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Abstract 

Neuronal oscillations are fundamental to cognition, facilitating coordination and 

communication of information within and across brain regions. Studies on the spectral and 

temporal dynamics of oscillatory rhythms have contributed substantial insight to our 

understanding of mechanisms of human visual, auditory and somatosensory perception. 

However, these oscillations have been largely unexplored in the human olfactory system, 

where we lack basic understanding of fundamental spectrotemporal and functional 

properties.  Determining if and how dynamic signatures of neural activity occur in human 

olfactory cortex is critical to understanding how we process odors. Here, we establish 

a characteristic oscillatory response to an odor in the human brain. Using direct electrical 

recordings from human piriform cortex, we identified three key odor-induced rhythms, in 

the theta (4-8Hz), beta (13-30Hz) and gamma (30-150Hz) frequency bands, each with 

distinct functional and temporal properties. While theta emerges and dissipates rapidly at 

the start of inhalation, beta and gamma emerge later, with beta persisting through 

exhalation, and gamma peaking around the transition between inhalation and exhalation. 

Beta and gamma amplitudes strongly predict odor identification ability, whereas theta does 

not. Theta phase modulates beta and gamma amplitudes during inhalation, only when odor 

is present. Our findings establish that smells elicit distinct neuronal rhythms in human 

olfactory cortex, which are dynamically interplayed over the course of a sniff. Our data 

further suggest a fundamental role for beta and gamma oscillations in human olfactory 

processing, and that their amplitudes—organized by theta phase—subserve odor 

identification in humans.  
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Introduction 

Local field potential oscillations are a fundamental feature of mammalian brain networks (Başar 

et al., 2001; Buzsáki, 2002; Engel & Fries, 2010; Fontanini & Bower, 2006; Fröhlich & 

McCormick, 2010; Heck et al., 2017; Kay et al., 2009; Lisman & Jensen, 2013; Zoefel & 

VanRullen, 2017). The earliest recordings of brain oscillations occurred in the olfactory system 

of hedgehogs (Adrian, 1942), leading to decades of highly productive research on oscillations in 

the mammalian olfactory system, mainly conducted in rodents (Beshel et al., 2007; Chapuis et 

al., 2013; Cohen et al., 2015; Courtiol et al., 2019; Fontanini & Bower, 2006; Frederick et al., 

2016; Gnaedinger et al., 2019; Kay, 2005; Kay, 2014; Kay & Beshel, 2010; Kay et al., 2009; 

Kay & Stopfer, 2006; Lepousez & Lledo, 2013; Losacco et al., 2020; Lowry & Kay, 2007; 

Martin et al., 2007; Martin & Ravel, 2014; Mori et al., 2013; Neville & Haberly, 2003; Poo & 

Isaacson, 2009; Ravel et al., 2003; Rosero & Aylwin, 2011; Wilson & Sullivan, 2011; Zhou et 

al., 2017). However, 80 years later, we still lack a basic understanding of the role of these 

oscillations in olfactory processing in the human brain.  

Work from rodents has identified oscillations in three key frequency bands that are associated 

with distinct olfactory processes: a slow theta rhythm (<8Hz), and two faster rhythms in beta 

(13-30Hz) and gamma (30-150Hz) bands (Beshel et al., 2007; Courtiol et al., 2019; Frederick et 

al., 2016; Kay, 2005; Kay & Beshel, 2010; Kay et al., 2009; Ketchum & Haberly, 1993; 

Lepousez & Lledo, 2013; Lowry & Kay, 2007; Martin & Ravel, 2014; Neville & Haberly, 2003; 

Ravel et al., 2003; Rosero & Aylwin, 2011; Zhou et al., 2017). Numerous studies have found 

strong associations between rodent theta oscillations and respiration (Fontanini & Bower, 2006; 

Jessberger et al., 2016; Kay, 2005; Kay & Stopfer, 2006; Macrides et al., 1982; Rojas-Líbano et 
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al., 2014; Verhagen et al., 2007), suggesting that theta oscillations in olfactory cortex track the 

respiratory cycle, potentially incorporating respiratory motor signals with odor processing 

(Kepecs et al., 2006; Schroeder et al., 2010). Rodent beta oscillations are linked to cognitive 

olfactory tasks, odor learning, and coherence between olfactory cortex and the rest of the brain 

(Frederick et al., 2016; Gnaedinger et al., 2019; Kay & Beshel, 2010; Martin et al., 2007; Martin 

& Ravel, 2014; Neville & Haberly, 2003), suggesting they likely play a role in long-distance 

communication related to olfactory processing (Martin et al., 2007; Martin & Ravel, 2014). 

Rodent gamma oscillations are linked to odor discrimination and identification tasks (Lepousez 

& Lledo, 2013; Losacco et al., 2020; Martin & Ravel, 2014), and increase with task difficulty 

(Beshel et al., 2007), suggesting they are important for fine odor perception, including 

distinguishing between similar odorants (Beshel et al., 2007; Lepousez & Lledo, 2013). 

Numerous rodent studies have found that the timing of odor-induced oscillations relative to sniff 

onset varies across frequency bands (Buonviso et al., 2003; Cenier et al., 2008; Courtiol et al., 

2019; David et al., 2015; Litaudon et al., 2008; Lockmann et al., 2018; Manabe & Mori, 2013). 

While theta oscillations are linked to sniff onsets, beta oscillations increase during exhale 

(Buonviso et al., 2003; Cenier et al., 2008; Courtiol et al., 2019; Litaudon et al., 2008; Lockmann 

et al., 2018) and gamma oscillations increase at the peak of inhale, or around the transition 

between inhale and exhale (Manabe & Mori, 2013).  

Against this background of wide-ranging rodent work, oscillations in human piriform cortex 

have been vastly understudied. We know little about the frequency and timing of odor-induced 

oscillations in human olfactory cortex. Relative to the abundance of rodent research, only a few 

studies have directly measured odor-induced oscillations in the human olfactory system (Hudry 

et al., 2001; Jiang et al., 2017; Jung et al., 2006). While odor-induced oscillations up to 40 Hz 
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have been recorded from the human amygdala (Jung et al., 2006), human piriform recordings 

suggest an important role for low frequency (< 8Hz) oscillations in olfactory processing (Jiang et 

al., 2017). Theta oscillations were consistently found in piriform cortex within 200ms of sniff 

onset during an odor detection task, whereas higher frequency oscillations were not (Jiang et al., 

2017). Whether odors induce higher frequency oscillations in human piriform cortex, emerging 

at distinct phases of the sniff cycle, is unknown. Understanding if and how dynamic signatures of 

neural activity occur in human olfactory cortex is critical to understanding how we process 

odors. 

