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ABSTRACT10

Evolutionary adaptation often occurs via the fixation of beneficial point mutations, but different types of mutation11

may differ in their relative frequencies within the collection of substitutions contributing to adaptation in any given12

species. Recent studies have established that this spectrum of adaptive substitutions is enriched for classes of mutations13

that occur at higher rates. Yet, little is known at a quantitative level about the precise extent of this enrichment, or14

its dependence on other factors such as the beneficial mutation supply or demographic conditions. Here we address15

the extent to which the mutation spectrum shapes the spectrum of adaptive amino acid substitutions by applying a16

codon-based negative binomial regression model to three large data sets that include thousands of amino acid changes17

identified in natural and experimental adaptation in S. cerevisiae, E. coli, and M. tuberculosis. We find that the18

mutation spectrum has a strong and roughly proportional influence on the spectrum of adaptive substitutions in all19

three species. In fact, we find that by inferring themutation rates that best explain the spectrum of adaptive substitutions,20

we can accurately recover species-specific mutational spectra obtained via mutation accumulation experiments. We21

complement this empirical analysis with simulations to determine the factors that influence how closely the spectrum of22

adaptive substitutions mirrors the spectrum of amino acid variants introduced by mutation, and find that the predictive23

power of mutation depends on multiple factors including population size and the breadth of the mutational target for24

adaptation.25

SIGNIFICANCE STATEMENT26

How do mutational biases influence the process of adaptation? Classical neo-Darwinian thinking assumes that27

selection alone determines the course of adaptation from abundant pre-existing variation. Yet, theoretical work shows28

that under some circumstances the mutation rate to a given variant may have a strong impact on the probability of29

1 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


that variant contributing to adaptation. Here we introduce a statistical approach to analyzing how mutation shapes30

protein sequence adaptation, and show that the mutation spectrum has a proportional influence on the changes fixed31

in adaptation observed in three large data sets. We also show via computer simulations that a variety of factors can32

influence how closely the spectrum of adaptive substitutions mirrors the spectrum of variants introduced by mutation.33
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INTRODUCTION36

A systematic empirical picture of the spectrum of adaptive substitutions is beginning to emerge from methods37

of identifying and verifying individual adaptive changes at the molecular level. The most familiar method is the38

retrospective analysis of adaptive species differences, often in cases where multiple substitutions target the same39

protein, e.g., changes to photoreceptors involved in spectral tuning [1], changes to ATPase involved in cardiac glycoside40

resistance [2], or changes to hemoglobin involved in altitude adaptation [3]. Other retrospective analyses focus on cases41

of recent local adaptation, such as the repeated emergence of antibiotic-resistant bacteria [4, 5] or herbicide-resistant42

plants [6]. In addition, experimental studies of adaptation in the laboratory provide large and systematic sets of data on43

the spectrum of adaptive substitutions [7,8]. While the first two types of studies tend to focus on specific target genes,44

the third approach, combined with genome sequencing, casts a much broader net, covering the entire genome. Such45

data were rare just 15 years ago, but they are now sufficiently abundant—cataloging thousands of adaptive events—that46

accounting for the species-specific spectrum of adaptive substitutions represents an important challenge.47

One aspect of this challenge is to understand the role of mutation in shaping the spectrum of adaptive substitutions.48

Systematic studies of the distribution of mutational types in diverse organisms [9–17] have demonstrated the presence49

of a variety of biases, including transition bias and GC:AT bias, as well as CpG bias and other context effects (for50

review, see [18]). At the same time, multiple studies have now shown that adaptive substitutions are enriched for51

these mutationally likely changes [5, 19–26]. For instance, the influence of a mutational bias favoring transitions is52

evident in the evolution of antibiotic resistance inMycobacterium tuberculosis [5]. Likewise, the evolution of increased53

oxygen-affinity in hemoglobins of high-altitude birds shows a tendency to occur at CpG hotspots [24].54

Such studies have shown effects of specific types of mutation bias using statistical tests for asymmetry, i.e., tests for55

a significant excess of a mutationally favored type, relative to a null expectation of parity. A more general question is56

how strongly the entire mutation spectrum shapes the spectrum of adaptive substitutions. That is, the entire mutation57

spectrum reflects (simultaneously) all relevant mutation biases, and this spectrum shapes the spectrum of adaptive58

substitutions to some degree that is, in principle, quantifiable and measurable.59

