bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Enabling the execution of large scale workflows for
molecular dynamics simulations

Pau Andrio*, Adam HospitalT, Cristian Ramon-Cortes™,
Javier Conejero*, Daniele Lezzi*, Jorge Ejarque*, Josep LL. Gelpi*!, and Rosa M. Badia*
*Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
tInstitute for Research in Biomedicine (IRB), Barcelona, Spain
iDept. Biochemistry and Molecular Blomedicine, University of Barcelona, Spain
pau.andrio@bsc.es, adam.hospital@irbbarcelona.org, cristian.ramoncortes @bsc.es,
javier.conejero@bsc.es, daniele.lezzi@bsc.es, jorge.ejarque @bsc.es, josep.gelpi@bsc.es, rosa.m.badia@bsc.es

Abstract—The usage of workflows has led to progress in many
fields of science, where the need to process large amounts of data
is coupled with difficulty in accessing and efficiently using High
Performance Computing platforms. On the one hand, scientists
are focused on their problem and concerned with how to process
their data. On top of that, the applications typically have different
parts and use different tools for each part, thus complicating
the distribution and the reproducibility of the simulations. On
the other hand, computer scientists concentrate on how to
develop frameworks for the deployment of workflows on HPC
or HTC resources; often providing separate solutions for the
computational aspects and the data analytic ones.

In this paper we present an approach to support biomolecular
researchers in the development of complex workflows that i) allow
them to compose pipelines of individual simulations built from
different tools and interconnected by data dependencies, ii) run
them seamlessly on different computational platforms, and iii)
scale them up to the large number of cores provided by modern
supercomputing infrastructures. Our approach is based on the
orchestration of computational building blocks for Molecular
Dynamics simulations through an efficient workflow management
system that has already been adopted in many scientific fields to
run applications on multitudes of computing backends.

Results demonstrate the validity of the proposed solution
through the execution of massively parallel runs in a supercom-
puter facility.

I. INTRODUCTION

Computational workflows are one of the most used tools
to assemble and run simulations of different scientific fields
as climate predictions, bioinformatics, engineering, etc. Re-
searchers can compose their applications, usually made of
pieces of code available in libraries and binaries, using a
textual or graphical representation of the dependencies be-
tween those parts, and let the runtime of the workflow
management system to orchestrate the execution on a given
computational platform. In particular, HPC systems are getting
more and more attractive for the run of workflows that have
been traditionally executed on distributed systems as grids
or clouds, and that can have tasks that require a certain
degree of parallelism (i.e., MPI tasks). In general, the trend
is to have complex HPC systems built on hybrid architectures
that include traditional processors with accelerators, and that
can be used together with cloud infrastructures. On top of
the computing complexity, the packaging of workflows is an

additional issue, with containers becoming a popular way to
distribute and deploy applications.

To address the issues above, it is a must to have a work-
flow management system that can efficiently orchestrate the
applications on modern computing infrastructures, that can
offer a simple interface for the composition of the tasks, and
that provide advanced capabilities such as task level fault-
tolerance and automatic resource reservation for different kind
of loads including MPI. This paper presents the proposal of a
framework for the definition and orchestration of biomolecular
simulations on HPC infrastructures, that satisfies the above
mentioned requirements. The building blocks software library
developed by the BioExcel Centre of Excellence has been
used to implement pipelines that automatize the various steps
of Molecular Dynamics simulations that are in many cases
performed manually by the users. The PyCOMPSs program-
ming framework has been adopted to define the tasks of the
workflows and to parallelize their execution. The definition of
the tasks allows to automatically reserve the proper number
of computing nodes and cores taking into account specific
requirements and constraints of each task, and to execute the
internal tools (i.e., MPI) transparently to the user. Further-
more, the developed building blocks are proposed on multiple
alternative choices for deployment including HPC, Clouds,
containerized platforms or environment management systems
as Conda. The workflow has been run in the Marenostrum IV
supercomputer using 38,400 cores in parallel.

The paper is structured as follows: Section [[I] describes the
building blocks software library considered as a target use
case for the large scale execution of biomolecular workflows,
and Section details the design and development of the
workflows used to validate the proposal using PyCOMPSs.
Next, Section reports the results of the execution of the
developed workflow on an HPC infrastructure. Section
presents the state of the art and related work on topics involved
in the proposed research. Finally, Section wraps up the

paper.

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

II. APPLICATION BUILDING BLOCKS FOR COMPUTATIONAL
BIOMOLECULAR SIMULATIONS

BioExcel Centre of Excellence for computational biomolec-
ular research (BioExcel CoE) is a European initiative whose
primary purpose is to give support to academic and indus-
trial researchers in the use of high-performance and high-
throughput computing (HPC & HTC). BioExcel goals include
i) to optimize and increase the scalability of biomolecu-
lar simulations using the principal codes involved in the
project: GROMACS [1]] MD), HADDOCK [22]] (Docking), and
CP2K [3] (QM/MM); and ii) ease the usability of biomolecular
computational tools and biological databases through a range
of scientific workflows and associated deployment environ-
ments. Linking both goals together is of great interest for the
field since it gives the opportunity to easily build complex
scientific workflow systems that benefit from the inherent
scalability of the biomolecular simulation tools.