In this study, we used stereotactic intracranial electroencephalography (iEEG) to test three main 

hypotheses about odor-induced local field potential oscillations in human piriform cortex during 

an olfactory identification task. First, that odors would induce theta, beta and gamma oscillations 

in human piriform cortex. Second, that the timing of odor-induced responses would vary across 

the different frequency bands. Third, that features of odor-induced beta and gamma oscillations 

would better predict task performance compared to theta oscillations.  

 

Results  

To examine odor-induced oscillations in human olfactory cortex, we recorded local field 

potentials from 7 participants who took part in an odor identification task. Each participant’s 

clinical electrode coverage included a contact in piriform cortex (Fig. 1A). The olfactory task 

was performed during clinical recording of ongoing electrophysiological activity, at sampling 

rates ranging between 500 to 2000Hz, using a 256-channel clinical EEG acquisition system 
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(Nihon Kohden). Each trial began with an auditory cue signaling that odor would be presented, 

and providing the potential identity of the odor (rose or mint). After a jittered delay (3 to 7 s), 

odor was presented to the participant while sniff onset was precisely measured via a pressure 

sensor at the nose (Salter Labs). On each trial, participants identified the odor by indicating 

whether or not it matched the identity prompt (Fig. 1B). To isolate effects induced by odor from 

those induced by inhalation, which also impacts oscillations in human piriform cortex (Herrero et 

al., 2018; Mainland & Sobel, 2006; Sobel et al., 1998; Zelano et al., 2016), we analyzed and 

directly compared LFPs during inhalations that contained odor and those that did not, resulting in 

two experimental conditions: odor and no-odor (Fig. 1B, areas shaded in pink and blue).  

Figure 1  

 

 

Odor induces oscillations in theta, beta and gamma frequency bands in human piriform 

cortex  
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To test the hypothesis that odor induces LFP oscillations in the theta, beta and gamma frequency 

bands in human piriform cortex, we first conducted a time-frequency analysis combining data 

from all trials and participants. We computed spectrograms aligned to sniff onset, for odor and 

no-odor conditions separately. In the odor condition, we found statistically significant increases 

in theta, beta and gamma frequency bands (Fig. 2A, left panel) (theta peak: 4.72 Hz, max z score 

= 14.07; beta peak: 18.98 Hz, max z score = 8.11; gamma peak: 84.94 Hz, max z score = 4.88). 

In the no-odor condition, we found smaller but significant increases in theta only (Fig. 2A, 

middle panel, peak: 4.02 Hz, max z score = 3.44). To quantify the difference between odor and 

no-odor conditions, we conducted a direct statistical comparison by permuting condition labels 

to generate a map of z-normalized amplitude differences (Fig. 2A, right panel). We found that 

theta, beta and gamma amplitudes were significantly higher in the odor compared to the no-odor 

condition (p < 0.05, FDR corrected, permutation test).  

To confirm our findings at the individual level, we next computed sniff-aligned spectrograms in 

each participant separately (Fig. 2B-C). We found consistent increases in theta, beta and gamma 

amplitude in each individual participant in the odor condition, but not in the no-odor condition 

(Fig. 2B-C, black outlines indicate statistical significance via permutation test FDR corrected for 

multiple comparisons, p < 0.05). We then computed a direct statistical comparison between the 

two conditions for each participant (Fig. 2D). We found that amplitudes in all three frequency 

bands were significantly stronger during the odor compared to the no odor condition (paired 

sample t test, theta: t(6) = 3.19, p = 0.0187; beta: t(6) = 4.17, p = 0.0059; gamma: t(6) = 2.98, p = 

0.0245). Notably, in every single participant, theta, beta and gamma amplitudes were larger 

during the odor compared to the no-odor condition. Together, these results suggest that odor 

consistently induces distinct theta, beta and gamma oscillations in human piriform cortex. 
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Figure 2 

 

 

The time course of odor-induced oscillations varies across frequency bands  

The spectrograms in figure 2 showed apparent variable time courses of odor-induced oscillations 

relative to sniff onset across frequency bands (Figs. 2A-B). Theta appeared to emerge and 

dissipate soonest, with beta and gamma emerging later and persisting longer. To quantify these 

differences, we conducted a series of analyses to characterize the timing of responses across 

frequency bands. These included a percent-change analysis to examine oscillatory increases over 

time, a bootstrapping analysis to minimize potential impact of noisy trials, a cluster-based 

analysis to quantify the exact timing and magnitude of continuously significant increases in 

oscillatory amplitude, and a circular-distribution analysis to examine oscillatory peaks over 

respiratory phase.  
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In our first analysis, we calculated the percent change in amplitude for each frequency band at 

each time point, for each condition (Fig. 3A). This allowed us to determine the timing of the 

emergence of significant differences between odor and no-odor conditions (FDR corrected p < 

0.05, paired t test). This analysis showed distinct temporal dynamics of odor responses for each 

frequency (Fig. 3A, black lines above each panel). Odor-induced theta oscillations were the 

earliest to emerge and dissipate, beginning 126ms prior to sniff onset and ending 516ms after 

sniff onset. Gamma oscillations emerged next, 116ms after sniff onset, intermittently persisted 

through exhalation, and dissipated 3,678ms after sniff onset. Beta oscillations emerged last, 

144ms after sniff onset, and persisted longest, ending 3,786 ms after sniff onset.   

