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ABSTRACT 1 

Fluent reading is an important milestone in education, but we lack a clear 2 

understanding of why children vary so widely in attaining this milestone. Language-3 

related factors such as rapid automatized naming (RAN) and phonological awareness 4 

have been identified as important factors that influence reading fluency. Of theoretical 5 

interest is also, however, whether aspects of visual processing influence reading 6 

fluency. To investigate this issue, we tested primary school children (n = 68) on four 7 

tasks: two reading fluency tasks (word reading and passage reading), a RAN task to 8 

measure naming speed, and a visual search task using letters and bigrams to measure 9 

visual processing. As expected, the RAN score was strongly correlated with reading 10 

fluency. In addition, visual processing of bigrams was correlated with reading fluency. 11 

Importantly, this association was specific to upright but not inverted bigrams, and to 12 

bigrams with normal but not large letter spacing. Thus, reading fluency in children is 13 

accompanied by specialized changes in upright bigram processing. We propose that 14 

bigram processing during visual search could complement existing measures of 15 

language processing to understand individual differences in reading fluency.  16 

  17 
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  INTRODUCTION 18 

Learning to read fluently is an important milestone during development, but 19 

there is considerable individual variation in attainment. For alphabetic languages, this 20 

variation has been explained using two simpler cognitive tasks: phoneme awareness 21 

(PA, which measures the ability to manipulate phonemes in a word), and rapid 22 

automatized naming (RAN, which measures the speed of naming visually presented 23 

letters or objects) (Melby-Lervåg et al., 2012; Norton and Wolf, 2012). These abilities 24 

not only explain concurrent individual variation in reading fluency (Melby-Lervåg et al., 25 

2012; Norton and Wolf, 2012), but also its longitudinal development (Parrila et al., 26 

2004; Lervåg and Hulme, 2009; Landerl et al., 2018; Vander Stappen and Reybroeck, 27 

2018).  28 

The RAN measure has been hypothesized to capture efficiency in cross-modal 29 

print processing (Nag and Snowling, 2012). Other explanations for the robust RAN-30 

reading association range from domain-general speed of processing (Kail et al., 1999), 31 

especially serial processing (Sideridis et al., 2016), to domain-specific speed to 32 

retrieve phonological codes, discriminate component visual features (Stainthorp et al., 33 

2010) and recognize whole visual items (Lervåg and Hulme, 2009). Thus, RAN 34 

captures component processes that are both perceptual-lexical as well as attentional 35 

and memory-based (Sideridis et al., 2016).  36 

Given that reading begins with vision, it stands to reason that fluent reading is 37 

associated with changes in visual processing as well as in phonological or naming 38 

abilities. However, most previous work has focused on attentional deficits, particularly 39 

with respect to reading difficulties. Dyslexia is associated with a range of processing 40 

deficits in visuospatial attention (Goswami, 2015), crowding (Bouma and Legein, 1977; 41 

Martelli et al., 2009; Zorzi et al., 2012), attention span (Bosse et al., 2007), change 42 
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detection (Rima et al., 2020) and visual search (Casco and Prunetti, 1996; Vidyasagar 43 

and Pammer, 1999). Whether these deficits explain normal variation in reading skills 44 

is, however, not clear. At a more basic level, it is not clear whether visual 45 

representations of letters or strings themselves change with reading experience, and 46 

whether these changes predict reading fluency.  47 

It is widely believed that learning to read leads to the formation of specialized 48 

detectors for letter combinations (Grainger and Whitney, 2004; Dehaene et al., 2005). 49 

Evidence in favour of this account comes from the greater activation of the word form 50 

regions to strings containing frequent bigrams. However, recent evidence has 51 

challenged this possibility by showing that discrimination between longer strings can 52 

be explained using single letters (Agrawal et al., 2019, 2020), and that fluent readers 53 

experience weaker interactions between letters in a bigram (Agrawal et al., 2019). 54 

However this association between bigram processing and reading fluency may be 55 

explained by other factors not tested in previous studies.  56 

 57 

Overview of this study 58 

Here, we investigated the relation between reading fluency and visual 59 

processing by testing two specific hypotheses. First, we asked whether learning to 60 

read results in the formation of specialized bigram detectors. Since reading involves 61 

extensive experience with upright letters, we hypothesized that learning to read would 62 

result in the formation of specialized detectors for upright bigrams but not inverted 63 

bigrams. This comparison avoids any confounds due to letter shape. To detect the 64 

presence of bigram detectors, we formulated a quantitative “letter sum” model to 65 

predict visual search on bigrams using the constituent single letters. Since bigram 66 

detectors, by definition, are activated by the entire bigram but not by the constituent 67 
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letters, their presence should lead to poor performance of the letter sum model. We 68 

therefore predicted that the presence of upright bigram detectors should lead to poor 69 

performance of the letter-sum model for upright but not inverted bigrams. Comparing 70 

upright and inverted bigrams also avoids any indirect confounds due to covarying 71 

cognitive factors. For instance, a correlation between visual search performance and 72 

reading fluency could simply be due to the requirement for visuospatial attention in 73 

both tasks (Franceschini et al., 2012).  74 

Second, we hypothesized that reading fluency variations across children would 75 

be predicted by upright bigram processing during visual search, over and above the 76 

variation predicted by RAN tasks. This is a non-trivial outcome because it implies that 77 

changes in visual processing are independent of the perceptual-lexical processes 78 

