
Germline testing data validate inferences of mutational status for variants detected from 
tumor-only sequencing 

Nahed Jalloul*1, Israel Gomy*2, Samantha Stokes2, Alexander Gusev3,4, Bruce E. Johnson3,5, 
Neal I. Lindeman6, Laura Macconaill6, Shridar Ganesan1,7, Judy E. Garber†2,3, Hossein 
Khiabanian†1,8  

 

1 Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA 

2 Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA 

3 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA 

4 Broad Institute of MIT and Harvard, Cambridge, MA, USA 

5 Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, USA 

6 Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA 

7 Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, 
New Brunswick, NJ, USA 

8 Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical 
School, Rutgers University, New Brunswick, NJ, USA 

 

* These authors contributed equally to this work.  

† These authors were co-leaders of this work. 

 

Corresponding address: 

Hossein Khiabanian, PhD 

Associate Professor of Pathology in Medical Informatics 

Center for Systems and Computational Biology 

Rutgers Cancer Institute of New Jersey, Rutgers University 

195 Little Albany Street, New Brunswick, NJ, 08903-2681 

Phone: (732) 235 7554; E-mail: h.khiabanian@rutgers.edu  

  

Abstract word count: 300, Manuscript word count: 4,182, Number of tables: 1, Number of 
figures: 5, Number of supplementary tables: 2, Number of supplementary figures: 5.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.439855doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439855
http://creativecommons.org/licenses/by-nd/4.0/


Highlights  

• Most pathogenic germline variants in cancer predisposition genes can be identified by 
analyzing tumor-only sequencing data. 

• Information-theoretic gene-independent analysis of common sequencing data accurately 
infers germline vs. somatic status.  

• A reasonable statistical balance can be established between sensitivity and specificity 
demonstrating clinical utility. 

• Pathogenic germline variants are more often detected with loss of heterozygosity vs. 
germline variants of uncertain significance.    
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Structured Abstract (300 words): 

Background: Pathogenic germline variants (PGV) in cancer susceptibility genes are usually 
identified in cancer patients through germline testing of DNA from blood or saliva: their detection 
can impact patient treatment options and potential risk reduction strategies for relatives. PGV can 
also be identified, in tumor sequencing assays, often performed without matched normal 
specimens. It is then critical to determine whether detected variants are somatic or germline. 
Here, we evaluate the clinical utility of computational inference of mutational status in tumor-only 
sequencing compared to germline testing results. 

Patients and Methods: Tumor-only sequencing data from 1,608 patients were retrospectively 
analyzed to infer germline-versus-somatic status of variants using an information-theoretic, gene-
independent approach. Loss of heterozygosity (LOH) was also determined. The predicted 
mutational models were compared to clinical germline testing results. Statistical measures were 
computed to evaluate performance. 

Results: Tumor-only sequencing detected 3,988 variants across 70 cancer susceptibility genes 
for which germline testing data were available. Our analysis imputed germline-versus-somatic 
status for >75% of all detected variants, with a sensitivity of 65%, specificity of 88%, and overall 
accuracy of 86% for pathogenic variants. False omission rate was 3%, signifying minimal error in 
misclassifying true PGV. A higher portion of PGV in known hereditary tumor suppressors were 
found to be retained with LOH in the tumor specimens (72%) compared to variants of uncertain 
significance (58%). 

Conclusions: Tumor-only sequencing provides sufficient power to distinguish germline and 
somatic variants and infer LOH. Although accurate detection of PGV from tumor-only data is 
possible, analyzing sequencing data in the context of specimens’ tumor cell content allows 
systematic exclusion of somatic variants, and suggests a balance between type 1 and 2 errors 
for identification of patients with candidate PGV for standard germline testing. Our approach, 
implemented in a user-friendly bioinformatics application, facilities objective analysis of tumor-
only data in clinical settings.  
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INTRODUCTION 

Precision oncology relies on robust molecular analyses of patient samples and accurate 
interpretation of genomic sequencing and biomarker data to guide treatment strategies [1]. 
Technological advances in genomic sequencing have made tumor genomic profiling a routine 
process in the clinical evaluation and treatment planning of cancer patients [2]. The main objective 
of sequencing is to provide a detailed genomic characterization of the patient’s neoplasm, improve 
predictions on clinical outcome, and identify and potentially target oncogenic drivers to enable the 
development of an individualized  treatment plan [3]. 