In a second analysis, designed to minimize the contribution of noisy trials and statistically 

evaluate the time courses, we tested whether differences in temporal dynamics of odor-induced 

responses across frequency bands were stable across resampled sets of trials. We conducted a 

bootstrapping analysis to create separate profiles of the timing of odor-induced responses for 

each frequency band. We created a z-normalized time series of resampled mean values for each 

frequency band, represented as a colormap (Fig. 3B, y-axis is each bootstrap repetition). We 

found stable time courses across repetitions, indicated by stripes of increased amplitude at 

particular times for each frequency band. To quantify the timing of amplitude increases, we 

performed a cluster-based statistical analysis; for each frequency band, we generated a t-statistic 

at each time point for all z-normalized odor trials, and then conducted a permutation-based 

analysis to correct for cluster size. We found clusters that corresponded well with the 

spectrograms shown in figure 2, with the percent-change analysis, and with the bootstrap 

analysis (Fig. 3C). We found one significant cluster for the theta band extending 266ms pre sniff 

to 810ms post sniff (p < 0.0001, permutation test), one for the beta band extending from 238ms 
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to 3524ms post sniff (p < 0.0001), and four separate clusters for the gamma band (326ms to 

452ms post sniff, p = 0.0346; 764ms to 892ms post sniff, p = 0.0145; 1374ms to 1642ms post 

sniff, p < 0.0001; 1902ms to 2016ms post sniff, p = 0.0451). We subsequently conducted the 

same bootstrapping analysis at the single subject level, and plotted the average time point of each 

subject’s bootstrapped peak distribution on top of the significant clusters in figure 3C (see 

overlayed dots, each representing the peak value for a single participant, with lines connecting 

individual values across frequencies). Although single participant data was more variable, beta 

and gamma peaks occurred later than theta peaks for almost all subjects. These results suggest 

that the unique time courses of odor responses across frequencies were unlikely to be caused by 

noise, spikes, and other artifacts. 

In a third analysis, designed to account for individual respiratory differences in the time domain, 

we examined the circular distributions of oscillatory peaks over the respiratory phase. On each 

repetition of a bootstrapping analysis, the peak amplitude and corresponding phase angle were 

calculated from the average LFP and respiratory time series. We found that theta peaks narrowly 

aggregated at early stages of inhale (mean phase angle = -0.67 rad, PLV = 0.99, Rayleigh’s z = 

998.05, p < 0.0001) (Fig. 3D, left), consistent with previous findings in humans (Jiang et al., 

2017). By contrast, beta peaks consistently aggregated at the exhale trough (mean phase angle = 

2.98 rad, PLV = 0.80, Rayleigh’s z = 647.78, p < 0.0001) (Fig. 3D, middle). Gamma peaks were 

more broadly distributed, with most centered around inhale peak or the transition between inhale 

and exhale (mean phase angle = 0.57 rad, PLV = 0.63, Rayleigh’s z = 401.69, p < 0.0001) (Fig. 

3D, right). Combined, these findings suggest that odor-induced theta oscillations increase earlier 

than beta and gamma oscillations, and that while theta and gamma oscillations are maximal 

during inhalation, beta oscillations peak during exhale.  
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Figure 3 

 

 

Beta and gamma oscillations outperform theta at predicting odor identification accuracy. 

Numerous rodent studies suggest that beta and gamma oscillations relate to odor learning and 

discrimination, through both local odor coding (Beshel et al., 2007; Frederick et al., 2016; 

Losacco et al., 2020; Martin & Ravel, 2014; Ravel et al., 2003) and recruitment of larger-scale 

networks (Frederick et al., 2016; Gnaedinger et al., 2019; Kay & Beshel, 2010; Martin et al., 

2007; Martin & Ravel, 2014; Mori et al., 2013). We therefore hypothesized that beta and gamma 

oscillations in human piriform cortex would correlate more strongly with task performance than 

theta. We conducted three separate analyses to explore the relationship between odor-induced 

LFP oscillations and odor identification accuracy. These included a combined time-frequency 

analysis to look for gross differences between correct and incorrect trials, a correlation analysis 

to look for a relationship between accuracy and oscillations across trials, and a machine learning 

analysis to determine whether amplitudes of different frequency responses could predict 

accuracy.  
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First, in a combined time-frequency analysis, we computed spectrograms of odor-induced 

responses during correct and incorrect trials separately, in order to look for differences across 

frequency bands. We found that during trials in which the participant correctly identified the 

odor, there were statistically significant increases in theta, beta and gamma band amplitudes 

(Fig. 4A, left panel, FDR corrected p < 0.05). By contrast, during trials in which the participant 

failed to identify the odor, statistically significant increases were found only in the theta band, 

with no such increases in the beta or gamma bands (Fig.4A, right panel, FDR corrected p < 

0.05). Since most participants performed above chance on the task, there were a larger number of 

correct trials than incorrect trials (252 versus 71). To account for this difference and to directly 

statistically compare spectrograms for correct and incorrect trials, we conducted a resampling 

analysis in which correct and incorrect trials were resampled with replacement to include the 

same number of trials on each repetition, and we computed the distribution of the difference 

values (correct – incorrect) across each frequency band. We found statistically significantly 

larger responses during correct compared to incorrect trials for beta and gamma bands only, with 

no significant differences in the theta band. (one sample t test against 0 for the difference 

distribution. theta: t(199) = 1.21, p = 0.2247; beta: t(199) = 35.55, p < 0.0001; gamma: t(199) = 

42.61, p < 0.0001. Paired sample t test for difference in theta and beta bands: t(199) = -41.02, p < 

0.0001; Paired sample t test for beta and gamma: t(199) = 17.36, p < 0.0001; Paired sample t test 

for gamma and theta: t(199) = 37.10, p < 0.0001.). Notably, there were not sufficient numbers of 

incorrect trials for every participant to conduct this analysis at the individual level.  

Second, we looked for a relationship between task performance and odor-induced responses in 

each frequency band on a trial-by-trial basis. To account for differences in frequency bands over 

time, we conducted this analysis during the inhale and exhale periods separately. Trials were 
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subsampled to generate a distribution of correlation coefficients representing the relationship 

between oscillatory amplitude and accuracy for each frequency band. Significant correlations 

between accuracy and amplitude were evident in the beta and gamma bands during both inhale 

and exhale (one tailed one sample t test against FDR corrected threshold for significant 

correlation coefficient; beta during inhale: t(49) = 31.25, p < 0.0001; beta during exhale: t(49) = 

17.64, p < 0.0001; gamma during inhale: t(49) = 23.70, p < 0.0001; gamma during exhale: t(49) 

= 28.25, p < 0.0001.), but no such correlation was found in the theta band (theta during inhale: 

t(49) = -2.04, p = 0.97; theta during exhale: t(49) = -12.90, p = 1). In line with this, a direct 

statistical comparison across frequency bands showed that correlations were significantly 

stronger between task accuracy and amplitude for beta and gamma bands compared to theta band 

during both inhale and exhale time periods (Fig. 4C). (two way repeated measure ANOVA: main 

effect of time window: F(1, 49) = 111.08, p < 0.0001; main effect of frequency band: F(2,98) = 

547.98, p<0.0001. paired sample t test across frequency bands during inhale for theta and beta: 

t(49) = -29.37, p < 0.0001; for beta and gamma: t(49) = 3.11, p = 0.0031; for gamma and theta: 

t(49) = 24.95, p < 0.0001; paired sample t test across frequency bands during exhale for theta and 

beta: t(49) = -26.51, p < 0.0001; for beta and gamma: t(49) = -11.13, p < 0.0001; for gamma and 

theta: t(49) = 33.95, p <0.0001).  