captured by RAN, and that both influence reading fluency. Alternatively, it could be 79 

that bigram processing does not predict reading fluency variations any more than RAN 80 

measures, suggesting that changes in visual processing do not directly influence 81 

reading fluency.  82 

To assess these possibilities, we tested children in grades 3-5 (7-11 years old) 83 

across two time points (separated by ~10 months). Each child was tested on two 84 

standardized measures of reading fluency (word and paragraph reading). To reduce 85 

testing time with children, we selected a RAN task over a phoneme awareness (PA) 86 

task because the former is a better predictor of reading in some alphabetic 87 

orthographies (Landerl et al., 2018; Vander Stappen and Reybroeck, 2018), and PA 88 

is prone to floor effects in India (the location of the present study) where literacy 89 

instruction privileges either the look-and-see method or the syllable units in a word 90 

(Nag, 2017). To measure visual processing, each child was tested on a visual search 91 

task involving both single letters as well as upright and inverted bigrams. We chose 92 
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visual search because it is a natural, intuitive task for children (they have to simply 93 

search for an odd-one-out), yet it has an objective measure (correctly identifying the 94 

target). At the same time, measures of search time in visual search can yield many 95 

insights into the underlying representations of visual features, including printed letters 96 

(Arun, 2012; Mohan and Arun, 2012; Pramod and Arun, 2016; Agrawal et al., 2019).   97 
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RESULTS 98 

Our goal was to investigate whether reading fluency can be linked to visual 99 

processing of bigrams. We selected children in grades 3-5 (aged 7-11 years) from a 100 

school where English is the medium of instruction, and tested them on English letters 101 

and words. Participants performed three tasks related to their reading skills: a word 102 

reading task (Figure 1A), a passage reading task (Figure 1B), and a rapid automatized 103 

naming (RAN) task (see Methods). As expected, the passage and word reading 104 

fluency scores were highly correlated with each other (Figure 1C). These children were 105 

further tested on a visual search task to characterize their visual processing (Figure 106 

1D). In the visual search task, children were asked to identify an oddball target among 107 

multiple identical items.  108 

 109 

Experiment 1: Single letter and bigram searches 110 

In Experiment 1, we tested 68 children from grades 3-5 (7-11 years old) on 111 

reading tasks as described above and a visual search task. In the visual search task, 112 

both the oddball and the distractors were either single letters, or upright bigrams or 113 

inverted bigrams, and were analysed separately.   114 

 115 

Visual search for single letters 116 

We first analysed the performance of the participants on single letter searches. 117 

An example search involving single letters is shown in Figure 1D. Participants were 118 

highly accurate in their performance (average accuracy across 78 single letter 119 

searches, mean ± std: 98% ± 2.4% across 68 children). They also made highly 120 

consistent responses, as evidenced by a strong and significant correlation between 121 

the average search times of odd and even-numbered participants (Figure 1E). We did 122 
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not observe any significant correlation between mean single letter search time and 123 

passage reading score (r = -0.2, p = 0.1).  124 

 125 

Visual search for upright vs inverted bigrams  126 

 Next we sought to evaluate whether bigram processing is different for upright 127 

compared to inverted bigrams. Specifically, we reasoned that, if learning to read 128 

upright letters leads to the formation of upright bigram detectors, any model based on 129 

single letters would perform poorly on predicting upright but not inverted bigrams.  130 

Participants performed oddball visual search in which both target and 131 

distractors were either upright or inverted bigrams (Figure 1D). As before, irrespective 132 

of fluency level, they were highly accurate in all conditions (average accuracy across 133 

115 bigram searches, mean ± sem: 95.8% ± 0.5% for upright bigrams, 95% ± 0.7% 134 

for inverted bigrams) and also highly consistent in their responses (Figure 1E). 135 

Interestingly, participants took longer to perform inverted searches (average response 136 

times, mean ± sem across participants: 1.96 ± 0.03 s for upright, 2.43 ± 0.05 s for 137 

inverted; p < 0.00005, paired t-test across 115 searches). Thus, familiarity with the 138 

upright orientation improved discrimination. However, familiarity did not qualitatively 139 

alter visual search performance, as evidenced by a strong and significant correlation 140 

between search dissimilarities in the upright and inverted conditions (r = 0.92 across 141 

115 bigram searches, p < 0.00005).  142 

 As with single letter analysis, we correlated the mean search time with passage 143 

reading score. Interestingly, the association between reading fluency and visual 144 

search times was specific to upright but not inverted bigrams (correlation between 145 

passage reading score and mean bigram search time: r = -0.32, p < 0.05 for upright 146 

bigrams, and r = -0.15, p = 0.24 for inverted bigrams).  147 
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 148 

 149 
 150 

Figure 1. Reading fluency and visual processing tasks (Experiment 1)  151 

(A) Example words from the standardized sight word efficiency task (TOWRE).  152 

(B) The passage shown to the children to measure their reading fluency (see 153 

Methods). 154 

(C) Correlation between the fluency scores obtained from word reading task (A), and 155 

passage reading task (B). Each point represent one subject (n = 67) and asterisks 156 

indicate that the correlation is significant (**** is p < 0.00005). 157 

(D) Example single letter and bigram search array from the visual search task.  158 