However, joining different biomolecular tools in a com-
plex pipeline is not always straightforward. Interoperability
between tools is a complex issue in biomolecular simulations,
mainly due to the lack of a set of standards. BioExcel building
blocks (biobbs) [4] is a software architecture designed to tackle
the interoperability problem, thanks to a simple wrapping
approximation. Biobbs are a collection of small wrappers
written in Python and organized in layers. Each building block
encapsulates software components (1st layer) and provides
a well-defined interface for input, output, configuration, and
provenance (2nd layer). A standardized syntax is used in all
of the building blocks, with each of the wrappers internally
performing the necessary format conversions for input and
output, and launching the tool inside, which runs unaltered.
With this design, a large set of biomolecular tools can be
launched using a homogeneous syntax, providing as well a
uniform and stable interface with enough information to plug
the components into interoperable workflows. The optional
3rd layer is used to adapt the building blocks to different
workflow managers, from Graphical User Interfaces such
as Galaxy or KNIME, to HPC-designed tools such as Toil
or PyCOMPSs. In Section we explain how we have
implemented PyMDSetup with PyCOMPSs to parallelize the
execution of the building blocks.

III. PARALLELIZATION DESIGN

Before going into the parallelization design, we introduce
PyMDSetup and PyCOMPSs; respectively, the target applica-
tion and the framework used to parallelize it. Next, we focus
on the mechanisms that PyCOMPSs provides to exploit the
maximum performance considering its requirements and how
they have been used.

A. PyMDSetup and biobb_wf _mutations

PyMDSetup is an automated protocol to model residue
mutations in 3D protein structures detected from genomics
data, and prepare and run Molecular Dynamics simulations
for all the generated structures. The pipeline receives a PDB
file (wild type protein 3D structure) and a set of mutations

; ; Protein Variants
e e

Mutated Residue
Energy minimization

System
Energy minimization
Steepest Descent

Model Mutated

Protein

Create GROMACS
topology

Create Simulation Box
Fill Box with Solvent

Neutralizing the system

System Equilibration, step 1:
Simulated Annealing

]

System Equilibration, step 2:
Heavy Atoms restraints
1,000 KJ mol* nm-2

]

System Equilibration, step 3:
Heavy Atoms restraints
800 KJ mol! nm2

l

System Equilibration, step 4:
Heavy Atoms restraints
500 KJ mol* nm2

|

System Equilibration, step 5:
Heavy Atoms restraints
300 KJ molt nm2

!

System Equilibration, step 6:
Backbone Atoms restraints
200 K mol't nm-2

I

System Equilibration, step 7:
Backbone Atoms restraints
100 KJ molt nm-2

!

System Equilibration, step 8:
No Restraints

Adding ionic concentration

Create Restraint Index &
topology

System Setup
(10 steps)

Free Molecular Dynamics

Fig. 1. PyMDSetup flowchart

as input. Next, it prepares and runs MD simulations for each
of the systems, thus obtaining static information (an ensemble
of modelled structures for each of the protein variants), and
dynamic data (trajectories for each of the protein variants).
Both types of information can later be used in a comparative
study.

The complete PyMDSetup workflow is represented in Fig-
ure[I] It starts with a simple loop around the input collection of
protein variants, with each loop modelling the corresponding
variant, preparing the structure for a MD simulation (MD
setup), and finally running the simulation. All the MD steps
are run using the GROMACS MD package. The first step
is modelling the mutated variant of the input protein, using
the SCRWL4 program [5]. In the next step, a GROMACS
topology is created, defining the modeled structure in terms
of geometrical properties, spatial relations and force field
parameters. The following two steps build a system box
surrounding the protein and fill it with water molecules,
mimicking the hydrated environment where proteins perform
its function in the living cells. Some of the water molecules
added in the system box are replaced by monoatomic ions in
the next steps, to neutralize the energy of the system, which

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

is needed when working with periodic boundary conditions
(PBC) for an accurate and efficient treatment of electrostatic
interactions. After that, a determined ionic concentration of
0.05M is added to mimic the physiological ionic strength.
Next steps of the pipeline correspond to an extended MD setup
pipeline needed in complex or big systems, composed of two
energetic minimization steps and eight system equilibration
steps. Details on the simulation configuration (force field,
ensemble, setup parameters, minimization and equilibration re-
straints and time) are described elsewhere [4]]. Finally, with the
system completely equilibrated, a 5ns-length free (unbiased)
MD simulation is launched as a final step in the pipeline.

The test case chosen to run a massively parallel execution
using the described workflow is the Pyruvate Kinase protein
(PDB code 2VGB [6]). Pyruvate Kinase is a widely studied
enzyme in biochemistry, due to its major role in the regula-
tion of glycolysis. It catalyzes the irreversible conversion of
phosphoenolpyruvate (PEP) to pyruvate, generating an ATP
molecule in the process. More specifically, the structure used is
a representative of the human erythrocyte pyruvate kinase (R-
PYK), one of the four known human pyruvate kinase isoforms,
encoded by gene PKLR and expressed in erythrocytes. It
has been selected because of its large number of annotated
missense variants that have been associated to a disease
called non-spherocytic hemolytic anemia, a rare, autosomal
recessive disease that causes blood disorders characterized by
the premature destruction of red blood cells (erythrocytes),
resulting in anemia. To be able to get the most out of the
combination of PyCOMPSs and the PyMDSetup workflow,
a set of 200 mutations consisting on reported pathogenic
variants were manually selected from the whole set of variants
available at the UniprotKB database [7], and used as input.
With these inputs, the generated workflow can sequentially
run 200 totally independent MD simulations, which are then
parallelized by PyCOMPSs.