Finally, we used machine learning to perform a classification analysis on inhale and exhale 

amplitudes for each frequency band, to determine whether these features could predict task 

accuracy. To this end, we applied a binary linear support vector machine (SVM) classifier to the 

data, plotted the receiver operative characteristic (ROC) curves and calculated the area under 

curve (AUC), which was used together with optimized classifier accuracy as the predictor of data 

separability. We found that beta and gamma amplitudes were highly successful at separating the 
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trials by accuracy, while theta amplitudes were less so (Fig. 4D). Specifically, gamma accuracy 

was maximal at 91.5%, beta accuracy was also high at 91%, whereas theta accuracy was lower, 

at 66.5%. This same procedure was applied to shuffled data, which resulted in chance 

performance (accuracy = 52%), validating our methods. These findings correspond well with the 

results from the two previous analyses, and, taken together, suggest that beta and gamma band 

amplitudes are more strongly correlated with task performance than theta amplitudes.  

Figure 4 

 

 

 

Odor-induced high-frequency oscillations were not driven by attention.  
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Because the odor condition occurred during experimental trials and the no-odor condition 

occurred between experimental trials, responses during the odor condition could potentially have 

been impacted by attentional states that were not present during the no-odor condition. Previous 

human and rodent work suggests that olfactory cortical responses are modulated by attention 

(Carlson et al., 2018; Zelano et al., 2005), particularly in lower frequency LFPs 

(Arabkheradmand et al., 2020; Zhou et al., 2019). To control for potential effects of attention on 

our findings, we analyzed odorless sniffs taken in attended states during experimental trials. 

Each trial began with a cue, followed by a delay (3 to 7s) prior to presentation of odor. 

Therefore, during many trials, sniffs of clean air occurred between the cue and odor (Fig. 5A). 

These sniffs occurred during attended states, but did not contain odor, thus providing a means to 

isolate the effects of attention from the effects of odor. Because a sniff did not always occur 

between the cue and the odor, the number of trials in the attended odorless condition was lower 

than the odor condition. Therefore, we subsampled odor trials to match the number across 

conditions. We computed spectrograms aligned to attended odorless sniffs and compared them to 

those aligned to odor sniffs (Fig. 5B, left and middle).  We found that attended odorless sniffs 

induced oscillations in low frequencies (below 8 Hz) only (p < 0.05, FDR corrected), and found 

no stable higher frequency oscillations (> 8Hz). We then computed the z-normalized difference 

across conditions (Fig. 5B, right) and found significant differences between attended odor trials 

and attended no-odor trials in the theta, beta and gamma bands, such that oscillations in all three 

frequency bands were increased when odor was present, even after removing the effects of 

attention (Fig. 5B, right, p < 0.05, FDR corrected). Since theta oscillations were still detected in 

the attended no-odor condition, these findings suggest that the odor-induced increases in beta and 
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gamma bands were independent of attention, whereas theta band increases reflected, at least to 

some degree, attentional states.  

Figure 5 

 

Theta phase modulates high frequency oscillatory amplitude during inhale.  

Previous work suggests that odor-induced theta oscillations predict odor identities, even during a 

detection task that does not require participants to identify odors (Jiang et al., 2017). Here, we 

found that odor-induced theta oscillations were less correlated with odor identification 

performance than beta and gamma oscillations. However, theta rhythms in our data were 

evidently driving beta responses, which appeared to oscillate at around 5 Hz during inhale (Fig. 

5A, see grey box). We hypothesized that theta oscillations might organize later-emerging higher 

frequency oscillations through phase modulation. To estimate modulation of higher frequency 

amplitude by theta phase, we calculated the modulation index (MI) (Tort et al., 2010) using theta 

phase as the modulating signal and a range of high frequencies (13 – 150 Hz) as the amplitude 

signals, for both odor and no-odor conditions (Fig. 5B). We found that in the 1s time window 

following sniff onset, theta phase significantly modulated beta and gamma oscillations (FDR 

corrected p < 0.05) during the odor condition (FDR corrected p < 0.05 for MI in all frequency 
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bands, peak MI at 16.16 Hz, max z score = 17.67, z score = 7.52+-3.69) , but not during the no 

odor condition (z score = 2.02+-1.57).  This finding suggests that higher frequency oscillations 

were modulated by theta phase during the early period of sniffing, when theta amplitudes were 

significantly increased.  

Figure 6 

 

 

Discussion  

We found odor-induced oscillations in human piriform cortex in the theta, beta and gamma 

frequency bands, each with distinct temporal dynamics, forming the basis of a characteristic 

human olfactory cortical response. While theta oscillations rapidly emerged, peaked and 

dissipated within the first 500ms of inhalation, gamma and beta oscillations emerged and peaked 

later, extending into the exhale period. These findings suggest that the spectrotemporal 

characteristics of odor-induced oscillations in piriform cortex are similar in rodents and humans. 

We further found that the strength of beta and gamma oscillations was significantly more 
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correlated with odor identification accuracy than theta oscillations, suggesting beta and gamma 

rhythms are important for odor identification in humans.  

Interestingly, we found that gamma rhythms were more tightly correlated to odor identification 

accuracy than beta during exhale. Since gamma rhythms are thought to reflect local 

computations (Beshel et al., 2007; Buzsáki & Wang, 2012; Frederick et al., 2016; Kopell et al., 

2000; Lepousez & Lledo, 2013; Losacco et al., 2020; Martin & Ravel, 2014; Ravel et al., 2003), 

and beta oscillations are thought to reflect long-range network interactions (Frederick et al., 

2016; Gnaedinger et al., 2019; Kay & Beshel, 2010; Kopell et al., 2000; Martin et al., 2007; 

Martin & Ravel, 2014), local computations in piriform cortex may have particular significance 

during exhale. Our data also highlight an important role for theta oscillations in human piriform 

cortex, in agreement with previous studies (Jiang et al., 2017), as we found that theta phase 

modulated beta and gamma amplitudes during inhalation, only when odor was present. Thus the 

theta rhythm may participate in the organization of sensory information processing in human 

piriform cortex.  