(E) Split-half consistency of the visual search data for letters (+), upright bigrams (o), 159 

and inverted bigrams (), as estimated by the correlation between search time 160 

averaged across the odd-numbered subjects and even-numbered subjects. 161 

  162 
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Can bigram search be explained using single letter relations?  163 

The above findings show that reading fluency is associated with upright bigram 164 

searches, but does not elucidate whether this is due to improved single letter 165 

representations or due to specialized bigram detectors. To investigate this issue, we 166 

devised a quantitative model to explain visual search for bigrams using the constituent 167 

single letters. In a series of previous studies, we have shown that the reciprocal of 168 

search time (1/RT) – which is a measure of dissimilarity – yields more accurate models 169 

for visual search, and that the dissimilarity between objects differing in multiple 170 

features can be explained using the constituent features.  171 

In keeping with these findings, we devised a “letter-sum” model (Figure 2A) in 172 

which the search dissimilarity (1/RT) between a pair of bigrams, say AB & CD, is a 173 

linear sum of dissimilarities between the constituent pairs of single letters A, B, C, D 174 

i.e. (A,B), (A,C), (A,D), (B,C), (B,D), and (C,D). To account for possible differences in 175 

position, we grouped these pairs based upon the type of comparison: there were letter 176 

pairs at corresponding locations in the two bigrams (e.g. AC & BD), at opposite or 177 

across locations (e.g. AD & BC), and within a bigram (e.g. AB & CD). Thus, the search 178 

dissimilarity for bigrams AB & CD is given by:  179 

d(AB,CD) = CAC + CBD + XAD + XBC + WAB + WCD + c 180 

where CAC & CBD are relations between letters in the two bigrams at 181 

corresponding locations, XAD & XBC are relations between letters in the two bigrams at 182 

opposite locations, WAB & WCD are letter relations within each bigram and c is a 183 

constant term. The part sum model works because the same terms repeat across 184 

searches: for instance, the term CAC is also present in the equation for d(AE,CF), 185 

d(AG,CH) etc. Since bigrams were constructed using six possible letters, the 186 

corresponding-location letter terms are 6C2 = 15 in number, and likewise there are 15 187 
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across-location letter terms and 15 within-bigram letter terms. These unknown part 188 

relations can then be estimated from the data using standard linear regression (see 189 

Methods).  190 

The part-sum model yielded excellent fits to the observed bigram dissimilarities 191 

(model correlation: r = 0.92 for upright bigrams, r = 0.94 for inverted bigrams; Figure 192 

2B). Model correlations were close to the split-half consistency between participants, 193 

suggesting that the model explains nearly all the explainable variance in the bigram 194 

dissimilarities. Importantly, model fits were not systematically different between upright 195 

and inverted searches as would be expected if there were upright bigram detectors 196 

(Figure 2B). This in turn suggests that the better discrimination of upright bigrams by 197 

participants must be driven by letter-level differences in the part-sum model 198 

parameters.  199 

We obtained several interesting insights upon a deeper investigation of the part-200 

sum model parameters. First, the single letter relations estimated by the part-sum 201 

model for the corresponding, across and within terms were correlated with the 202 

observed single letter dissimilarities in this experiment (r = 0.76, p < 0.005; r = 0.84, p 203 

< 0.0005 & -0.61, p < 0.05 for C, X & W terms, for the part-sum model fit to the average 204 

dissimilarities for upright bigrams across all participants). Second, the within-bigram 205 

terms are consistently negative (Figure 2C), suggesting that search is harder when 206 

bigrams contain dissimilar letters. We have observed this effect consistently in 207 

previous studies – it resembles the well-known finding that search is harder when 208 

distractors are heterogeneous (Duncan and Humphreys, 1989; Vighneshvel and Arun, 209 

2013; Pramod and Arun, 2016). Third, the interaction between the letters (both across 210 

and within) were weaker for upright compared to inverted bigrams. This weaker 211 
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interaction leads to improved search for upright letters by increasing their 212 

discriminability.  213 

 214 

Relation between bigram searches and reading fluency 215 

The above findings that fluent readers are faster at discriminating upright 216 

bigrams might also be predicted by other covarying factors such as their RAN score, 217 

motor speed, overall executive function etc. To investigate these possibilities, we 218 

sought to predict the individual variation in reading fluency using a variety of possible 219 

factors. To avoid overfitting, we generated a predicted fluency score by training each 220 

factor on the word reading scores, and then compared this prediction with the passage 221 

reading score.  222 

To characterize the effect of overall task performance for each subject, we 223 

included the motor speed (measured during a baseline motor block; see Methods) and 224 

overall accuracy (across all searches). To characterize any effects due to 225 

discrimination of single letters, we calculated the average dissimilarity across all single 226 

letter searches. To characterize the influence of upright bigrams, we fit a part-sum 227 

model to the upright bigram dissimilarities for each subject, and calculated the average 228 

of the corresponding, across and within terms separately, and included the constant 229 

term. We did likewise for the inverted bigram searches. Finally, we used the RAN 230 

score of each subject as a possible factor. For each factor we asked how well the 231 

predicted reading score using that factor matched the observed passage reading 232 

score.  233 

The results of these analyses are summarized in Figure 2D. To establish an 234 

upper bound on model performance, we compared the word reading fluency and 235 

passage reading fluency scores, which were highly correlated (r = 0.91, p < 0.0005; 236 
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Figure 1C). Among all the individual factors, the RAN score had the highest correlation 237 

with passage reading fluency (r = 0.55, p < 0.00005; Figure 2D), followed by the upright 238 

bigram terms (r = 0.40, p < 0.0005; Figure 2D). This correlation was best for the part-239 

sum model terms, compared to other measures derived from the bigram searches 240 

(correlation of passage reading scores with average upright bigram dissimilarity of 241 

each subject: r = 0.32, p < 0.05; with the average difference between upright and 242 

inverted bigram dissimilarity: r = 0.36, p < 0.005). Thus, the part-sum model 243 

parameters seem to capture the essential aspects of bigram processing.  244 

The above analysis shows that a number of factors are correlated with passage 245 

reading fluency, but there could be correlations between these factors. To assess the 246 

unique contribution of each factor, we performed a partial correlation analysis. 247 