A shortened, simplified version of the PyMDSetup workflow
called biobb_wf_mutations was used to run the validation
tests (see Section [[V]). This workflow, generated initially to
present the BioExcel building blocks to the computational
biomolecular community, is basically performing the same
work than the original one: looping around a collection of
protein variants, modelling the mutation and computing an MD
simulation from each of them. The difference relies on the MD
setup process (Figure 1)), which in this case is reduced from 10
steps to just three steps. These three steps consist of an energy
minimization followed by two steps of equilibration: the first
one with constant volume (NVT ensemble), and the second
one with constant pressure (NPT ensemble). This approach is
based on the well-known GROMACS MD setup tutorial [8]],
which was built with teaching purposes and is only valid
for molecules with small complexity. When working with
complex systems, such as the one recently introduced, more
elaborated approximations such as the PyMDSetup pipeline
are recommended.

B. PyCOMPSs

PyCOMPSs is a task-based programming model that en-
ables the parallel execution of sequential Python code with
minimal effort. To this end, it provides a set of Python
decorators that allow the user to identify the function/methods
to be considered as tasks and a small API for synchronization.
PyCOMPSs also features a runtime that is able to identify the
data dependencies that exist among tasks and to extract the
parallelism between them building a data dependency graph
of tasks. The runtime is also responsible of managing their exe-
cution across distributed infrastructures (e.g., Grids, Clusters,
Clouds, and Container manager clusters) — scheduling them
and performing the necessary data transfers when needed —
guaranteeing that the result is the same as if the application
was executed sequentially.

The main decorator that PyCOMPSs provides to identify
that a function/method has to be considered as a task is the
@task decorator. This decorator can be placed on top of any
function, instance method or class method and it is used
to identify the function’s input/output parameters and return
peculiarities.

Moreover, PyCOMPSs provides a set of decorators to
identify that the execution of a binary is considered as a task.
In particular, PyCOMPSs support the invocation of three types
of binaries: simple binaries, MPI binaries, and OMPSs. To this
end, the @binary, @mpi, and @ompss decorators respectively
have to be placed on top of the @task decorator. The users
must also specify the binary to execute, as well as the specific
parameters for MPI and OmpSs invocation (i.e., the number
of nodes to use). The @task and @mpi have been used to
parallelize the PyMDSetup application. For this reason, they
will be described with further detail in the next subsection.

Besides, PyCOMPSs also supports the tasks constraint
definition. To this end, it provides the @constraint decorator,
which also needs to be placed on top of the stack of decorators.
Constraints are also used to let the developers provide hints
on the fault tolerance at task level thus allowing to discard
parts of a workflow that don’t lead to relevant results or that
fail for some reason, without affecting the main application. In
the related work we provide more details on the reasons why
PyCOMPSs is a better solution for this kind of applications.

C. Applying PyCOMPSs to PyMDSetup

The first step was to identify in the PyMDSetup code the
potential functions to be considered as tasks, as well as the
ones that could benefit from a particular PyCOMPSs specific
decorator.

Since the PyMDSetup was sorted out into functions per
step, we considered each step as a task. The two main reasons
for this decision were: 1) to allow to modify the mutation
analysis, including new steps, doing other or repeating already
existing steps, and sort them; and 2) since PyMDSetup worked
sequentially and each step included the necessary invocations
to binaries with parameter parsing and pre/post processing,
they represented perfectly the unit of work for a task. We
considered the idea of using the @binary decorator, but it

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

was discarded since each step does specific parameter parsing
and includes specific processing using Python.

For example, the scwrl function (see Listing|l)) generates an
scwrl.Scwrl object, and calls its 1aunch method, which
contains the code to perform the Scwrl step. This function
consumes a file (provided through the input_pdb_path)
and produces another as a result (stored in the path indicated
by the output_pdb_path parameter). This function has
been decorated with the @task decorator, and defined that the
parameter input_pdb_path is a FILE with IN direction,
while output_pdb_path is also a FILE, but with OUT
direction.

@task (input_pdb_path=FILE_IN,
output_pdb_path=FILE_OUT)
def scwrl_pc (input_pdb_path,
output_pdb_path,
properties,
**xkwargs) :
try:
scwrl.Scwrld (input_pdb_path,
output_pdb_pat,
properties,
x*xkwargs) .launch ()
except Exception:
traceback.print_exc ()
write_failed_output (output_pdb_path)

Listing 1: @task decorator example.

However, there where three steps (mdrun_pc, mdrun_pc_cpt
and mdrun_pc_all) that internally execute Gromacs with dif-
ferent parameters. Since they did not require parameter parsing
nor specific Python code, and Gromacs can benefit from
running internally in parallel with MPI, we decided to use
the @mpi decorator in conjunction with the @constraint
decorator.

An example of this usage is shown in Listing[2] It depicts the
mdrun_pc function, which invokes gromacs with the mdrun
parameter, and then, consumes an input file and produces a
set of output files (each one preceded by its required flag). It
has been decorated with @mpi, specified the MPI runner and
the binary to invoke (gmx_mpi), and the number of nodes
that will be assigned to its execution (computing_nodes).
Thus, it has been decorated with @constraint to define the
number of processes that will be spawned per computing node
(computing_units).