A small but important set of cancers arise in patients with pathogenic germline variants (PGV) 
that can both inform personal and familial cancer risks and guide treatment approaches [4]. 
Clinical germline testing has typically been limited to patients with personal and/or family history 
of tumors highly suggestive of specific predisposition syndromes. Germline DNA is analyzed for 
pathogenic alterations in one or more specific gene(s). However, germline testing is now 
expanding to a larger group of patients beyond those with a compelling family history [5]. 
Previously, effort was made to test individuals for PGV in only those genes most likely to confer 
risk consistent with the personal and family cancer history.  However, cancer phenotypes may 
overlap among syndromes, and gene-sets may be under- or overrepresented in some panels. In 
addition, for a patient to be referred for clinical germline testing, certain features are often required 
by health insurance companies, which can restrict uptake. Because of complexities in determining 
the need for clinical germline testing, eligible patients are frequently overlooked and not tested 
[6]. A recent study showed that one in eight adult cancer patients who underwent universal 
germline testing, regardless of the extent to which they met established criteria, had a PGV in a 
susceptibility gene [7]. Almost half of these PGVs would not have been identified if testing criteria 
had been followed. Further, approximately one third of the PGV carriers had their therapies 
changed as a result. 

Tumor sequencing for the identification of somatic alterations is becoming more widely carried 
out in patients with different cancers [8, 9]. Many commercial and academic tumor sequencing 
assays include a large set of cancer-related genes (>50) that can be mutated somatically and 
also confer cancer risk when mutated in the germline. To definitively identify somatic variants and 
potential germline variants in cancer cells, some laboratories analyze matched tumor and non-
tumor specimens (e.g. blood, buccal mucosa, adjacent tissue) [8]. Multiple studies have shown 
that integration of tumor sequencing and matched normal genomic profiling can identify PGV in 
cancer predisposition genes in 15–18% of cancer patients, including those without high-risk family 
history or otherwise meeting clinical criteria for standard germline testing [10, 11]. These data 
suggest that current germline testing strategies may miss a significant number of mutation carriers 
in the population that are not identified by the patients’ and/or family history.  

While concomitant tumor and germline sequencing analyses for all cancer patients may 
eventually become the standard of care in the future, an objective and reliable means of identifying 
patients for clinical germline testing confirmation is needed in the clinic today [12]. Current practice 
in interpreting tumor-only data for this purpose are gene-specific and are often based on variant 
allele frequency criteria that may need to be adjusted for different settings [13, 14]. To address 
these needs, we examined the performance of a gene-independent, information-theoretic pipeline 
aimed at accurately categorizing the variants identified by tumor-only assays as somatic or 
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germline. Using commonly available sequencing data, we analyzed each variant in the context of 
specimen’s proportion of tumor cells and utilized high-depth sequencing to predict loss of 
heterozygosity status, which can potentially inform the functional effect of the mutation in both 
germline and somatic variants.  

 

METHODS 

Patient cohort and sample data 

The cohort included a total of 1,608 patients with diverse malignancies who were consented to 
the PROFILE study [15] (protocols 11-104 and 17-000) at Dana-Farber Cancer Institute between 
January 2014 to December 2018 and had undergone somatic sequencing in the Center for 
Advanced Molecular Diagnostics at the Brigham and Women’s Hospital, and clinical germline 
testing. Genomic DNA was isolated from formalin-fixed paraffin embedded (FFPE) tissues 
containing at least 20% tumor nuclei and analyzed using the OncoPanel assay, which utilizes the 
Agilent SureSelect hybrid capture kit and Illumina HiSeq massive parallel sequencer according to 
standard pipelines as previously described [15]. The panel interrogates all exons and 191 introns 
in 447 genes to detect single nucleotide variants, indels, copy-number alterations, and structural 
variants. Germline testing and reporting were carried out by CLIA-certified commercial 
laboratories from blood samples collected clinically with consent, following the current American 
College of Medical Genetic (ACMG) guidelines [16]. 