Theta, beta and gamma oscillations have been extensively studied in the olfactory systems of 

rodents, providing insights into the functional roles of these oscillations in olfactory perception 

(Beshel et al., 2007; Chapuis et al., 2013; Courtiol et al., 2019; Frederick et al., 2016; Fukunaga 

et al., 2014; Gnaedinger et al., 2019; Kay, 2005; Kay, 2014; Kay & Beshel, 2010; Kay et al., 

2009; Kay & Stopfer, 2006; Ketchum & Haberly, 1993; Losacco et al., 2020; Lowry & Kay, 

2007; Martin et al., 2007; Martin & Ravel, 2014; Mori et al., 2013; Neville & Haberly, 2003; 

Poo & Isaacson, 2009; Rosero & Aylwin, 2011; Stopfer et al., 1997; Zhou et al., 2017). 

Furthermore, an impactful body of rodent work has shown that the timing of olfactory responses 
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relative to sniffing behavior is an important mechanistic feature of odor coding, enabling 

accurate olfactory percepts to form quickly (Bathellier et al., 2008; Blauvelt et al., 2013; 

Grosmaitre et al., 2007; Kepecs et al., 2006; Losacco et al., 2020; Phillips et al., 2012; Rennaker 

et al., 2007; Rosero & Aylwin, 2011; Shusterman et al., 2011; Uchida et al., 2006; Verhagen et 

al., 2007). Though much of this work has focused on the olfactory bulb, responses in rodent 

piriform cortex also include temporal modulations (Bolding & Franks, 2017; Haddad et al., 

2013; Rennaker et al., 2007), and its oscillations reflect sniff phase (Courtiol et al., 2019; Herrero 

et al., 2018; Litaudon et al., 2008). In contrast to the extensive and elegant body of rodent work, 

oscillations in human piriform cortex have been vastly understudied. Here, dovetailing with 

rodent work, we found that theta, beta and gamma oscillations emerged at different times relative 

to sniff onset. The link between sniffing behavior and oscillations in rodents, combined with 

dramatic differences in sniffing behavior between rodents and humans, raises some intriguing 

questions about the timing of odor responses in humans. When sampling odors, rodents engage 

in multiple sniffing strategies, and may sniff at rates up to 12Hz (Frederick et al., 2017; Kepecs 

et al., 2007; Sirotin et al., 2014; Wesson et al., 2008). Humans might increase their sniffing 

frequency a bit when smelling something, but often sample odors in a single sniff, and aren’t 

able to reach sniffing frequencies of 12Hz (though this has not been directly tested yet). Despite 

these large differences in sniffing behaviors across species, we found surprisingly similar time 

courses of odor responses in piriform cortex. For example, Frederick et. al. (2016) found that 

odor-evoked beta oscillations in rodent piriform cortex emerged at around 200ms following odor 

onset, similar to our findings in human piriform cortex. We found that beta oscillations peaked 

and persisted longer than gamma oscillations, also in agreement with findings in rodents (David 

et al., 2015). In rodents, the theta rhythm is actively shaped by sniffing behavior, which, in turn, 
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shapes higher frequency oscillations. In humans, sniffing behavior almost never occurs at 

frequencies near the theta range, yet interestingly, we found that theta oscillations shape higher 

frequency oscillations in the human olfactory system during inhalation, as is the case in rodents. 

This may suggest that the time scale of some odor-induced oscillations is not entirely dependent 

on breathing rate, and that network properties that support these rhythms are likely conserved 

across species. Our findings support the idea that the theta rhythm serves as the “internal 

reference clock” of odor information processing (Jiang et al., 2017), though future studies 

combining data from both humans and rodents, and potentially from noninvasive human 

olfactory bulb recordings (Iravani et al., 2020) could contribute much needed insights to answer 

this question.  

We found that the magnitude of beta and gamma oscillations predicted odor identification 

accuracy, whereas theta did not, offering support for distinct functional roles for the different 

rhythms in olfactory processing (Beshel et al., 2007; Frederick et al., 2016; Kay & Beshel, 2010; 

Martin & Ravel, 2014). Establishing beta rhythms in human piriform cortex may also lay the 

groundwork for future work on olfactory networks and integration of olfactory information with 

other cognitive processing streams and behaviors (Kay & Beshel, 2010). For example, 

integration of olfactory information with language networks (Majid, 2020; Majid & Kruspe, 

2018; Olofsson & Gottfried, 2015), memory networks (Arshamian et al., 2018; Arzi et al., 2014; 

Wilson & Stevenson, 2003; Yeshurun et al., 2009), sleep states (Arzi et al., 2010; Hauner et al., 

2013; Perl et al., 2016; Rasch et al., 2007), and other olfactory-guided behaviors (Bhutani et al., 

2019; Howard et al., 2020) could potentially involve interactions in beta oscillatory 

networks. Though our data suggest particular importance for beta and gamma oscillations in odor 

perception, we also found that the phase of theta oscillations modulated beta and gamma 
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amplitudes during inhalation. Interestingly, we found that theta oscillations, but not beta or 

gamma oscillations, increased during attended states when no odor was present (Fig. 5B), and 

even prior to sniffing when odor was expected (Fig. 2A; Fig. 3A; Fig. 3C). Taken together, 

these findings may indicate a role for theta in olfactory attention, in line with numerous previous 

studies suggesting that lower frequency oscillatory phases and amplitudes reflect attentional 

states in the human brain (Arabkheradmand et al., 2020; Kam et al., 2019; Zhou et al., 2019). 

Olfactory attention also shapes neural responses in rodent olfactory cortex (Carlson et al., 2018), 

and potential future work may include a direct comparison of these oscillations between species. 

It may also be interesting to explore these oscillations in other primary olfactory areas which 

may have similar neural responses as piriform cortex (Iurilli & Datta, 2017; Millman & Murthy, 

2020; Moberly et al., 2018).  

Overall, our findings begin to define a characteristic human spectrotemporal odor response, 

consisting of three distinct frequency bands with unique time courses relative to sniff onset, and 

corresponding closely with cortical responses that have been found in rodents. This lays the 

groundwork for future work to further explore the functional role of the different aspects of the 

human cortical olfactory response.  

 

Figure Legends  

Figure 1: Electrode contact locations and experimental design. A. The location of the piriform 

cortex electrode contact (red dot) is shown on each participant’s brain image. L, left hemisphere. 