Specifically, we asked whether the correlation between a given factor with the passage 248 

reading fluency score would continue to be significant after regressing out all other 249 

factors. This revealed only two factors with a significant partial correlation: upright 250 

bigram terms and RAN score (Figure 2E). Hence, we conclude that RAN and upright 251 

bigram terms uniquely predict reading fluency compared to all other factors.  252 

 253 

  254 
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 255 

Figure 2. Upright bigram processing predicts reading fluency (Experiment 1) 256 

(A) Schematic of the letter-sum model, in which the net dissimilarity between two 257 

bigrams is a linear sum of single letter relations at corresponding locations across 258 

bigrams (C), opposite locations across bigrams (X) and within-bigrams (W). 259 

(B) Observed bigram dissimilarity is plotted against predicted bigram dissimilarity from 260 

the part-sum model for both upright (dark) and inverted (light) bigram searches. 261 

Each point represents one search pair (n = 115 each) and few example searches 262 

are highlighted. Asterisks indicate that the model predictions were significantly 263 

correlated with the observed dissimilarity values (p < 0.00005).  264 

(C) Average model coefficients (mean ± sem) of each type for upright and inverted 265 

bigrams. Asterisks denote statistical significance obtained on a sign-rank test 266 

comparing 15 letter dissimilarities between upright and inverted conditions (* is p 267 

< 0.05, ** is p < 0.005, etc). 268 

(D) Model correlation of each factor in predicting passage reading score. Error bars 269 

indicate ±1 s.d. using a bootstrap procedure (in which we repeatedly sampled 67 270 

participants with replacement for a total of 1,000 times). All models were trained 271 

on word reading score, and tested on passage reading scores. Shaded error bars 272 

represent the noise ceiling i.e. correlation between word reading and passage 273 

reading score. 274 

(E) Partial correlation of each factor with passage reading scores after regressing out 275 

all other factors. Asterisks denote significant correlation (* is p < 0.05, ** is p < 276 

0.005, and so on). Error bars represent ± 1 s.d. of the correlation coefficient, 277 

calculated as in (D). 278 
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EXPERIMENT 2: BIGRAM SEARCHES WITH VARYING SPACING 279 

 The above findings show that reading fluency is associated with upright but not 280 

inverted bigram processing, suggesting that familiarity with upright letter orientations 281 

leads to specific changes in visual processing. We therefore wondered whether this 282 

effect would also be specific to frequently encountered letter spacings. This is an 283 

important question by itself because changes in letter spacing affect reading speed 284 

(Zorzi et al., 2012; van den Boer and Hakvoort, 2015; Hakvoort et al., 2017). In 285 

addition, by testing the same participants after ~10 months, we also asked whether 286 

improvements in reading fluency can be predicted from changes in bigram processing.  287 

 To this end, we recruited 65 children for Experiment 2, of whom 59 children had 288 

participated in Experiment 1 ~10 months earlier. Participants were again given the two 289 

reading tasks (word & passage reading), a RAN task, and a visual search task 290 

involving upright and inverted bigrams with normal or large spacing. All bigram 291 

searches were interleaved. An example bigram search array using normal letter 292 

spacing is shown in Figure 3A, and the same search with large spacing is shown in 293 

Figure 3B. It can be seen that the search with the large letter spacing is harder but this 294 

effect is weaker if the arrays are inverted. This was indeed true in general as well (see 295 

below).  296 

Overall, participants were highly accurate across all search types (accuracy, 297 

mean ± sem: 96% ± 0.5% for upright-normal spacing, 95% ± 0.5% for upright-large 298 

spacing; 95% ± 0.6% for inverted-normal spacing, 94% ± 0.7% for inverted-large 299 

spacing). They were also highly consistent in their responses (split-half correlation 300 

between RT of odd- and even-numbered participants, for normal and large letter 301 

spacing: r = 0.96 & 0.95 for upright bigrams, r =  0.96 & 0.97 for inverted bigrams; all 302 

p < 0.00005).  303 
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Participants responded significantly slower for upright bigrams with large 304 

spacing (average response times, mean ± sem across participants: 1.8 ± 0.03 s for 305 

normal spacing, 1.99 ± 0.04 s for large spacing; F(1, 8095) = 101.0 , p < 0.00005 for 306 

main effect of spacing, ANOVA on RT with subject, spacing & image pair as factors; 307 

F(35, 8095) = 56.69, p < 0.00005 for image-pair, F(35, 8095) = 4.05, p < 0.00005 for 308 

interaction effect; Figure 3C). This effect was present even for inverted bigrams 309 