When the mdrun_pc function is invoked, the runtime runs
gmx_mpi in a worker node considering all defined task
parameters, as shown in Listing [3] The call provides to the
mpirun the number of nodes and computing units, as well as
the file with the hostnames where to run the MPI binary, and
all binary arguments in the same order as defined in the task
function.

Finally, we included a compss_barrier() after the main
mutations loop, so that the execution does not continue until
all mutation analysis finish.

@constraint (computing_units=computing_units)

@mpi (runner="mpirun", binary="gmx_mpi",

computing_nodes=computing_nodes)

@task (input_tpr_path=FILE_IN,
output_gro_path=FILE_OUT,
output_trr_path=FILE_OUT,
output_xtc_path=FILE_OUT,
output_edr_path=FILE_OUT,
output_log_path=FILE_OUT)

def mdrun_pc (mdrun="mdrun",

s="-s", input_tpr_path,
c="-c", output_gro_path,
o="-o", output_trr_path,

x="-x", output_xtc_path,

e="-e", output_edr_path,

g="-g", output_log_path):
pass

Listing 2: @mpi decorator example.

mpirun -hostfile <hostnames_file> \
-n computing_nodes * computing_units \
gmx_mpi mdrun -s input_tpr_path \

—-c output_gro_path

-0 output_trr_path

-x output_xtc_path

—e output_edr_path

—-g output_log_path

s

Listing 3: mdrun_pc invokation equivalence.

D. Parallelization analysis

The main benefit observed from the application of the paral-
lelization described in the previous section is that the process
of analysing a mutation can be performed in parallel with
any other mutation, enabling to examine multiple mutations
at the same time (if enough resources are available). Besides,
the COMPSs runtime can detect some parallelism within each
mutation. This can be easily observed in the task dependency
graph that the COMPSs runtime builds (Figure [2), which
shows a two mutation analysis.

In particular, there are 12 defined tasks in PyMDSetup, and
each mutation requires 39 invocations (39 tasks for mutation).
Moreover, the PyMDSetup also includes two extra tasks to
perform a reduction of the results and generate a plot. The plot
can be deactivated since it becomes useless when performing
the analysis of lots of mutations (e.g., more than 16). In this
case, a post-mortem analysis of the files produced by the
execution becomes necessary.

Concerning the code, Table [I| shows the PyMDSetup lines
of code, remarking the PyCOMPSs lines which enable this
parallelization. Notice that with only 31 lines of Python code,
the parallelism of the whole application can be achieved
without dealing with any of the complexities of parallelization.
The PyCOMPSs impact on the code represents less than
1.5%, just composed by 20 decorators (14 @task, 3 @mpi
and 3@constraint), 6 imports, and 1 compss_barrier. Finally,
the lines required in shell scripts (Bash) are related to the
run/launch commands provided by PyCOMPSs.

In conclusion, we have been able to parallelize the PyMD-
Setup application with PyCOMPSs with a minimal impact

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

:

.

Fig. 2. Task dependency graph (2 mutations)

TABLE I
LINES OF CODE

Language | Files | Blank | Comment | Code | PyCOMPSs lines
Python 22 314 333 1839 27
YAML 2 94 112 936 0
Markdown 1 27 0 95 0
Bash 9 14 60 87 4
Total 34 449 505 2967 31

on the code, achieving relevant parallelism, and hiding the
parallelization complexities to the developer and user.

IV. VALIDATION

We have performed a set of experiments to validate the effi-
ciency of PyCOMPSs parallelizing the PyMDSetup workflow
to scale to large supercomputing infrastructures. To perform

these experiments, we have set up two MD analysis with the
parallelised version of PyMDSetup:

1) Reduced PyMDSetup (biobb_wf_mutations): A 16-step
MD analysis to evaluate how the different application
parameters and resource configurations affect the execu-
tion scalability, and how the PyCOMPSs parallelization
can be tuned to get the maximum execution perfor-
mance. The code of this experiment is available at [9].

2) Complete PyMDSetup (PyMDSetup): The study of the
Pyruvate Kinase protein where we evaluate the massive
parallelization of the PyMDSetup tool when we study a
large number of mutations using thousands of CPUs in
parallel. The code of this experiment is available at [10]

A. Infrastructure

The results presented in this section have been obtained
using the MareNostrum IV Supercomputer [[11] located at
the Barcelona Supercomputing Center (BSC). Its current peak
performance is 11.15 Petaflops, ten times more than its
previous version, MareNostrum III. The supercomputer is
composed by 3,456 nodes, each of them with two Intel®Xeon
Platinum 8160 (24 cores at 2,1 GHz each). It has 384.75
TB of main memory, 100Gb Intel® Omni-Path Full-Fat Tree
Interconnection, and 14 PB of shared disk storage managed
by the Global Parallel File System.

B. Results

1) Reduced PyMDSetup (biobb_wf _mutations): This sec-
tion presents the results of the experiments performed with the
reduced workflow with the parallelized version of PyMDSetup.
In this section, we have conducted several runs with different
application parameters and several resource configurations
to know how the application performs depending on these
parameters. The first experiment aims at evaluating the per-
formance of a single mutation analysis depending on the
analysis problem size and on the number of computing nodes
assigned to each part of the simulation. The duration of this
16-step MD analysis is dominated by the mdrun tasks which
run a Molecular Dynamics simulation using the GROMACS
software. The duration of this simulation grows with the
number of simulation steps and can be parallelized with MPI.