Retrospective clinical, demographic data, and genomic data were accessed and de-identified 
through HIPAA-compliant IRB-approved chart review. Clinical information (age, sex, tumor type) 
and tumor-only sequencing data from the OncoPanel assay included altered genes, amino acid 
changes, cDNA changes, variant positions, reference and altered alleles, variant classifications, 
variant types, variant allele frequencies (VAF), copy-numbers, and sequencing depths, as well as 
histological estimates for proportion of tumor cells . Germline testing results for the corresponding 
patient samples included  genes interrogated in the specific panel from one of five commercial 
testing laboratories (Ambry Genetics, Aliso Viejo, CA; Color Genomics, Burlingame, CA; GeneDX, 
Gaithersburg, MD; Invitae Corporation, San Francisco, CA; Myriad Genetics, Salt Lake City, UT). 
Variants of uncertain significance (VUS) were considered true germline. Variants classified as 
likely benign or benign are not routinely reported and were not included. VAF were obtained 
clinically by a genetic counselor for the TP53 variants to aid in clinically distinguishing germline 
from acquired mosaicism or clonal hematopoiesis, both increasingly observed in cancer patients 
following exposure to cytotoxic chemotherapy and other risk factors [17]. Nomenclature variations 
between tumor sequencing and germline testing data were curated for 70 overlapping genes 
between the assays by comparing the reference transcript number, the position and type of the 
alteration in the specific genes.   

Tumor sequencing data analyses 

The proportion of tumor cells (purity) and its confidence intervals were computationally estimated 
for all specimens using All-FIT (Allele-Frequency-based Imputation of Tumor Purity) [18]. To 
impute tumor cell content, All-FIT uses VAF of all SNV and indels, and sequencing depth and 
copy-number at their genomic position, which are commonly available in clinical tumor 
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sequencing reports. Computational estimates were significantly correlated with specimen 
histological assessments of tumor purity (Pearson r = 0.31; p <0.001).  

Next, both the histological purity and computational purity estimates were used to infer germline 
versus somatic mutational status and evaluate loss of heterozygosity for SNV and indels using 
LOHGIC (Loss of Heterozygosity Germline Inference Calculator) [19]. LOHGIC calculates weights 
for the likelihood of each somatic and germline mutational model (Supplementary Figure 1), 
taking into account the uncertainties in estimates of tumor purity and VAF measurements, which 
depend on sequencing depth. The most consistent model for a variant was selected based on the 
sum of the weights from all germline models (Wgerm) versus those from all somatic models (Wsom). 
Using criteria determined from simulations [19], when Wgerm > 0.7 for a variant, it was inferred as 
germline; when Wsom > 0.7 for a variant, it was inferred as somatic. If neither the Wgerm nor Wsom 
were greater than 0.7 for a variant, inference status was marked as ambiguous. Sum of the 
weights for germline or somatic LOH models larger than 0.5 was considered as evidence for the 
presence of LOH in the tumor.  

Undetected focal copy-number alterations, inaccurate purity estimates, and low sequencing 
depths may result in ambiguous inferences. Specifically, large confidence intervals for VAF arising 
from low sequencing depths can produce cofounding results. For example, in a specimen with 
purity of 0.6 (assuming 5% inaccuracy), at sequencing depth of 1000, the confidence interval for 
an observed VAF of 0.5 is between 0.46 and 0.54. The largest weight for such a measurement 
would be 0.8 for a germline heterozygous model. However, for the same purity and observed 
VAF, sequencing at depth of 200 results in a larger confidence interval (0.42–0.58) and 
confounding weights across multiple models: W of 0.35 for somatic under LOH, W of 0.19 for 
somatic copy-neutral homozygous, and W of 0.45 for germline heterozygous, neither of which are 
sufficiently large for non-ambiguous inference. 

Genomics Oncology Platform is a python GUI, freely available for the extraction of relevant 
information and the application of All-FIT and LOHGIC directly on variant calls. A snapshot of the 
application, showing variant data and status, with option to visualize mutational inferences 
represented by VAF vs. purity graphs is shown in Supplementary Figure 1. This application and 
individual algorithms are available at software.khiabanian-lab.org.  