Here, we provide an approach to this more general question, based on modeling the spectrum of missense mutations60

underlying adaptation as a function of the nucleotide mutation spectrum. More specifically, we use negative binomial61
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regression to model observed numbers of adaptive codon-to-amino acid changes as a function of codon frequencies and62

per-nucleotide mutation rates, which we derive from experimental measurements of mutation spectra in the absence63

of selection. This modeling framework allows us to measure the influence of mutation bias on adaptive evolution in64

terms of the regression coefficient associated with the mutation spectrum.65

We separately apply this approach to three data sets of missense changes associated with adaptation in Saccha-66

romyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. We find that, in each case, the regression on the67

mutation spectrum is significant, with a regression coefficient close to 1 (proportional effect) and significantly different68

from zero (no effect). The ability to predict the spectrum of adaptive substitutions differs substantially amongst the69

three species, but in each case, we find that experimentally determined mutation spectra provide better model fits70

than the vast majority of randomized mutation spectra, confirming the relevance of empirical mutation spectra outside71

of the controlled conditions in which they are typically measured. Moreover, we show that by inferring the optimal72

mutational spectrum based on the spectrum of adaptive substitutions we can accurately recover species-specific pat-73

terns of mutational bias previously documented via mutation accumulation experiments or patterns of neutral diversity.74

Finally, we use simulations of a population model to explore the possible reasons for differences in predictability of the75

spectrum of adaptive substitutions. As expected, the impact of the mutation spectrum decreases as the total mutation76

supply (#`) increases. However, other factors are important, such as the size and heterogeneity (in adaptive value) of77

the set of adaptive mutations.78

RESULTS79

Data and model80

We curated a list of missense mutations associated with adaptation for each of three species: S. cerevisiae, E. coli,81

and M. tuberculosis (Fig. 1a,b; Methods). For S. cerevisiae, the mutations were associated with adaptation to one82

of several environments during laboratory evolution, including high salinity [27], low glucose [27], rich media [28],83

as well as the genetic stress of gene knockout [29]; for E. coli, the mutations were associated with adaptation to84

temperature stress during laboratory evolution [8]; for M. tuberculosis, the mutations were associated with natural85

adaptation to one or more of eleven antibiotics or antibiotic classes, and were derived from clinical isolates [5].86

Because of the possibility that the same substitutions underlie adaptation in multiple independent populations, we87

follow [23] in distinguishing between adaptive paths defined by a genomic position and a specific mutational change,88

and the number of substitutional events that have occurred along that path in independent populations. For example,89

the mutational path defined by a G→C transversion in the second position of codon 315 of KatG in M. tuberculosis,90

which changes Ser (AGC) to Thr (ACC), is known to confer resistance to the antibiotic isoniazid [30]. Events along91

this mutational path are common in adaptation, occurring 766 independent times in our data set. Below, when we92

construct the spectrum of adaptive substitutions, the data are further aggregated by the type of path, out of the 35493
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possible codon-to-amino-acid paths. For instance, all G→C transversions changing Lys (AAG) to Asn (AAC), at all94

positions in all genes for a given species, are counted together in the AAG to Asn category for that species, and this95

same category also includes all G→T transversions that change Lys (AAG) to Asn (AAT). Most codon-to-amino-acid96

paths, however, include only a single type of nucleotide change, e.g., the Ser (AGC) to Thr path only includes G→C97

transversions from AGC to ACC as in the KatG example above.98

Table 1 reports the number of mutational paths and adaptive events for each of our three species. While the99

M. tuberculosis data set is likely composed solely of adaptive changes (since all mutations included have been100

experimentally verified to confer antibiotic resistance, [5]), for S. cerevisiae and E. coli, we expect these data sets to be101

contaminated with a minority of hitchhikers, i.e., mutations that are not drivers of adaptation but which reached a high102

frequency due to linkage with a driver. Below, we first present our results under the assumption that the mutations in103

each data set are exclusively adaptive and then use simulations to assess the robustness of our conclusions to various104

degrees of contamination.105

For each species, we use the corresponding list of adaptive events to construct the spectrum of adaptive substitutions106

(Fig. 1c), which we represent as a 354-element vector n, where each element n(2, 0) corresponds to a single-nucleotide107

change from codon 2 to amino acid 0 allowed by the standard genetic code (Methods). For a given species, the value108

assigned to an element (codon-to-amino acid change) in the spectrum of adaptive substitutions is the observed number109

of adaptive events associated with that change.110

Our goal is to assess the extent to which the spectrum of adaptive substitutions is shaped by the spectrum of genetic111

changes introduced by mutation (Fig. 1d). To do so, we model the expected number E[n(2, 0)] of adaptive mutations112

from codon 2 to amino acid 0 as being directly proportional to the genomic frequency 5 (2) of codon 2, as well as113

potentially proportional to the total mutation rate `(2, 0) of codon 2 to codons for amino acid 0. We obtained codon114

frequencies from genomic sequences, and we obtained mutation rates from mutation accumulation experiments and115

single-nucleotide polymorphism data (Methods). In particular, our model can be expressed as116

