtained by aggregating 

the contributions of all classes to compute the average metric) and macro-average value (calculated 

by the metric independently for each class and take the average) were applied. (C) The Pfam 

classification result for all the Pfam families based on the prediction result of MetaSoure model. (D) 

Average TM-score and average MSA search time for the combined and MetaSource predicted biome 

datasets. (E) Case studies of modeling Pfam (PF08941 and PF00737) with MSA from different 

biomes. The model with the highest TM-score is shown in blue font. The model labeled with red 

frame is the source biome predicted by MetaSource. 
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