B. Schematic illustration of the olfactory task, showing odor and no-odor conditions drawn on an 

illustrative breathing signal (black line). The light blue area indicates experimental trials (starting 
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from cue delivery to the end of the breathing cycle in which odor was delivered), and the pink 

area indicates between trials. The black boxes indicate the analysis time windows for odor and 

no-odor trials. The darker blue area indicates odor delivery.  

 

Figure 2: Odor induces theta, beta and gamma oscillations in human piriform cortex. A. Results 

from combined analysis showing z-normalized amplitude spectrograms for odor and no-odor 

conditions (left and middle panels), and the difference between the two (right panel). Average 

respiratory signal is shown on each panel (overlaid red line). Dashed line represents inhale onset. 

For odor and no-odor spectrograms, the black contour lines indicate statistical significance of 

permutation tests against pre-cue baseline, after FDR correction for multiple comparisons (p < 

0.05). For the difference spectrogram, the black contour lines indicate statistical significance of 

permutation of condition labels, after FDR correction for multiple comparisons (p < 0.05). The 

far right panel shows average z scores from 0-4 seconds post sniff for each frequency band for 

odor and no-odor trials. B-C. Results from individual analysis showing Z-normalized amplitude 

spectrograms for odor (B) and no-odor (C) conditions for each participant, with the average 

respiratory signal shown on each panel (overlaid red line). Dashed lines represent inhale onset. 

Black contour lines indicate statistical significance of permutation tests against pre-cue baseline, 

after FDR correction for multiple comparisons (p < 0.05). D. Individual theta, beta and gamma 

summed magnitudes over 0-2s post sniff. Each dot represents data from a single participant, and 

lines connect data within the same participant. Asterisk indicates statistical significance (paired t 

test across odor and no-odor conditions (p < 0.05)).  
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Figure 3: Odor-evoked theta, beta and gamma oscillations have different time courses relative to 

sniff onset. A. Percent-amplitude-change time series for odor (blue line) and no-odor (red line) 

conditions for each frequency band. Shaded areas indicate one standard deviation from the mean 

across all trials. Thick black lines above indicate statistically significant differences between 

conditions (FDR corrected p < 0.05, paired t test). B. Bootstrap colormap of z-normalized 

amplitude for each frequency band, with results from each repetition stacked along the Y axis. 

Vertical stripes of consistent color indicate consistent amplitudes across subsampled sets of 

trials. C. Colored shaded areas represent clusters of statistical significance of the trial-by-trial 

baseline-corrected amplitude time series, for each frequency band (cluster correction test p < 

0.05, corrected). Upper boundaries of the shaded areas represent the t statistic from the one-

sample t test of baseline-corrected amplitude at each time point against 0. Scales for t statistics 

are shown to the left of each cluster. Overlaid darker dots indicate the average timing of the 

bootstrapped distribution of peak amplitude occurrence for each frequency band, for each 

participant. Each dot represents data from one participant. Dots from the same participant are 

connected by black lines. On the right, cluster masses in relation to the permuted null distribution 

for each frequency band are shown, with actual values represented by the vertical red line. D. 

Respiratory phase angle distributions corresponding to bootstrapped peak amplitudes for each 

frequency band. Scale of the polar histogram represents pdf of the distribution. Darker lines 

overlaid on the distribution indicate the mean vector of the phase distribution. Angle and radius 

represent averaged phase angle and PLV value respectively.  

 

Figure 4:  Beta and gamma oscillations predict odor identification accuracy. A. Z-normalized 

spectrograms for correct (left) and incorrect (right) trials separately. Averaged respiratory signals 
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are overlayed on each spectrogram (red lines). Dashed lines represent sniff onset. Black contours 

indicate statistical significance of permutation test against pre-cue baseline, after FDR correction 

for multiple comparisons (p < 0.05). B. Distribution of z score amplitudes within each frequency 

band, shown for correct and incorrect trials separately (upper left and right and lower left 

panels). The lower right panel shows box plots for the bootstrapped distributions of the 

difference between correct and incorrect trials. Boxes represent the 25th to 75th percentile of 

each distribution, the central marker indicates median, and whiskers extend to the extremes of 

the data excluding outliers. Colored dots represent raw difference values for each distribution. C. 

Bar plots of bootstrapped Pearson's correlation coefficients computed between odor-induced 

oscillatory amplitudes and task accuracy for each frequency band, over the inhale and exhale 

time periods separately. Error bars indicate 95% confidence interval of the mean. Dashed line 

indicates FDR threshold for significant r value. Dots represent single correlation coefficient 

calculated from each bootstrap. D. Scatter plots show bootstrapped percent change relative to 

baseline for correct and incorrect trials, during inhale and exhale time periods for each frequency 

band. Each dot is the average result from one bootstrap repetition. E. Receiver operating 

characteristic (ROC) curves of linear binary SVM classifier applied to each of the scatter plots in 

panel C. Black dots represent optimized classifier, area under the curve (AUC) is indicated for 

each ROC curve. 

 

Figure 5: High frequency odor-induced oscillations are not driven by attention. A. Schematic 

illustration of attended and unattended conditions. Attended no-odor trials were defined as 

breaths taken during experimental trials, between the cue and the odor. No odor was present, but 

the participant was in an attended state. Blue area indicates the time of experimental trials, and 
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pink areas indicates the time between trials. Black boxes indicate the analysis time windows for 

the different conditions. B. Z-normalized spectrograms of attended odor and attended no-odor 

trials, and the difference between the two. Average respiratory signals are overlayed for each 

condition (red lines). Dashed line represents inhalation onset. Black contours indicate statistical 

significance (permutation tests as described elsewhere, FDR corrected p < 0.05).  

 

Figure 6: Theta phase modulates higher frequency amplitudes during inhale, when odor is 

present. A. Average magnitude time series of the difference between attended odor and attended 

no-odor conditions, showing evident beta modulations occurring at theta rhythms (grey box). B. 

Z-normalized modulation index (MI) of theta phase and higher frequency amplitudes (13 to 150 

Hz), during 0-1s post sniff for all trials in the odor and no-odor conditions. Dashed line indicates 

FDR threshold for significant MI (FDR corrected p < 0.05).  

Methods 

Ethics statement 

This study was approved by the Institutional Review Board at Northwestern University, and the 

study adhered to the Declaration of Helsinki and the Belmont Report. Written informed consent 

was obtained from all participants.  