E[n(2, 0)] ∝ 5 (2)`(2, 0)V (1)117

where V is an unknown coefficient that describes the dependence of E[n(2, 0)] on `(2, 0). Taking the logarithm of118

this equation gives119

logE[n(2, 0)] = V0 + log 5 (2) + V log `(2, 0) (2)120

where V0 determines the constant of proportionality. We use negative binomial regression to estimate V0 and V, which121

is appropriate for counts data that exhibit over-dispersion [31], such as the data studied here.122

Importantly, the regression coefficient V in Eqn. 2 measures the influence of mutation bias on adaptation. When123
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V = 0, E[n(2, 0)] no longer depends on `(2, 0), implying that mutation bias has no influence on the course of124

adaptation. When V = 1, E[n(2, 0)] is directly proportional to `(2, 0), implying a strong influence of mutation bias125

on adaptation. For instance, V = 1 implies that doubling the rate of a particular mutation type doubles the rate of126

adaptive substitutions of that type. Values of V between 0 and 1 indicate an intermediate influence of mutation bias on127

adaptation. In what follows, we therefore focus on estimating V for each of our three species of interest.128

Mutation bias influences adaptation in three distinct species129

To what extent does the spectrum of nucleotide changes introduced by mutations influence the genetic basis of130

adaptive evolution? The three species examined here differ substantially in their mutational spectra (Fig. S1a).131

M. tuberculosis shows the greatest heterogeneity in its mutational spectrum with a 14.5-fold difference between132

maximum and minimum mutation rates, whereas S. cerevisiae and E. coli have a somewhat smaller range of rates133

(5.6-fold and 4.7-fold ranges, respectively). The species also differ substantially in the rates of individual types of134

nucleotide mutations. For instance the rate of G→C transversion is 2.1-fold higher in S. cerevisiae than in E. coli (Fig.135

S1b), whereas the rate of A→T transversions is 2.6-fold higher in S. cerevisiae (Fig. S1c) and 3-fold higher in E. coli136

(Fig. S1d) than in M. tuberculosis. Simply comparing these mutational spectra to the spectra of adaptive substitutions137

observed in each species reveals a striking congruence between the rate that different types of nucleotide mutations138

arise in each species and the frequency that each type of mutation is used in the course of adaptation (Fig. 2a-c).139

While intriguing, the above analysis does not account for the potentially confounding effects of the genetic code and140

codon usage among the three species, where in particular the three species differ substantially in their patterns of codon141

usage (Fig. S1e-g). For example GAA (Glu) is the most frequent codon in S. cerevisiae (frequency 0.045) and the 2nd142

most frequent codon in E. coli (frequency 0.039), but it appears much less frequently in M. tuberculosis (frequency143

0.016). Thus, we might expect adaptive GAA→AAA (Glu→Lys) changes to occur more frequently in S. cerevisiae144

and E. coli than in M. tuberculosis, merely by merit of the greater frequency of GAA in the former two species. To145

account for this type of influence, as well as for the fact that identical amino acid substitutions can be produced by146

different nucleotide mutations because of the standard genetic code, we fit a codon-based negative binomial regression147

model to ask to what extent the mutation spectrum influences the spectrum of adaptive substitutions (Eqn. 2). For148

each of the three species, this analysis produced an estimate of the regression coefficient V that captures the influence149

of the mutational spectrum on the spectrum of adaptive substitutions, as well as an associated ?-value under the null150

hypothesis that mutational biases have no influence on the spectrum of adaptive substitutions (i.e., V = 0).151

The results, shown in Table 1, reveal a strong and statistically significant influence of mutation bias on adaptation152

in all three species, with each of the 95 % confidence intervals containing V = 1, and excluding V = 0. Specifically, for153

S. cerevisiae, V = 1.05 (95 % CI, 0.89 to 1.21), for E. coli V = 0.98 (95 % CI, 0.71 to 1.25), and for M. tuberculosis,154

V = 0.87 (95 %, 0.42 to 1.32), so that in all three species differences in mutation rates produce approximately155
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proportional changes in the spectrum of adaptive substitutions.156