(average response times, mean ± sem across participants: 2.06 ± 0.05 s for normal 310 

spacing, 2.17 ± 0.05 s for large spacing, F(1, 8095) = 26.4, p < 0.00005 for main effect 311 

of spacing, ANOVA on RT with subject, spacing & image pair as factors; F(35, 8095) 312 

= 64.12, p < 0.00005 for image-pair, F(35, 8095) = 2.05, p < 0.00005 for interaction 313 

effect).  314 

The normal spacing advantage was larger for upright compared to inverted 315 

bigrams (average difference in RT between normal and large spacing searches, mean 316 

± sem across participants: 0.19 ± 0.02 s for upright bigrams, 0.11 ± 0.02 s for inverted 317 

bigrams, p < 0.05 on a paired t-test across subject-wise differences). However, search 318 

dissimilarities were highly correlated with each other for both normal and large spacing 319 

searches (r = 0.94 for upright bigrams, r = 0.95 for inverted bigrams; p < 0.00005), as 320 

well as between upright and inverted conditions (r = 0.95 for normal spacing, r = 0.96 321 

for large spacing; p < 0.00005). Thus, bigram dissimilarities are qualitatively similar 322 

across letter spacing and bigram orientation.  323 

 324 

Can reading fluency be predicted by bigram processing at the familiar spacing?  325 

 Next, we fit the part-sum model to the observed search dissimilarities for each 326 

subject for each of the four search types (upright/inverted x normal/large spacing). We 327 

then performed a similar analysis as before to determine whether the passage reading 328 
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score can be predicted by various factors. The correlation of each factor with passage 329 

reading score is shown in Figure 3D. Interestingly, only the part-sum model terms for 330 

upright bigrams with normal spacing predicted reading fluency, compared to model 331 

terms for large spacing and inverted bigram terms (Figure 3D). As before, this 332 

correlation was specific to the part-sum model terms, compared to other measures 333 

from the bigram searches: passage reading fluency was only weakly correlated with 334 

the average upright bigram dissimilarity of each subject (r = 0.17 & 0.11 for small and 335 

large spacing, p = 0.19 & 0.37 respectively) and with the average difference between 336 

upright and inverted bigram dissimilarity (r = 0.02 & 0.03 for small and large spacing, 337 

p = 0.89 & 0.84 respectively).  Thus the part-sum model captured some essential 338 

underlying aspect of bigram processing relevant to reading fluency.  339 

 To assess the unique contribution of each factor towards explaining reading 340 

fluency, we performed a partial correlation analysis as before. Only two factors showed 341 

a significant partial correlation with the passage reading score after regressing out all 342 

other factors: upright bigram terms for normal spacing and the RAN score (Figure 3E). 343 

Hence, we conclude that the effect of visual processing on reading fluency is highly 344 

specific both to the familiar (upright) orientation and familiar (normal) spacing.  345 

 346 

  347 
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 348 
 349 

Figure 3. Effect of letter spacing on visual representation (Experiment 2) 350 

(A) Example upright bigram search array with small letter spacing.  351 

(B) Same as (A) but with large letter spacing. It can be seen that this search is slightly 352 

harder than the search in (A).  353 

(C) Average search times in the oddball search task for upright and inverted bigrams 354 

with normal and large spacing. Error bars indicate s.e.m. across participants. 355 

Asterisks denote statistical significance of the difference in means (**** is p < 356 

0.00005, ANOVA – see text).  357 

(D) Model correlation of each factor predicting passage reading score. Error bars 358 

indicate ±1 s.d. using a bootstrap procedure, whereby we repeatedly sampled 67 359 

participants with replacement for a total of 1,000 times. Shaded error bars on the 360 

top represents noise ceiling i.e. correlation between word reading and passage 361 

reading score. 362 

(E) Partial correlation of each factor with passage reading scores after regressing out 363 

all other factors. Asterisks denote significant correlation (* is p < 0.05, ** is p < 364 

0.005, and so on). Error bars represent ± 1 s.d. of the correlation coefficient, 365 

calculated as in (A). 366 

  367 
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Can bigram processing changes predict longitudinal changes in fluency?  368 

 Since the same participants were tested ~10 months apart in Experiments 1 & 369 

2, we wondered whether improvements in reading fluency can be predicted using 370 

changes in upright bigram processing. We first compared the reading and RAN scores 371 

across Experiments. As expected, all scores improved with time (Figure 4A). To 372 

assess whether the change in reading scores can be predicted using the change in 373 

bigram processing, we took the difference in the average model term magnitudes of 374 

each type (corresponding, across, within, and constant terms) and asked whether the 375 

change in fluency can be predicted using a linear sum of the change in the model 376 

parameters for upright or inverted bigrams. We found that upright bigram terms were 377 

able to predict the improvement in both word reading and passage reading (r = 0.42, 378 

p < 0.005 for word reading, r = 0.29, p < 0.05 for passage reading; Figure 4B). By 379 

contrast, changes in inverted bigram processing predicted word reading only weakly 380 

(r = 0.30, p < 0.05; Figure 4B) but did not predict passage reading (r = 0.15, p = 0.27). 381 

Thus, only upright bigram processing changes robustly predicted fluency 382 

improvements.  383 

 We conclude that longitudinal changes in reading fluency can be predicted 384 

using changes in upright bigram processing.    385 
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 386 
Figure 4. Longitudinal prediction of reading fluency using upright bigrams.  387 

(A) Change in fluency scores across different fluency measures with reading expertise. 388 