Participants 

Our study included iEEG data from seven patients with medication-resistant epilepsy. All 

participants had depth electrodes implanted stereotactically for clinical pre-surgical evaluation 

(Fig. 1A). Electrode locations were determined solely based on clinical need and, in our 
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participant population, included piriform cortex within the medial temporal lobe. Data were 

acquired at Northwestern Memorial Hospital.  

 

Behavioral task 

Participants performed a cued odor identification task in which they were asked whether an odor 

matched a prior cue. This task involved periodic presentation of cued odors with time periods 

between odor trials exceeding 6x the respiratory period of each individual. During this intertrial 

period, participants breathed naturally through the nose, and no odor was presented. The 

experimental trials were conducted in each participant’s the hospital room, and were computer-

controlled, presented to participants using an Apple laptop computer running MATLAB (RRID: 

SCR_001622) via the PsychToolBox extension (RRID: SCR_ 002881). Each trial of the task 

began with an auditory cue consisting of either the word “rose” or “mint”. The cue was delivered 

by computer speaker using a laptop placed in front of the patients. After a delay of 3 to 7 

seconds, the odor of rose (essential oil) or mint (methyl salicylate) was delivered through opaque 

squeeze bottles, while nasal airflow was monitored in order to precisely determine sniff onsets. 

The participant was then prompted to indicate their response via button press. The timing of 

experimental events were synchronized with the ongoing iEEG data through use of a data 

acquisition board (USB-1208F, Measurement Computing), which translated TTL pulses from 

MATLAB into the clinical EEG acquisition system (Nihon Kohden, Japan).   

iEEG and respiratory signal recording  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440045


 27 

iEEG signals were recorded using the clinical EEG data acquisition system (Nihon Kohden, 

Tokyo Japan) that is currently in use in Northwestern Memorial Hospital. The sampling rate for 

each participant was determined clinically, and ranged from 500Hz to 2000Hz across 

participants. The reference and ground consisted of an implanted electrode strip on the surface of 

the brain facing the scalp. We recorded nasal airflow using a piezoelectric pressure sensor (Salter 

Labs Model #5500) with a nasal cannula placed at the patients’ nostrils during the experiment. 

Nasal airflow signals were recorded directly into the clinical acquisition system, and were 

therefore automatically synchronized with the iEEG data. The signal was first mean centered, 

then key respiratory features—including inhale and exhale onset, respiratory peak, and trough 

volume and time—were detected automatically with MATLAB toolbox breathmetrics developed 

by our lab (Noto et al., 2018), and then manually confirmed.  

Electrode Localization 

As previously described (Arabkheradmand et al., 2020; Zhou et al., 2019), to determine the 

implanted electrode locations, the post-operative computed tomography (CT) images were 

registered to individual pre-operative structural MRI images using FSL’s linear registration tool. 

The transformed post-operative CT images were thresholded, and each electrode was identified 

manually. We used the center of each identified electrode as its coordinate in individual 

anatomical space. A single piriform cortex contact was identified on each individual brain image 

based on the human brain atlas (Mai et al., 2015).  

Time-frequency analysis  
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For all time-frequency analyses, filtering was conducted using a two-pass, zero-phase-lag, finite 

impulse response (FIR) filter, as implemented by the MATLAB toolbox fieldtrip (RRID: 

SCR_004849), unless specified otherwise. We first low-pass filtered the iEEG signal at 235Hz 

and then removed 60Hz noise and its harmonics with a band-stop filter with a bandwidth of 4Hz. 

We then downsampled the signal to 500Hz and re-referenced the data to the common average. 

To compute spectrograms, we filtered the pre-processed data between 1 to 200 Hz in 100 

logarithmically increasing steps ranging from 2 to 50Hz in width. We kept only the first 95 

frequency bands from 1 to 153 Hz as our frequencies of interest for all subsequent analyses 

unless specified otherwise. The analytical amplitudes of the filtered signals were calculated by 

taking the absolute value of the Hilbert-transformed signal, and temporally smoothed with a 

moving average filter kernel of 10ms.  

To compute spectrograms, we first created sniff-onset-aligned epochs, extending from -2s prior 

to 4s following the sniff onset, for each trial. Sniff onsets were determined using breathmetrics 

(Noto et al., 2018). Sniffs taken during experimental trials at the time of odor presentation were 

used for the odor condition, sniffs taken in between trials when no odor was present were used 

for the no-odor condition, and sniffs taken during experimental trials in between the cue and odor 

were used for the attended-no-odor condition. There were a larger number of no-odor trials 

compared to odor trials, and therefore, no-odor trials were randomly sampled without 

replacement for each participant separately to match trial numbers across conditions for further 

analysis. The spectrograms were calculated by averaging the amplitude epochs across trials at 

each frequency, which was further normalized by subtracting the baseline relative to cue onset. 

To determine statistical significance, we used a permutation method (Arabkheradmand et al., 

2020; Canolty et al., 2007; Zhou et al., 2019) to generate z score values. For each repetition of 
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the permutation process, we randomly sampled a point around sniff onset for all trials and 

calculated the mean across trials. This process was repeated 10,000 times to create a null 

distribution of amplitude values around sniff onset. We computed the null distributions for the 

combined analysis and for each participant separately, and normalized the trial-wise averaged 

amplitude to the corresponding null distributions. For difference spectrograms, we took the mean 

of each time/frequency point within each condition and calculated the difference across 

conditions. To compute statistical significance, we used an exchange-label permutation method, 

in which we pooled all odor and no-odor trials, randomly assigned a label to each trial, and 

calculated a cross-conditional difference for each repetition. This process was repeated 10,000 

times to create a null distribution of difference values for every time/frequency point, which was 

used to z-normalize the real difference matrix.  The spectrograms created for the attentional 

control analysis shown in Figure 4B were generated with the same methods, with the number of 

trials adjusted to include equal numbers of odor and attended-no-odor trials.  