Figure [3] shows the scalability of a single mutation analysis
for different simulation steps when increasing the number of
nodes per mdrun task from one to eight. In each node, we
spawn 48 MPI processes. Hence, the simulation uses from
48 to 384 MPI processes. This processes-to-task mapping has
been easily configured modifying the computing_nodes
and computing_units properties of the PyCOMPSs deco-
rators. The figure shows that for higher (1M5Steps) simulation
steps the scalability is better and, up to 4 nodes, it is close to
ideal. However, with more than 4 nodes, the scalability starts
to worsen.

The second experiment focuses on evaluating the scalability
of the PyCOMPSs parallelization by performing a strong and
weak scaling analysis. Figure f] shows the results of the strong
scaling analysis. In this case, we have evaluated 48 mutations,

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

—8— 15K Steps —®— 150K Steps —®—1M5Steps Ideal

Speed-up

P N W Ry N0

1 2 3 4 5 6 7 8
Computing nodes per mdrun tasks

Fig. 3. Scalability of one mutation analysis using different computing nodes
and simulation steps for the mdrun task executions

800
700
600
500
400
300
200
100

: H =

1 6 12 24 48
Computing Nodes

Execution Time(min)

—e—Speed-up —®—|deal
48

42
36

g 30

T 24

o

o

v 18
12

(0]

0 6 12 18 24 30 36 42 48
Computing Nodes

Fig. 4. Strong scaling results for 48 mutations analysis (one node per mdrun
and 15K steps analysis using different computing nodes for the mdrun task
executions

15K simulation steps per evaluation and mapping one node
(48 MPI processes) per mdrun task. The figure shows that
scalability is growing close to the ideal. The results of the
weak-scaling analysis are shown in Figure [5] where we have
increased the number of computing nodes with the number of
mutations. In this case, we have seen that the time is quite
similar in all the runs, and the efficiency is higher than 90%

in all cases.

mTime —— Efficency

l 8 a-me,..r-wmkwvmmw« - l

17 :
E 09
E 16

15]
E .
'; 14 :g
213 .
3
o 12
: 0,6

11

10 -

. . 12 24 48

Mutations - Computing Nodes

Fig. 5. Weak scaling results with a load of one mutation analysis of 15K
steps

Analysing the previous results (mdrun task parallelism and
the whole workflow parallelism), we can observe that there is
a trade-off between the number of parallel tasks and the grade
of parallelism inside the mdrun tasks. For a fixed number of
resources per application, the more resources are assigned to
tasks the less parallel tasks are run. However, in this case,
having more tasks in parallel leads to a better scalability than
using more resources per task. Therefore, we can conclude that
the optimal setup is assigning the resources per task to achieve
the maximum number of tasks in parallel. Figure [f] depicts the
mentioned trade-off. It shows the execution time of a different
number of mutations and the mdrun task configuration, using
a total of 24 computing nodes. The results confirm our
conclusion: with 24 mutations, we achieve the best time using
one node per task; with 12 mutations, we achieve the best time
using two nodes per tasks, and so on.

=24 Mut. ——12 Mut. 6 Mut.

1 2 4
Computing Nodes per mdrun

co

Fig. 6. Mutations/nodes-per-mdrun trade-off (24 computing nodes)

Notice that setting this optimal configuration with Py-
COMPSs is very easy since the users can pre-calculate the
number of nodes per task by comparing the number of mu-

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

tations and nodes, and assign it to the computing_nodes
property of the PyCOMPSs decorator.

2) Complete PyMDSetup: This section focuses on the
analysis, using the Paraver [[12]] tool, of massively parallel
execution of the workflow on 800 nodes of MareNostrum
IV (which involves 38,400 cores) with the Pyruvate Kinase
protein. Paraver is a powerful performance visualisation and
analysis tool based on traces developed at BSC that can be
used to analyse any information that is expressed on its input
trace format. In the case of PyCOMPSs applications, its run-
time is instrumented with Extrae [13]], a BSC instrumentation
package that can generate trace files for Paraver. Producing
trace files for PyCOMPSs users is enabled by setting an
execution flag.

The total number of tasks executed in this work-
flow instance is 7,800. Three main tasks for each
mutation dominate the workflow execution: pyruvateK-

inase_ MN.mdrun_pc (performs a minimization process), pyru-
vateKinase_ MN.mdrun_pc_cpt (implements the equilibration
of the data) and pyruvateKinase_ MN.mdrun_pc_all (executes
the final simulation). These three tasks are all parallel invoca-
tions (with MPI) of GROMACS executed in 4 nodes. Figure
shows a timeline with the task view of this execution, where
each colour represents a task type.

[] [] Compss Tasks @ pymdsetup.prv

What f Where Timing M
- pyruvateKinase_MN.mdrun_pc
pyruvateKinase_MN.mdrun_pc_cpt

- pyruvateKinase_MN.mdrun_pc_all

Fig. 7. Paraver timeline view of the tasks of the Pyruvate Kinase workflow

The 7,800 tasks are generated at the beginning, and their
dependencies are analysed. For each of the tasks, the runtime
takes an average of 709.75us per task to register it, an average
of 1.80ms per task to analyse its dependencies with other
tasks, and an average of 4.80ms to schedule the task if it is
ready for execution (the task does not have dependencies with
previous tasks). Every time a task finishes, the runtime updates
the task graph (average of 573.30us), and if new tasks are
now ready for execution, it tries to schedule them to available
resources (average of 120.39ms).