Having seen the influence of the mutation spectrum on the spectrum of adaptive substitutions, we can also ask to157

what extent the mutational spectrum, pattern of codon usage, and the structure of the genetic code are jointly sufficient158

to explain the spectrum of adaptive codon-to-amino acid changes observed in each species. In particular, Figure 2d-f159

shows the observed frequency of each type of codon-to-amino acid change in relation to its predicted frequency under160

our fitted models. We observe from this figure that despite the mutational spectrum having its maximum theoretically161

predicted influence (V ≈ 1), the predictive power of our model nonetheless differs substantially among the three162

species, with a correlation between predicted and observed frequencies of 0.68 in S. cerevisiae and 0.41 in E. coli, but163

only 0.16 in M. tuberculosis. While all three of these correlations are statistically significant (Table 1), it is clear that164

the predictive power of a model depending only on mutation rates and codon frequencies differs between these three165

species, an observation that we will return to shortly.166

Randomization tests support the relevance of empirical mutation spectra for adaptive evolution167

The species-specific mutation spectra employed above reflect either (1) mutation-accumulation experiments under168

laboratory conditions in the absence of selection (S. cerevisiae, E. coli), or (2) the frequencies of putatively neutral169

single-nucleotide polymorphisms in natural populations (M. tuberculosis). We were struck by the observation that,170

using these spectra in a prediction model, the 95 % confidence interval on the mutation coefficient contained V = 1171

for each of the three species. This observation not only suggests a strong influence of mutation bias on adaptation, but172

also that previously reported mutation spectra are relevant for adaptive evolution.173

How well do these species-specific mutation spectra (reported in previously published studies) perform relative to174

randomly generated spectra, or to optimized spectra? To address this question, we repeated our analysis 106 times, each175

time using a randomized mutation spectrum followed by the same negative binomial regression according to Eqn. 2.176

Each randomized spectrumwas generated by drawing a randomnumber between zero and one for each of the six possible177

mutation types, using a uniform distribution, and then normalizing the values by their sum to obtain a probability for178

each type. We then calculated the difference between the log-likelihood of the model fit with the randomized mutation179

spectrum and the log-likelihood of the model fit with the empirical mutation spectrum. When this difference is positive,180

the fit using the randomized mutation spectrum explains the spectrum of adaptive substitutions better than the fit using181

the empirical mutation spectrum, and when this difference is negative the empirical mutation spectrum provides the182

better explanation. Fig. 3a-c shows that the fit using the empirical mutation spectrum almost always explains the183

spectrum of adaptive substitutions better than fits using randomized mutation spectra, for all three species. Specifically,184

random mutation spectra outperformed empirical spectra with frequency 0.002 for S. cerevisiae, 0.037 for E. coli, and185

0.035 for M. tuberculosis. This supports the hypothesis that the genetic changes favored by mutation are also those186

more likely to be used during adaptation, and highlights the relevance of empirically characterized mutation spectra187
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for adaptive evolution in the laboratory (S. cerevisiae, E. coli) and in nature (M. tuberculosis).188

While so far we have attempted to predict the spectrum of adaptive substitutions based on empirically observed189

mutation spectra, the strong relationship between the mutational and adaptive spectra in these three species suggests190

that it might also be possible to estimate the mutation spectrum from the spectrum of adaptive substitutions. To do191

this, we again fitted a negative binomial model but treated the rates of the six possible types of single nucleotide192

mutations as free parameters, which we estimated using maximum likelihood. We see that these inferred mutation193

spectra bear a strong resemblance to the experimentally characterized mutation spectra (Fig. 3d-f), with a Pearson194

correlation coefficient between the rates of 0.945 (? = 0.004) for S. cerevisiae, 0.960 (? = 0.002) for E. coli, and 0.827195

(? = 0.042) for M. tuberculosis.196

What factors determine the predictive power of the model?197

Although the analysis above reveals a statistically significant and approximately directly proportional contribution198

of mutational biases to the spectrum of adaptive substitutions for all three data sets, there is considerable variation in199

the strength of the correlation between the predicted and observed spectra, with this correlation being strongest and200

most significant for S. cerevisiae, and weakest and least significant for M. tuberculosis (Table 1).201