Asterisk represents statistical significance calculated using sign-rank test. Error 389 

bars represent s.e.m across participants.  390 

(B) Correlation between change in fluency scores with change in visual representation 391 

for upright (dark) and inverted (light) bigrams. Error bars represent indicate ±1 s.d. 392 

obtained by a bootstrap procedure, whereby we repeatedly sampled 59 393 

participants with replacement for a total of 1,000 times. Asterisks denote statistical 394 

significance of each correlation (* is p < 0.05, ** is p < 0.005, and so on).  395 

  396 
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DISCUSSION 397 

Here we investigated whether reading fluency in children is associated with 398 

their performance on visual search tasks. Our main finding is that visual search for 399 

bigrams predicts reading fluency; this is only for upright (but not inverted) bigrams and 400 

with normal (but not large) spacing. This association predicted both cross-sectional 401 

inter-individual variations in reading fluency as well as longitudinal changes within 402 

individuals. Below we discuss these findings in relation to the existing literature.  403 

We have found that reading fluency has a highly specific association with 404 

upright, normally spaced bigrams during visual search. This finding is consistent with 405 

crowding as well as serial position effects being different for letters compared to 406 

unfamiliar symbols (Grainger et al., 2010; Chanceaux and Grainger, 2012). It is also 407 

consistent with the processing deficits for letters but not symbols in dyslexic readers 408 

(Shovman and Ahissar, 2006). But the specificity of the association to bigrams in 409 

upright orientation with normal spacing is noteworthy, because such selective effects 410 

have not been reported previously. It suggests that visual representations for letters 411 

and bigrams undergo changes and these changes are specific to the orientation and 412 

spacing of text that is commonly encountered. It also indicates a possible resolution 413 

to conflicting evidence in the literature with regard to letter spacing. Some studies have 414 

found improved reading speed and accuracy with increased letter spacing (Zorzi et 415 

al., 2012; Hakvoort et al., 2017), whereas others have found that reading speed is 416 

optimal at the default spacing (Perea et al., 2011; van den Boer and Hakvoort, 2015). 417 

We speculate that these discrepancies could reflect differences in the statistics of letter 418 

characteristics (e.g., font, spacing, size) as experienced by sampled readers in 419 

different studies.  420 
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 Our findings show an association between upright bigram processing and fluent 421 

reading, but do not reveal the direction of causality: does fluent reading lead to upright 422 

bigram processing, or does bigram processing lead to fluent reading? This question 423 

can be resolved if early changes in bigram processing were observed to precede 424 

changes in fluent reading, but this will require an extensive longitudinal study starting 425 

when literacy is emergent and while controlling for a number of other confounding 426 

factors. Nonetheless our findings do suggest a possible component in an intervention, 427 

whereby visual search activities involving upright bigrams or longer strings could 428 

facilitate optimal letter processing prior to the conversion of letters and letter strings 429 

into sounds and eventually words and their meaning.  430 

  Our results also reveal how visual representations change with reading. We 431 

have found that bigram discrimination in visual search can be explained entirely using 432 

dissimilarities between pairs of letters, for both upright and inverted bigrams. These 433 

results challenge the widely held view that reading should lead to the formation of 434 

specialized bigram detectors (Grainger and Whitney, 2004; Dehaene et al., 2005). If 435 

bigram detectors were formed through exposure to upright letters, upright bigram 436 

discrimination should have been less predictable from single letters compared to 437 

inverted bigram discrimination, but we observed no such trend (Figure 2B). Rather, 438 

we found that upright bigrams are more discriminable because of weaker within-439 

bigram interactions (Figure 2C). We propose that reading not only makes single letters 440 

more discriminable but also makes letters more independent within a bigram, enabling 441 

the parallel processing of letters in a word.  442 

We have found that RAN scores and upright bigram processing explained 443 

unique components of variance in reading fluency (Figure 2E, 3E). This is consistent 444 

with theoretical accounts of RAN that suggest it captures domain-general speed of 445 
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processing (Kail et al., 1999; Sideridis et al., 2016), domain specific speed of access 446 

to phonological codes and visual features (Stainthorp et al., 2010), cross-modal print 447 

processing (Nag and Snowling, 2012) and recognition of whole items (Lervåg and 448 

Hulme, 2009). However our results go further to show that there are bigram-level 449 

changes in visual processing that also seem to enable reading fluency that are not 450 

captured by the single letter or digit naming processes integral to RAN. We speculate 451 

that the upright bigram processing measured in our study captures key aspects of 452 

orthographic processing that can complement other measures (RAN, phoneme 453 

awareness, executive function tests) to track the development of typical or atypical 454 

reading skills (Norton and Wolf, 2012).   455 
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METHODS 456 

All children and their parents/guardians gave informed consent to an 457 

experimental protocol approved by the Institutional Human Ethics Committee of Indian 458 

Institute of Science, University of Oxford and The Promise Foundation. All participants 459 

were students of a school in Bengaluru where English is the medium of instruction. All 460 

participants had normal or corrected to normal vision.  461 

 In both Experiments 1 & 2, participants were asked to perform two reading tasks 462 

(word reading and passage reading), a RAN task and a visual search task. The sample 463 

sizes were chosen based on previous studies in the literature and this age range was 464 

chosen because at this age there is broad individual variation in reading fluency. The 465 

reading and naming tasks were identical in both experiments and are summarized 466 

below. 467 

 468 

Reading & RAN tasks (Experiments 1 & 2).  469 

Word reading task. This was the standardized sight word efficiency task (TOWRE).  In 470 

this 104-word list, words increased in difficulty level, from simple words like “up” and 471 