These processes are performed by three different threads
in the runtime and partially overlapped between them in
such a way that these overheads do not directly impact the
tasks’ spawning time. Figure [§] shows a Paraver capture of
the beginning of the application execution highlighting the
behaviour of the three runtime threads. The different colours
represent the different actions performed by the runtime.

@ Compss Runtime @ pymdsetup.prv

L CTORIETY o T T YT R
What / Where Timing [eIERY
I Execute Task Task registration
Access Processor: Analyse task < Dependence analysis
Task Dispatcher: Action update ~ Scheduling of successors

- Task Dispatcher: Execute tasks < Initial scheduling

Fig. 8. Paraver timeline view of the runtime behaviour

Number executing tasks @ pymdsetup.prv

Fig. 9. Paraver view showing the number of tasks on execution at each
moment

The interval between the registration of the first task and its
execution is of 520.71ms. From there, the interval to schedule
a new sequential task takes between 375 — 429ms. However,
when the task to be scheduled is a multi-node one (GROMACS
MPI simulation), this time grows up to 1, 750ms. In any case,
since the MPI simulations dominate the execution, once the
tasks have been scheduled, the computation resources are all
used. Figure [0 shows the profile of the number of tasks on
execution at each moment of the run, being the top value the
800 x 48 cores of the allocation. This figure shows that for
most of the execution time, the allocation is 100% used.

We have also analysed the wvariability of the dura-
tion of the dominating tasks. Most of the pyruvateK-
inase_ MN.mdrun_pc_all (97%) have a duration between 215
- 229 minutes. There are a few of these tasks (3%) that
take around 275 minutes. However, this almost homogeneous
behaviour is not observed in all the tasks. For example, for
the pyruvateKinase_ MN.mdrun_pc_cpt task, we observe three
different behaviours: there are 25% of the tasks that take 37.5s
in average; 50% of the tasks that take 65.3s on average, and
25% of the tasks that take around 279.7s in average.

Figure [I0] shows an histogram of the duration of the task
pyruvateKinase_ MN.mdrun_pc_cpt where the triple behaviour
mentioned above can be observed. This triple behaviour of
the task has an explanation in the code: for each mutation,

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

the task is executed in 8 phases with different parameters and
a different number of steps (nsteps). For two of the phases,
nsteps is 5,000; for 4 of the phases, nsteps is 10,000 and finally,
for two other phases, nsteps is 50,000.

[) @ 3DH duration tasks @ pymdsetup.prv
B3 & BHETA - X%

L.

R A AR e R AR

hiuri'e

THREAD 1.572.29 [412,096,343,183.13..415,082,515,220.69) =

Fig. 10. Paraver histogram showing the duration of the pyruvateK-
inase_MN.mdrun_pc_cpt task

The task pyruvateKinase_MN.mdrun_pc also shows vari-
ability: in this case, half of the tasks (200) last on average
124.54s and the other half last 505.89s on average. In this
case, the slower tasks (that also show higher variability) are
executed after the faster ones.

V. RELATED WORK

The use of computational workflows has become ubiquitous
for data analytics in the field of bioinformatics since the
last decade. In the literature, more than 200 workflows sys-
tems [14] can be found, targeting specific scientific domains,
different execution models and usability approaches. Workflow
systems can be classified according to the model used to define
the tasks and the data dependencies and to the characteristics
of the engine that executes the workflow on the computing
platform. With relation to the tasks definition features, some
frameworks allow to explicitly define the workflow through
a recipe file or a graphical interface while others permit the
users to program their applications and let the runtime build
a dependency graph from the user code. Another relevant
characteristic for the classification of these frameworks is the
level of integration with the different computing platforms as
distributed environments (such as grids, clouds, and clusters),
and HPC systems with multi-core architectures and accelera-
tors (such as GPGPUs).

Amongst all these tools, in this paper we focus on the
features that are more convenient for the orchestration of
molecular dynamics simulations, taking into account interoper-
ability across a variety of software and hardware environments,
scalability, and reproducibility. In particular, we consider HPC-
focused workflow managers that can compose and run work-
flows with advanced features as elasticity, adaptability, and
fault tolerance.

Taverna [15]], [16], Kepler [17], [18]], Galaxy [19], [20] are
well known graphical environments for the composition of
workflows that can be stored and shared with other users of the
community and that are typically executed on supercomputers,
grids, or cloud environments. KNIME [21]] Analytics Platform
also includes a graphical interface and supports external frame-
works like Keras and Spark.

More bioinformatics specific environments have been re-
cently developed. Crossbow [22] is a Python-based toolkit
for workflow construction and execution, aimed mainly at
Crossbow clusters but more generally at distributed comput-
ing environments. It provides an easy entry to cloud-based
computing for biomolecular simulation scientists. Crossbow
shares many of its design aspects with Parsl [23]]. It provides
tools to wrap Python functions and external applications (e.g.,
legacy MD simulation codes), in such a way that they can
be combined into workflows using a task-based paradigm.
Crossbow uses Dask [24] Distributed as the task scheduling
and execution layer.