Pathogenicity of germline variants was assessed using curated open-access FDA-approved 
knowledge bases (ClinVar/ClinGen) and variants with conflicting interpretation of pathogenicity 
were manually curated using the ACMG guidelines. PGV included both pathogenic and likely 
pathogenic variants according to the ACMG classification [16]. Pathogenic status and mutational 
effect of somatic alterations were assessed using the oncoKB annotator, a precision oncology 
knowledge base [20], which provides the biological effect, prevalence and prognostic information, 
as well as treatment implications of alterations present in 682 cancer genes. We considered 
variants annotated as oncogenic, likely oncogenic, and predicted oncogenic as pathogenic.  

Statistical evaluation 

Statistical measures computed for detected variants included: true positive rate or sensitivity, true 
negative rate or specificity, accuracy, positive predictive value or precision, false omission rate, 
and the F-score. These measures were used to evaluate the performance of the predicted 
mutational status using LOHGIC, inferred by both histological and computational purity estimates. 
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However, in imbalanced datasets, such as the one used here, where the number of positive labels 
varies substantially from the number of negative labels, sensitivity (also known as recall), 
precision, and the F-score are often more informative metrics for insight into the model’s 
performance [21].  

Evaluating the performance measures and the overall reliability of the prediction models in a 
clinical sense requires interpretation of the type of errors and associated cost of the errors in 
correctly identifying germline versus somatic variants. Assuming we label true germline mutations 
as “positive”, and true somatic mutations as “negative”, then the confusion matrix would result in 
the following errors: type 1 error (or false positive) which signifies the incorrect inference of a true 
somatic mutation as germline, and a type 2 error (or false negative), which signifies the incorrect 
inference of a true germline mutation as somatic. The cost of misclassifying a true somatic 
mutation (type 1 error), in a clinical sense, is equal to the cost of performing germline testing which 
can correct the incorrect inference results. However, the cost of failing to identify the presence of 
a germline mutation (type 2 error), may result in neglecting to validate the mutational status 
through germline testing and possibly leaving the treating physician without critical information 
that could alter the treatment strategy and missing the opportunity for cascade testing of at-risk 
family members. Therefore, two subsets of data were created to compute the performance 
measures. The first consisted of PGV along with pathogenic somatic variants, while the second 
consisted of all germline (PGV and VUS) as well as all somatic variants.  

 

RESULTS 

The 1,467 eligible patients with both tumor sequencing results and independent germline 
sequencing (Table 1, Figure 1), were predominantly female (73%), were White/Caucasian non-
Ashkenazi (84%) and had a median age of 54 years (range 1–88) at first primary tumor diagnosis.  
The most frequent tumor types were breast (22%), epithelial ovary including fallopian tube and 
peritoneum (21%) and colorectal cancers (19%). A total of 725 patients (49%) had reportable 
germline findings, 285 (29%) of whom had at least one PGV and 440 (61%) had one or more 
VUS exclusively. Individuals self-identified as Ashkenazi Jewish had a high rate of PGV (38 of 
44; 13% of all PGV) in contrast with Hispanic individuals who had the lowest rate (0.7%) in our 
cohort. The approximate frequency of PGV in genes associated with the sequenced tumor were: 
small bowel carcinoma, 29%; urothelial carcinoma, 25%; renal cell carcinoma, 24%; colorectal 
carcinoma, 15%; breast carcinoma, 14%; epithelial ovarian carcinoma, 13%; and pancreatic 
adenocarcinoma, 13%. No PGVs were detected in 35 genes analyzed; 1–3 PGV were detected 
in 22 genes, and >3 PGV were detected in 13 genes (Supplementary Tables 1, 2). 

Tumor-only sequencing using the OncoPanel assay detected 5,426 variants across 70 cancer 
susceptibility genes; [22, 23]; matched germline testing results of the relevant gene was available 
for 3,988 of them. In total, 728 variants were detected by germline testing among which 231 were 
annotated as PGV and 497 as VUS. The remaining 3,260 variants were not reported in germline 
analysis and therefore were deemed to be somatic (Figure 2A, Supplementary Table 1); 1,792 
of these variants (55%) were predicted to be likely pathogenic or pathogenic.    