“cat” to difficult words like “information” and “boisterous”. The word reading score was 472 

calculated as the number of words read correctly in the first 45 seconds, converted 473 

into a words/minute score.  474 

Passage reading task. Participants were asked to read aloud a five line passage titled 475 

“Qasim’s kurta” describing the patterned dress of a stranger (Nag and Arulmani, 2015). 476 

The passage was edited to a word count of fifty. Participants were informed that they 477 

will have to answer two questions at the end of the passage and therefore had to read  478 

carefully. A discontinuation rule was applied after errors on eight words (an error rate 479 

of 15%).  The passage reading score was calculated as the total number of words 480 
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read correctly divided by the time taken up to the point attempted, in units of 481 

words/minute.   482 

Rapid Automatized Naming (RAN). A set of 40 digits arranged in a 5 x 8 grid was 483 

shown to the subject, which they had to read aloud. The RAN score was calculated as 484 

40 divided by the time taken by participants to complete reading the digits.  485 

 486 

Experiment 1: Single letter and bigrams searches 487 

Procedure. Participants were seated comfortably in front of a laptop monitor placed 488 

~60 cm away under the control of custom programs written in HTML/Javascript.  489 

 490 

Participants. A total of 68 children (34 male, aged 9.5 ± 0.9 years; 23 from 3rd grade, 491 

27 from 4th grade, 18 from 5th grade) were recruited for the study. One subject was 492 

excluded from the analyses due to the overall accuracy being less than 80%.  493 

 494 

Stimuli: A total of 13 uppercase English letters (A, H, I, J, K, L, N, R, S, T, U, V, Y) 495 

were chosen for the single letter search task. These letters were chosen to contain 496 

similar and dissimilar letters. All letters were shown in the Arial Font with the exception 497 

of the letter ‘I’, for which horizontal bars were added at the top and bottom to improve 498 

its discriminability. The height of each letter was 1° in visual angle.  499 

For the bigram task, 6 letters (A, L, R, S, T, and V) were combined in all possible 500 

manner (i.e. AA, AL, AR, AS, AT, AV, LA, LL, … etc) to form 36 bigrams. These letters 501 

were chosen because they were not symmetric along the horizontal axis. Inverted 502 

bigrams were created by flipping the upright bigrams.  503 

 504 
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Behavioural tasks. To ensure familiarity with the buttons and measure their motor 505 

speed, participants first performed a baseline block prior to visual search. In this block, 506 

a white circle appeared on either side of a vertical red line dividing the screen (10 507 

trials) and participants responded its location using the same keys. The baseline block 508 

was followed by a practice block of visual search using unrelated objects (20 trials) 509 

and then followed by the main visual search block.  510 

In the main visual search block, participants performed a total of 616 correct 511 

trials (13C2 = 78 single letter searches +115 upright bigram searches + 115 inverted 512 

bigram search and 2 repeats of each). We selected 115 searches out of 630 (36C2) 513 

possible searches to ensure a range of search difficulty. There were a total 15 pairs 514 

where first letter changes, 13 pairs where second letter changes, and 87 pairs with 515 

both letter changes. These 115 search pairs were fixed across all participants. All trials 516 

were interleaved, and incorrect/missed trials appeared randomly later in the task but 517 

were not analyzed.  518 

The MATLAB function “isoutlier” was used to remove any data points that lie 519 

three scaled deviations away from the median. This was done to improve the split-half 520 

consistency of the data. We obtained qualitatively similar results without this step. 521 

 522 

Part-sum model to explain bigram dissimilarities using single letters  523 

For each of the 115 bigram searches, we calculated the average search time 524 

(averaged across repeats and participants) and converted this into search dissimilarity 525 

by taking the reciprocal (1/RT). This was done because previous work has shown that 526 

the reciprocal of search time yields better models of visual search compared to models 527 

based directly on RT (Arun, 2012; Pramod and Arun, 2014, 2016). According to the 528 

part-sum model, the net dissimilarity between two bigrams AB & CD is given by a sum 529 
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of pairwise letter relations between letters at corresponding and opposite locations 530 

across bigrams and within-bigram relations.  Specifically, 531 

d(AB, CD) = CAC + CBD + XAD + XBC + WAB + WCD + constant 532 

where CAC & CBD represent dissimilarity between letters at the corresponding 533 

locations of the two bigrams, XAD & XBC represent the dissimilarity between letters at 534 

opposite locations in the two bigrams, and WAB & WCD represent dissimilarity between 535 

letters within the two bigrams. This is a very general model because it allows for 536 

potentially different single letter dissimilarities of each type. It works because a given 537 

letter pair at each location can occur repeatedly across multiple bigram pairs (e.g. 538 

letter pair A-C is present at the corresponding locations of the pairs AB-CD, AD-CD, 539 

BA-BC etc.). Since bigrams were made from 6 possible letters, there are 6C2 (= 15) 540 

letter pairs for each of the corresponding, across, and within terms. This results in a 541 