RADICAL-Cybertools [25] enable the execution of
ensemble-based applications on a variety of high performance
computing infrastructures. An increasing number of scientific
domains are adopting and benefiting from ensemble-based
applications. Most notably, MD simulations are nowadays
executed as many parallel jobs of ns-length simulations rather
than a single, long, and very large MPI job. AdaptiveMD [26]]
is a Python package designed to create HPC-scale workflows
(parallel tasks) for adaptive sampling of biomolecular MD sim-
ulations. AdaptiveMD is designed as a distributed application
that can be launched from a laptop or directly on an HPC
resource and asynchronously automate the workflow creation
and execution. Multiple adaptive sampling algorithms are fully
automated with minimal user input, while advanced users can
easily make modifications to workflow parameters and logic
through the Python API. Runtime adaptations include the use
of interim data as task properties such as analysis types or
parameters, and workload properties such as task count or
convergence criteria. To provide robust workflow management,
AdaptiveMD is also integrated with the RADICAL Cybertools
stack, which significantly enhances the runtime error detection
and correction functionality, but has a much higher installation
and configuration overhead.

The solution described in this proposal advances the men-
tioned approaches in the move to developing robust and
scalable scientific workflow without the requirement of deep
programming knowledge on the users. The adoption of Py-
COMPSs provides powerful features which simplify the de-
velopment and executions of complex workflows combining
several types of heterogeneous tasks running in parallel on
thousands of computing cores. Graphical workflow systems
like Galaxy and KNIME have generally limited support for
using HPC and HTC compute infrastructure in combination
with high-performance codes like GROMACS, while our solu-
tion provides a solid solution for the execution of applications
on a lot of computing backends withou the need of adapting
the code to a specific one.

https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

VI. CONCLUSIONS

The paper has presented a work to reduce the gap between
biomolecular research and the high performance computing
world. The motivation for this work comes from the analysis,
performed in the context of the BioExcel project, of the current
situation around the execution of biomolecular workflows in
supercomputing facilities.

The proposal has been developed around two pillars: us-
ability and efficiency. A library of platform agnostic building
blocks for molecular dynamics has been used to address the
usability requirement, and pipelines made of these blocks
have been defined adopting a task based approach that has
a minimal impact on the code and that enables parallelization
at execution time. Efficiency in the execution of the resulting
workflows on supercomputing premises has been achieved
through the parallel execution of different mutations using the
COMPSs programming framework. The results of the runs,
on up to 38,400 cores of the MareNostrum IV supercomputer,
demonstrate that the workflows can be easily scaled to a large
number of nodes and that the optimal configuration of the
execution parameters can be obtained without modifying the
user code. A complete analysis of the executions also proves
that the workflow manager selected in our approach allocates
the resources for the different types of tasks in the proper way
with an almost 100% of utilization of the pool.

Future work is based on a well defined roadmap whose tasks
will be performed in the BioExcel-2 project. The first topic
is focused on the development of more complex workflows,
extending the set of building blocks library, to exploit the
power of the current supercomputer generation approaching
the exascale paradigm. In connection with this topic, another
relevant part in the roadmap is the introduction of data
analytics in the workflows, in particular, the adoption of
High Performance Data Analytics (HPDA) coupled to High
Performance Computing (HPC). The use of HPC parallel
processing to run powerful data analysis software tools opens
the possibility to examine large (even massive) datasets within
a reasonable time. A set of HPDA building blocks will
be developed, starting with a recently developed library for
distributed computing integrated on top of the PyCOMPSs
framework and focused on machine learning. The last part of
the work plan addresses the enhancement of the programming
framework interfaces to deal with the requirement of porting
the workflows to (pre)exascale facilities. These extensions
allow to express dynamicity and support the description of
iterative constructions such as conditional loops, still offering
the full expressiveness of the programming language for
complex algorithms, like optimization searches.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
(SEV2015-0493), by the Spanish Ministry of Science and
Innovation (contract TIN2015-65316-P), by the Generalitat
de Catalunya (contract 2014-SGR-1051), and by the Euro-
pean Commission through BioExcel Center of Excellence
(Horizon 2020 Framework program) under contracts 823830,

and 675728. Cristian Ramon-Cortes predoctoral contract is
financed by the Ministry of Economy and Competitiveness
under the contract BES-2016-076791.

REFERENCES

[1] S. Pronk, S. PII, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel,
B. Hess, and E. Lindahl, “GROMACS 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit,”
Bioinformatics, vol. 29, no. 7, pp. 845-854, 02 2013. [Online].
Available: https://doi.org/10.1093/bioinformatics/btt055

[2] C. Dominguez, R. Boelens, and A. M. J. J. Bonvin, “HADDOCK:
A ProteinProtein Docking Approach Based on Biochemical or
Biophysical Information,” Journal of the American Chemical Society,
vol. 125, no. 7, pp. 1731-1737, 2003. [Online]. Available: https:
//doi.org/10.1021/ja026939x

[3] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele,
“cp2k: atomistic simulations of condensed matter systems,” Wiley
Interdisciplinary Reviews: Computational Molecular Science, vol. 4,
no. 1, pp. 15-25, 2014. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/wcms.1159

[4] B. C. of Excellence. (2018) BioExcel building blocks. [Online].
Available: https://github.com/bioexcel/biobb

[5] G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack Jr., “Improved
prediction of protein side-chain conformations with SCWRL4,”
Proteins: Structure, Function, and Bioinformatics, vol. 77, no. 4, pp.
778-795, 2009. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/prot.22488