We inferred non-ambiguous, germline or somatic mutational status for 3,028 (75.9%) variants 
using computational estimates of specimen tumor purity and 3,173 (79.5%) variants using 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.439855doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439855
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 
Figure 1: The parentage of tumors per cancer type with pathogenic germline variants in 35 genes from germline testing.  
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Figure 2: A) Matched germline testing results for 3,988 variants detected by tumor-only sequencing in 70 cancer susceptibility genes, 
including 231 PGV, 497 germline VUS, and 3,260 somatic variants. B) Inference of mutational status using computational purity 
estimates compared to germline testing results. Results using histological purity estimates are shown in Supplementary Figure 2. 
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histological estimates (Figure 2B, Supplementary Figure 1). Inferred mutational status using 
either purity estimate were highly concordant (Jaccard index = 0.84 [24]). We evaluated the 
accuracy of inference results considering all germline variants (PGV and VUS) or only the PGV, 
along with somatic variants. The performance results using computational and histological purity 
estimates were highly concordant (Figure 3, Supplementary Figure 3). For simplicity, the 
remainder of the results will only report those from computational estimates, which are calculated 
as a part of our pipeline. 

When only the PGV and pathogenic somatic variants were considered, the true positive rate (TPR 
or sensitivity) was 65%, signifying the rate at which the PGV were correctly inferred. The true 
negative rate (TNR or specificity), which indicates the rate of correctly inferring true somatic 
variants, was 88%. The false omission rate, indicating how often a true PGV was incorrectly 
inferred as somatic was only 3%. The positive predictive value (precision) and the F-score were 
31% and 42%, respectively, which could be attributed to the relatively low number of true 
pathogenic germline variants in the dataset compared to the number of true somatic variants. The 
overall accuracy of the analysis was 86%. These results did not change when pathogenicity of 
variants was considered (Supplementary Figure 3).  

The majority of somatic variants that were incorrectly inferred as germline (278 of 394, 71%) had 
VAF >50% (Figure 4A), while 83% of true pathogenic germline variants (118 of 143) that were 
incorrectly inferred to be somatic had VAF <50% (Figure 4B). In the latter group, 22% of 
incorrectly inferred variants corresponded to indels. There was no significant difference between 
the focal copy-number or the types of variants – SNV or indel – with correct or incorrect inference. 
The percentage of variants with ambiguous inference was 20.5% and 24.1% using computational 
and histological purity estimates, respectively. Variants with ambiguous inference had a mean 
VAF of 52.2% (Figure 4C, Supplementary Figure 4). Expected allele frequency for germline 
heterozygous mutations is 50% and is independent of tumor purity; however, various somatic 
models also predict expected VAF of 50% across a range of purity and copy-number values 
(Supplementary Figure 1), which could result in ambiguous inference. 

Mean sequencing depth of variants with correct predictions (mean = 295.5; standard deviation 
(sd) = 147.1) were not significantly different from those with incorrect inferences (mean = 283.7; 
sd = 149.6). Similarly, tumor purity estimates were not significantly different in specimen with 
variants that were inferred correctly (mean = 48.1, sd = 21.4) versus incorrectly (mean = 44.8, sd 
= 23.9). Although low sequencing depth and inaccurate purity estimation can contribute to the 
false inference of variants, they did not systematically bias the performance of our model.  