To compute the percent amplitude change time series shown in Fig 3A, we first calculated the 

amplitude for each frequency band separately (theta 4-8Hz, beta 13-30Hz, gamma 30-150Hz), at 

each time point, by averaging the amplitudes extracted from all sub-bands. To directly compare 

amplitudes at each time point for odor vs. no odor conditions, we calculated the percent change 

relative to baseline (-500ms to -50ms relative to cue onset) for each trial [(Amp-

Amp_bsl)/Amp_bsl]. In this way, we created a trial by time-percent-change matrix for each 

frequency band and for each condition, (odor vs. no odor) respectively. We then performed 

paired sample t tests at each time point across odor vs. no odor trials to test for statistical 

significance at each time point. FDR correction was used to correct for multiple comparisons.  
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In order to visualize the differences in temporal dynamics across frequency bands, we used a 

bootstrapping method to create z-normalized amplitude colormaps for each frequency band (Fig 

3B). To do this, we first baseline corrected and z-normalized all trials. For each repetition, we 

resampled all 323 trials with replacement, averaged across trials, and averaged across sub-bands 

for each frequency band in order to create a single z-score time series for each frequency band. 

This process was repeated 2000 times to generate a repetition (Y axis of Fig 3B) by time, z-score 

matrix for each frequency band.  

We then performed a cluster-based analysis to quantify the time course of significant responses 

for each frequency band (Fig. 3C). To do this, for each frequency band, we first performed one 

sample t tests against zero for z-normalized amplitudes for all trials at each time point, creating a 

time series of t-statistics. We then performed a cluster-based statistical thresholding analysis 

(Maris & Oostenveld, 2007) in order to identify continuous, significant clusters within the t-

statistic time series for each frequency band. The cluster mass was defined as the sum of the t-

statistics of a given cluster (Maris & Oostenveld, 2007). Subsequently, permutation-based 

correction for multiple comparisons was conducted in order to eliminate all small clusters that 

were likely to be caused by chance. Specifically, for each repetition, we circularly shifted a 

random number of trials, recalculated the t-statistics, applied the same threshold, and then saved 

the cluster mass of the maximal cluster.  This process was repeated 10,000 times to create a null 

distribution of cluster masses. We took the 95th percentile of this distribution as the cutoff and 

kept all clusters that were larger than this threshold.  

We next conducted an analysis to explore the timing and phase of responses in each frequency 

band (Fig. 3D). We used a bootstrap method to calculate the distribution of respiratory phase 
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values at which the peak amplitude responses occurred for each frequency.  We resampled all 

323 trials (with replacement), keeping both the LFP and breathing signals. For each repetition, 

we used the Hilbert transform to extract respiratory phase values. We used a sliding window of 

50ms to extract the maximal LFP amplitude responses by calculating and comparing mean 

amplitudes within each window across the entire 4s post-sniff time period. Phase angles 

corresponding to the center of the window in which the maximal amplitude occurred were used, 

and plotted on a polar histogram. We then computed the PLV (Aydore et al., 2013) and average 

phase angle of these phase distributions using the MATLAB toolbox circstats (Berens, 2009) 

(RRID: SCR_016651). The Rayleigh test was performed to test for the non-uniformity of phase 

distributions. For the peak timing analysis on the single participant level, we used the same 

method.  

We next conducted a series of analyses to look for relationships between LFPs and odor 

identification accuracy (Fig 4). First, to statistically compare the amplitude difference between 

correct and incorrect trials, we conducted a resampling analysis. For each repetition, we 

resampled equal numbers of correct and incorrect trials (71, with replacement) to ensure a fair 

comparison across conditions. On each repetition, we calculated the mean of z-normalized 

amplitudes across the entire time window for each frequency band, subtracted the mean of 

incorrect trials from the mean of correct trials, and repeated this process 200 times to generate 

the distribution of difference values between correct and incorrect trials. The difference 

distribution for each frequency band was tested against 0 using one-sample t tests to generate 

statistics. The distribution was plotted as scatter as well as box plot.  
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To look for relationships between LFP amplitudes and task accuracy (Fig. 4C), for each 

repetition (1000x) in a bootstrapped-correlation analysis, we resampled (with replacement) and 

averaged all trials. We then calculated the mean amplitude during inhale and exhale separately 

(inhale-exhale transition defined by phase angle of pi/2 for averaged breathing signal) for all 

three frequency bands. We calculated Pearson's correlation coefficients between task accuracy 

and mean amplitudes for inhale and exhale, for each frequency band. We then repeated this 

entire process 50 times. We used FDR to correct for multiple comparisons (p<0.05). We 

subsequently fisher-z-transformed all Pearson’s r values and conducted a repeated measures two-

way ANOVA as well as paired sample t tests to analyze the differences across frequency bands 

and respiratory phases.  

We next created scatter plot visualizations of responses across inhale and exhale phases (Fig. 

4D-E). To balance the discrepancy between correct and incorrect trial numbers (252 vs. 71), we 

conducted a bootstrapping analysis using equal numbers of trials across conditions on each 

repetition. We first computed the mean amplitudes during inhale and exhale for each frequency 

band. For each respiratory phase and frequency band, we sampled 30 trials with replacement 

each time, calculated percent change relative to baseline with the trial-wise averaged amplitude 

time series, and calculated average amplitudes during inhale and exhale for each trial set. Inhale 

and exhale periods were defined as 0-1.5s and 1.5-3s post sniff respectively for all trials. This 

process was repeated 500 times for both correct and incorrect trials to generate a scatterplot of 

corresponding inhale and exhale amplitudes for trials from both conditions. In order to test the 

separability of data, we applied a linear binary SVM classifier using MATLAB function fitcsvm 

with five-fold cross validation. ROC curves were generated using the function perfcurve.  
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phase-amplitude coupling analysis 

We calculated the modulation index (MI) to measure coupling between theta phase and higher 

frequency amplitudes (13-150Hz) (Fig. 5). To do so, we extracted the phase angle time series for 

the theta frequency band (4-8Hz), and then from that phase time series, created sniff-aligned trial 

epochs. Data from all trials was concatenated. To generate the higher frequency amplitude data 

that was used to compute the MI, the raw time series were filtered and amplitude-extracted (as 

described previously) to the same 47 log-spaced frequency bands (13.05- 153.04 Hz), with 

logarithmically increasing bandwidth, as described in the previous section for the time-frequency 

analysis. We then concatenated this data identically to the theta phase data. MI was calculated as 

the Kullbach-Leibner distance divided by the logged number of bins (Tort et al., 2010). To 

normalize the MI, we created a null distribution of MI values. For each repetition, and for each 

frequency band, we circularly shifted the concatenated amplitude time series, and calculated the 

MI between the shifted amplitudes and theta phase values. This process was repeated 1000 times 

for each frequency band to generate the corresponding null distribution of MI values. We then 

normalized the raw MI to the null distributions to generate the z-scores, and FDR corrected for 

multiple comparisons.  
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