[6] G. Valentini, L. R. Chiarelli, R. Fortin, M. Dolzan, A. Galizzi, D. J.
Abraham, C. Wang, P. Bianchi, A. Zanella, and A. Mattevi, “Structure
and Function of Human Erythrocyte Pyruvate Kinase: MOLECULAR
BASIS OF NONSPHEROCYTIC HEMOLYTIC ANEMIA,” Journal
of Biological Chemistry, vol. 277, no. 26, pp. 23 807-23 814, 2002.
[Online]. Available: http://www.jbc.org/content/277/26/23807.abstract

[7]1 Uniprot - ELIXIR dore data resource. (1993) Pklr - pyruvate kinase
pklr - homo sapiens (human) - pklr gene and protein. [Online].
Available: https://www.uniprot.org/uniprot/P30613

[8] J. A. Lemkul. (2018) GROMACS MD Setup Tutorial. [Online].
Available: http://www.mdtutorials.com/gmx/lysozyme/index.html

[9] BioExcel Center of Excellence. (2019) biobb wf mutations. [Online].
Available: https://github.com/bioexcel/biobb_w{_mutations

(2019) PyMDSetup. [Online]. Available: https://github.com/

bioexcel/pymdsetup

Barcelona Supercomputing Center (BSC). (2018) MareNostrum

IV Technical Information. [Online]. Available: https://www.bsc.es/

marenostrum/marenostrum/technical-information

. (2013) Paraver Tool. [Online]. Available: https://tools.bsc.es/

paraver

M. Wagner, G. Llort, E. Mercadal, J. Gimenez, and J. Labarta, “Perfor-

mance Analysis of Parallel Python Applications,” Procedia Computer

Science, vol. 108, pp. 2171-2179, 06 2017.

Common Workflow Language Group. (2019) Existing

Workflow systems. [Online]. Available: |https://github.com/

common-workflow-language/common-workflow-language/wiki/

Existing- Workflow-systems

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,

S. Owen, S. Soiland-Reyes, 1. Dunlop, A. Nenadic, P. Fisher,

J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la

Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna

workflow suite: designing and executing workflows of Web Services

on the desktop, web or in the cloud,” Nucleic Acids Research,

vol. 41, no. WI, pp. W557-W561, 05 2013. [Online]. Available:

https://do1.org/10.1093/nar/gkt328

T. Committers. (2014) Apache Taverna. [Online]. Available: https:

//taverna.incubator.apache.org/

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,

E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management

and the Kepler system,” Concurrency and Computation: Practice and

Experience, vol. 18, no. 10, pp. 1039-1065, 2006.

U. Davis, U. S. Barbara, and U. S. Diego. (2004) The Kepler Project.

[Online]. Available: https://kepler-project.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1021/ja026939x
https://doi.org/10.1021/ja026939x
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1159
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1159
https://github.com/bioexcel/biobb
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.22488
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.22488
http://www.jbc.org/content/277/26/23807.abstract
https://www.uniprot.org/uniprot/P30613
http://www.mdtutorials.com/gmx/lysozyme/index.html
https://github.com/bioexcel/biobb_wf_mutations
https://github.com/bioexcel/pymdsetup
https://github.com/bioexcel/pymdsetup
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://doi.org/10.1093/nar/gkt328
https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/
https://kepler-project.org/
https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439795; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

[19] E. Afgan, D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier,
M. Cech, J. Chilton, D. Clements, N. Coraor, C. Eberhard, B. Griining,
A. Guerler, J. Hillman-Jackson, G. Von Kuster, E. Rasche, N. Soranzo,
N. Turaga, J. Taylor, A. Nekrutenko, and J. Goecks, “The Galaxy plat-
form for accessible, reproducible and collaborative biomedical analyses:
2016 update,” Nucleic Acids Res., vol. 44, no. W1, pp. W3-W10, 2016.

[20] G. Team. (2005) Galaxy. [Online]. Available: https://usegalaxy.org/

[21] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, “KNIME: The Konstanz
Information Miner,” in Data Analysis, Machine Learning and Applica-
tions, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319-
326.

[22] N. Physical and T. C. Group. (2019) Crossbow. [Online]. Available:
https://github.com/ChrisSuess/Project- Xbow

[23] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde,
and K. Chard, “Parsl: Pervasive Parallel Programming in Python,”
in Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: ACM, 2019, pp. 25-36. [Online]. Available:
http://do1.acm.org/10.1145/3307681.3325400

[24] Dask: Library for dynamic task scheduling, Dask Development Team,
2016. [Online]. Available: https://dask.org

[25] V. Balasubramanian, S. Jha, A. Merzky, and M. Turilli, “RADICAL-
Cybertools: Middleware Building Blocks for Scalable Science,” ArXiv,
vol. abs/1904.03085, 2019.

[26] O. R. N. Laboratory. (2019) AdaptiveMD. [Online]. Available:
https://github.com/markovmodel/adaptivemd

10

https://usegalaxy.org/
https://github.com/ChrisSuess/Project-Xbow
http://doi.acm.org/10.1145/3307681.3325400
https://dask.org
https://github.com/markovmodel/adaptivemd
https://doi.org/10.1101/2021.04.14.439795
http://creativecommons.org/licenses/by-nd/4.0/