Somatic mutations in TP53 are the most common alterations in human cancers, whereas germline 
TP53 mutations, the underlying cause of Li-Fraumeni syndrome (LFS), are rare. We correctly 
inferred mutational status of germline mutations in 5 of 5 LFS cases. Peripheral blood sequencing 
for germline testing was also positive for 3 additional cases; however, the VAFs of these variants 
in blood and tumor were 6–18%, suggesting detection of mosaicism due to clonal hematopoiesis 
[25]. Moreover, 17.6% (150 of 852) of TP53 variants detected by tumor sequencing were falsely 
inferred to be germline. These variants were detected at VAFs significantly higher than their 
respective specimens’ estimated tumor purity (rank-sum test p <0.001, Supplementary 
Figure 5). Similarly significant patterns were also observed for incorrectly inferred somatic 
variants in APC (rank-sum test p = 0.018) and PTEN (rank-sum test p = 0.003), implying that 
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Figure 3: True positive rate (TPR or recall), true negative rate (TNR), accuracy (ACC), false omission rate (FOR), positive predictive 
value (PPV or precision) and F-score performance measures for the inferences made using computational purity for pathogenic 
germline variants (PGV) versus pathogenic somatic variants. Result from did not change when pathogenicity of variants was considered 
(Supplementary Figure 3A) or using histological purity estimates (Supplementary Figures 3B, 3C). 
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Figure 4: Allele frequencies distribution of variants with incorrect or ambiguous inference per gene: A) Somatic variants with germline 
inference. B) Germline variants with somatic inference. C) Germline and somatic variants without a statistical inference (ambiguous). 
Results using computational purity estimates are shown; results from histological purity estimates are shown in Supplementary 
Figure 4. 
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inference of variants with high VAF in tumor suppressor genes may be affected by inaccuracies 
in estimating purity and confounded by unreported focal copy-number changes from loss of the 
wild-type allele or copy-neutral LOH.  

Prior to inferring mutational status, the overall proportion of the PGV to all pathogenic variants 
detected by tumor-only sequencing was 11%, ranging from 1% to 100% for individual genes 
(Supplementary Table 2). When only the pathogenic variants with VAF >30% were considered 
[14], this ratio increased to 19%, resulting in a sensitivity (TPR) of 91% for detection of true 
germline variants, a specificity (TNR) of 50% for detection of pathogenic somatic variants, and an 
overall accuracy of 55%. In contrast, our model’s non-ambiguous, correct inference for 71% of 
pathogenic somatic variants increased the ratio of PGV to remaining pathogenic variants to 31%, 
without imposing any VAF criteria.  

Next, we assessed the likelihood for the loss of the wild-type allele or copy-neutral LOH for all 
germline and somatic variants with correctly inferred mutational status. In total, a significantly 
larger percentage of PGV (72%) had LOH compared to 58% of germline VUS (chi-squared p 
<0.001) and 39% of pathogenic or likely pathogenic somatic variants (chi-squared p <0.001) 
(Figure 5A). The prevalence of PGV with LOH was evident when we focused on the genes 
associated with specific cancers, including both those with high and moderate/low penetrance.  

The high-penetrance genes associated with hereditary breast cancer include BRCA1, BRCA2, 
CDH1, PALB2, PTEN, STK11, and TP53, while ATM and CHEK2 are considered as 
moderate/low-penetrance [26]. In females, LOH was demonstrated for BRCA1 PGV and BRCA2 
PGV in 86% (6 of 7) of breast and 94% (15 of 16) of ovarian tumors, whereas LOH was 
demonstrated for only 33% of BRCA1/2 PGV (2 of 6) in other tumor types (Figure 5B). LOH was 
demonstrated for all PGV (13 of 13) in PALB2, TP53, ATM, CDH1 and CHEK2 in all tumor types. 
In males, LOH was demonstrated for BRCA2 PGV in 83% (5 of 6) of pancreatic and prostate 
tumors. These results agree with known prevalence of pathogenic germline alterations in these 
genes for corresponding cancer types [27-29].  

The high-penetrance MLH1, MSH2, MSH6 and PMS2 genes are associated with Lynch 
Syndrome [30]. LOH was evident for 78% of the PGV (7 of 9) in colorectal cancers of both sexes. 
In females, LOH was demonstrated for both MSH6 PGV in ovarian tumors (2 of 2) (Figure 5C). 
Overall, considering both males and females, 79% of PGV in the Lynch syndrome genes were 
found with LOH (11 of 14) across all tumor types. The results are again consistent with the status 
of pathogenic alterations associated with the Lynch syndrome particularly for ovarian cancer in 
females and colon cancer in males.  

In contrast, somatic variants in the genes associated with the hereditary breast cancer or Lynch 
Syndrome did not show a significant correlation between inferred LOH and pathogenicity, 
although other events resulting in biallelic inactivation could not be ruled out.  