46-parameter model (15 letter pairs/term x 3 terms + 1 constant). Since we have 115 542 

dissimilarities values and only 46 parameters, we can uniquely estimate all the 543 

parameters using linear regression. The resulting set of simultaneous equations can 544 

be represented as y = Xb, where y is a 115x1 vector of observed dissimilarities, X is 545 

a 115 x 46 matrix with entries of either 0, 1 or 2 depending on whether a particular pair 546 

is absent, present or repeated at each of the corresponding, across or within terms 547 

and b is a 46 x 1 vector of unknown weights.  548 

To compare model parameters for upright and inverted bigrams (Figure 2), we 549 

fit a single model for both upright and inverted bigrams together with separate C, X, W 550 

terms for each orientation but a single constant term. To predict fluency scores for 551 

each subject (Figures 2 & 3), we fit the part sum model to upright and inverted 552 

dissimilarities separately. 553 

 554 
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Modelling fluency scores.  555 

For each subject, we estimated various factors from visual search experiment 556 

that could potentially predict reading fluency such as baseline reaction time, mean 557 

accuracy, mean single letter dissimilarities, part-sum model parameters estimated by 558 

modelling dissimilarities observed from upright and inverted bigram searches, and 559 

RAN score. To estimate the cross-validated fluency model fits, we trained each factor 560 

on word reading score and evaluated it against the passage reading score.  561 

For each scalar factor, we fitted a linear model y = Xb, Here, y is a 67x1 vector 562 

of observed word reading score, X is a 67x2 matrix with entries containing one of the 563 

above mentioned factor along with a constant term, b is a 2x1 vector of unknown 564 

weights that are estimated after solving the linear regression (regress function in 565 

MATLAB). Next, we calculated the predicted reading score using the estimated 566 

weights i.e. �̂� = 𝑿𝒃 and correlated it with the passage reading score. The correlation 567 

coefficient quantifies the contribution of each factor in predicting reading fluency.  568 

Since upright and inverted bigram factors contain multiple part-sum model 569 

parameters, we first averaged the estimated corresponding, across and within term 570 

interactions across all 15 letter pairs. This resulted in 4 parameters for each subject 571 

(including the constant term of the part-sum model). Next, we performed the same 572 

model fits as mentioned above to predict the fluency score as a linear combination of 573 

average model terms i.e. y = Xb,. Here, y is a 67x1 vector of observed word reading 574 

score, X is a 67x5 matrix with entries containing the average model terms together 575 

with a constant term, and b is a 5x1 vector of unknown weights.  576 

 577 

 578 

 579 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439823doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439823
http://creativecommons.org/licenses/by-nc-nd/4.0/


Partial correlation analyses.  580 

To estimate the unique contribution of each factor, we performed a partial 581 

correlation analysis. First, we took the predicted fluency score for each factor (as 582 

described above) and regressed out the net contribution of all the other factors. 583 

Specifically, we fit a linear model y = Xb, where y is a 67x1 vector of fluency score 584 

predictions using that factor, and X is a 67-row matrix containing all the other factors, 585 

and b is a vector of unknown weights. We then calculated the residuals of this model 586 

i.e. (y – Xb) which represent the predictions of that factor that are not explained by the 587 

other factors. Proceeding likewise, we regressed out the net contribution of all the 588 

factors from the passage fluency score. The partial correlation is the correlation 589 

between these two sets of residuals, and represents the correlation between reading 590 

fluency and a particular factor that remains even after removing the influence of all 591 

other confounding factors.  592 

 593 

Experiment 2: Effect of letter spacing  594 

 All details of Experiment 2 were identical to those in Experiment 1 except those 595 

outlined below.  596 

Participants. A total of 65 children (31 male, aged 10.2 ± 0.9 years, 23 from 4th
 grade, 597 

26 from 5th
 grade and 16 from 6th grade) were recruited 10 months later for this follow-598 

up experiment. Of these 59 children had previously participated in Experiment 1.   599 

Stimuli: A total of 3 letters (F, G, and R) were combined in all possible ways (i.e. FF, 600 

FG, FR, GF, … etc) to form a total of 9 bigrams. These letters were chosen because 601 

they were not symmetric along the horizontal axis. Letters were 1° in height, and were 602 

separated by either 0.18º (normal spacing) or 1.05° (large spacing). The normal 603 

spacing here approximates the spacing between letters in Arial font but with a fixed 604 

width between letters.  605 
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Task: Participants performed a total of 288 searches (9C2 = 36 bigrams x normal and 606 

large letter spacing x 2 configurations x 2 repeats).  607 

Part-sum model. Since there are only 3C2 = 3 letter relations each for the 608 

corresponding, across and within term, the part-sum model had only 10 free 609 

parameters, which were estimated from a total of 36 bigram dissimilarities.  610 

 611 

Longitudinal analysis 612 

To this end, we analysed the data from 59 participants common to both 613 

Experiments 1 & 2. To predict the change in fluency score using the change in the 614 

average part-sum model parameters (averaged across 3C2 = 3 terms for 615 

corresponding, across, within terms, together with the constant term), we performed a 616 

linear regression to predict the change in fluency as a weighted sum of the part-sum 617 

model parameters. Specifically, we fitted a linear model y = Xb, where y is a 59x1 618 

vector depicting difference in fluency score (i.e. Experiment 2 – Experiment 1 scores), 619 

X is a 59 x 5 matrix with rows containing the difference between each type of model 620 

term together with a global constant term, and b is a 5x1 vector of unknown weights 621 

that is estimated using standard linear regression (regress function in MATLAB).  622 

  623 
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