 

DISCUSSION 

Estimates of the prevalence of inherited susceptibility to cancer are still imprecise in the general 
population. Emerging data from clinical sequencing assays indicate that the incidence of  PGV 
may be as high as 17.5% in unselected cancer patients, and even higher for specific histologic 
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Figure 5: A) Percentage of PGV, germline VUS, and somatic pathogenic and benign variants with and without LOH in all genes. B) 
Prevalence of PGV with and without LOH per cancer type for genes associated with breast cancer in females and males. C) Prevalence 
of PGV with and without LOH per cancer type for genes associated with Lynch syndrome in females and males.  
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types, including epithelial ovarian cancer and urothelial carcinoma [31, 32], reflecting the 
dependence on penetrance and tissue-specificity [33].  

Extracting clinically relevant information from sequencing data requires accurate annotation of 
somatic and germline alterations by comparing a tumor’s molecular profile with the patient-
matched normal samples. Paired tumor-normal analysis can also help identify somatic events 
that impact the genes with a PGV that may result in its biallelic inactivation [34]. However, most 
commercial and academic laboratories lack control germline DNA analysis and produce reports 
that may not address whether or not a variant is actually somatic. In this study, we presented a 
gene-independent bioinformatics workflow that, using commonly available measurements from 
tumor sequencing (i.e. total depth, focal ploidy, and VAF) can select the most likely germline 
versus somatic mutational status and assess evidence for loss of heterozygosity. By analyzing 
each variant in the context of specimen purity, we eliminate the need for ad hoc VAF criteria [14], 
or complex analyses of raw sequencing data [35]. We validated our approach using available 
germline testing results from 1,608 cancer patients. Where pathogenic variants across 70 cancer 
susceptibility genes were detected in tumor sequencing, inference of pathogenic germline 
variants had an overall sensitivity of 65%, specificity of 89%, and accuracy of 85% using 
computational purity estimates with highly concordant results from histological estimates.  

Our performance statistics established a balance between the ability to detect the germline 
mutations (sensitivity) and the somatic mutations (specificity). Gene-specific, VAF-based criteria 
for identifying patients with PGV from tumor-only data could be highly sensitive; however, their 
application also results in a high number of type 1 errors, and thus, low specificity and overall 
accuracy  [14]. In our data, only 11% of all detected pathogenic variants were PGV. In contrast, 
accurate inference of status for 71% of true pathogenic somatic variants led to a three-fold 
increase in the proportion of PGV to remaining pathogenic variants.  

Following the Knudson two-hit model, tumorigenesis in PGV carriers is caused by the presence 
of a heterozygous germline alteration followed by the somatic loss of the remaining wild-type 
allele in the tumor cells by genomic alterations, or more rarely epigenetic silencing [36]. As not all 
cancers that arise in carriers may be driven by the germline alteration, it is important to determine 
whether a germline variant is accompanied by loss of the wildtype allele in a given cancer, both 
to understand the pathogenesis and to guide therapy. Our results showed a significant association 
between pathogenicity of germline alterations and the loss of the wild-type allele, highlighting the 
importance of distinguishing biallelic and LOH events from monoallelic PGV as a biomarker for 
therapeutic response [37]. In particular, the high rates of inferred LOH for pathogenic BRCA1 and 
BRCA2 variants in breast and ovarian cancers in our data are consistent with similar findings 
using other sequencing platforms suggesting existence of selective pressures for biallelic 
inactivation in these tumors [29, 34].  

Systematically, the lower the sequencing depths at which a particular variant is detected, the 
lower the confidence in accuracy of measuring its VAF. Clinical tumor-only sequencing assays 
are mandated to have a relatively high depth of sequencing compared to research-grade whole-
genome and whole-exome platforms; therefore, they are capable of identifying SNV and indels 
with high confidence. Sequencing at depth of coverage >300x is expected to provide sufficient 
power to accurately measure allele abundances and to statistically assess potential germline 
origin and zygosity of detected variants [18, 38]. In fact, with an average coverage depth of ~290x 
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in our data, we did not observe a systematic difference in sequencing depth or specimen purity 
between the variants with true or false inferences. While germline variants with incorrectly inferred 
somatic status had VAF <50%, somatic variants with incorrectly inferred germline status had VAF 
>50%, highlighting the dependency of our approach on accurate VAF measurements. This lower 
than expected VAFs of PGV in tumor-only sequencing data suggests either a problem in variant 
calling, undetected low-level amplification of the wild-type allele or possibly presence of reversion 
mutations [19, 39, 40]. The high VAF of the confirmed somatic variants that were inferred to be 
germline suggests an over-estimation of tumor purity, computationally and histologically, in these 
samples. Although VAF for indels may be confounded by misalignment and variant calling 
inaccuracy, they were not associated with correct or incorrect inference, highlighting the utility of 
our approach for all variants with a measured VAF. Finally, our user-friendly, interactive 
bioinformatics application is freely available for academic use for performing these analyses on 
sequencing results from assays routinely employed in the clinic. 

 

CONCLUSION 

While concurrent tumor and germline sequencing analyses for all cancer patients may become 
the standard of care in the future, the need to have an objective and reliable means of selecting 
patients for clinical germline testing confirmation is needed in clinical practice today. The 
increasing use of tumor-only sequencing assays can identify mutations in known cancer 
predisposition genes, raising the possibility of germline mutations and potentially the need for 
independent germline DNA assessment. Our analysis demonstrates that patients with potentially 
pathogenic germline alterations in cancer predisposition genes can be identified by analyzing their 
tumor-only sequencing data, suggesting that when a PGV is detected in the tumor specimen, the 
patient should be considered for genetic counseling and germline testing. Computational 
inference of LOH status for both germline and somatic variants may also be helpful in defining 
tumor pathogenesis and guiding therapy of individual cancers, even in the setting of paired 
germline and tumor sequencing data. 
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Table 1. Patient Demographic and Clinical Characteristics (N = 1,467).

Characteristic No. %
Sex

Female 1075 73%
Male 392 27%

Self-reported race/ethnicity
White/Caucasian (non-Ashkenazi) 1237 84%
Ashkenazi Jewish 44 3%
Black/African American 40 3%
Asian 48 3%
Hispanic 28 2%
Other/mixed 43 3%
Unknown 25 2%

Cancer diagnoses
Single primary 1122 76%
Multiple primaries 345 24%

Age at first cancer diagnosis, ya
0-19 24 2%
20-29 66 4%
30-39 166 11%
40-49 314 21%
50-59 429 29%
60-69 301 21%
70-79 131 9%
≥80 20 1%
Unknown 16 1%

Age at germline test, ya
0-19 11 1%
20-29 43 3%
30-39 125 9%
40-49 241 16%
50-59 400 27%
60-69 400 27%
70-79 205 14%
≥80 42 3%

No. of genes tested in the germline
Single Site Testing (1 or more sites) 14 1%
1-5 64 4%
6-15 33 2%
16-50 1001 68%
≥51 355 24%
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Supplementary Figure 1: A) Expected variant allele frequencies as a function of purity for different mutational models (adapted from 
Khiabanian et al. JCO PO 2020). Akaike Information Criterion (AIC) weights are used to compare the likelihood of somatic and germline 
mutational models using the observed VAF and copy-number (ploidy) and sequencing depths at their positions. B) A snapshot of the 
application, showing variant data and status.  
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Supplementary Figure 2: Inference of mutational status using histological purity estimates compared to germline testing results. 
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Supplementary Figure 3: A) True positive rate (TPR or recall), true negative rate (TNR), accuracy (ACC), false omission rate (FOR), 
positive predictive value (PPV or precision) and F-score performance measures for the inferences made using computational purity for 
all germline variants (PGV and VUS) versus all somatic variants. B) Overall performance measures using histological purity for all 
germline variants (PGV and VUS) versus all somatic variants. C) Overall performance measures using histological purity when 
pathogenicity was considered for germline and somatic variants. 
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Supplementary Figure 4: Allele frequencies distribution of variants with incorrect or ambiguous inference per gene: A) Somatic 
variants with germline inference. B) Germline variants with somatic inference. C) Germline and somatic variants without a statistical 
inference (ambiguous). Results using histological purity are shown. 
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Supplementary Figure 5: Variant allele frequency of TP53 variants versus computational purity estimates, grouped based on correct 
and incorrect inferences.   
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