One immediate hypothesis is that this variation in predictive power is driven by differences in the completeness202

of our estimates of the spectrum of adaptive substitutions. Even though our data sets include hundreds to thousands203

of adaptive events per species, a substantial fraction of the 354 possible types of codon-to-amino acid substitutions204

are missing from the spectrum for each species, a situation that likely arises both due to finite sample size effects and205

the limited diversity of distinct adaptive paths under a specific ecological circumstance (e.g., only a limited number206

of mutations confer resistance to any given antibiotic). Moreover, we note that at a qualitative level, the smaller the207

number of missing codon-to-amino acid paths, the stronger the correlation between predicted and observed spectra of208

adaptive substitutions (Table 1).209

To better evaluate the influence of sparse sampling of codon-to-amino acid paths on the predictive power of our210

model, we simulated random data under our codon model with V = 1 (Eqn. 2), sampling adaptive events according211

to their expected frequencies, based on the empirical codon frequencies and mutation spectrum of each species, but212

restricting the sampled adaptive events to those corresponding to the non-zero elements of the observed spectra of213

adaptive substitutions. We then used negative binomial regression to fit this simulated spectrumof adaptive substitutions214

and measured the correlation between the randomized spectrum of adaptive substitutions and the spectrum of adaptive215

substitutions predicted by the fitted model. We repeated this process 103 times for each species to obtain a distribution216

of correlations. Fig. S2 shows these distributions. On average, the correlations decreased from S. cerevisiae (0.76) to217

E. coli (0.75) to M. tuberculosis (0.61), suggesting that limitations in our data on the spectrum of adaptive substitutions218

are partly responsible for differences in model fits between the three species. However, Fig. S2 also shows that the219
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correlations for these simulated data sets are considerably higher than those obtained with models fit to the observed220

spectra of adaptive substitutions (triangles in Fig. S2), suggesting the presence of other factors that modulate the221

predictive power of our modeling framework.222

In order to address a combination of other potentially relevant factors, we turned to population-genetic simulations223

of evolution in a haploid genome, with variable parameters for population size # , mutation rate `, and fraction of224

beneficial mutational paths �. The model genome consists of 500 codons subject to missense mutations, where a225

fraction � of such mutational paths are beneficial with a positive selection coefficient drawn from an exponential226

distribution, and all other paths are deleterious with effects drawn from a reflected gamma distribution (Methods).227

These simulations were implemented in SLiM v3.4 [32]. For each run of the simulation, we recorded the identity of the228

first adaptive mutation to reach fixation, repeating this process 1000 times to produce a simulated data set of adaptive229

substitutions of a similar size to our empirical data sets. For each of various combinations of # , ` and �, we then230

constructed 50 such simulated data sets (Methods) and analyzed these data sets using our negative binomial model.231

Previous theoretical results suggest that the mutational supply (given by the product #`) should affect the extent to232

which mutational biases influence the distribution of adaptive substitutions [33–36]. In particular, the simplest effect233

of increasing #` is that multiple beneficial mutations are typically simultaneously present in the population, so that234

the adaptive mutation that ultimately fixes in the population is determined more by selective differences between these235

segregating mutations than by which beneficial mutation becomes established in the population first. Fig. 4a confirms236

the presence of this effect in our simulations by showing the inferred mutation coefficient V in relation to mutation237

supply (#`) for different proportions of beneficial mutations �. At the lowest mutation supply, V is approximately238

one, reflecting the direct proportionality between mutation rates and evolutionary outcomes that is expected in this239

regime [33, 37]. As the mutation supply increases, the average value of V tends toward zero, reflecting a diminished240

influence of mutation bias on adaptation. At the same time, the distribution of estimates for V becomes more dispersed241

(Fig. 4a) and the individual estimates become both less significant and less certain, as indicated by increasing average242

?-values and increasingly large confidence intervals (Fig. S3). Similarly, the predictive power of our model decreases243

with increasing mutation supply, as measured by a decreasing average correlation between the predicted and observed244

spectra of adaptive events (Fig. 4b).245

The size of the mutational target also influences the predictive power of the fitted models, but in a somewhat more246

surprising manner. Intuitively, one might think that increasing the proportion of beneficial mutations would decrease247

the predictive power since this effectively increases the (beneficial) mutational supply, allowing increased competition248

between simultaneously segregating beneficial mutations. However, Fig. 4a and b show the opposite pattern, with low249

values of � showing the highest variability in estimated V values (Fig. 4a) and the lowest predictive power (Fig. 4b).250

We reason this occurs because larger mutational targets are more likely to contain a range of mutationally favored and251

disfavored paths in comparison to smaller mutational targets – thus allowing a correlation to emerge.252

8 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


So far, we have shown that sparse sampling of codon-to-amino acid paths, increasing mutational supply, and a low253

proportion of beneficial mutations all tend to decrease the predictive power of our model. One unifying explanation254

for these observations rests on the fact that mutational biases have relatively broad effects on the spectrum of adaptive255

substitutions, in the sense that increasing a specific single-nucleotide mutation rate will cause a concomitant change in256

the relative frequencies of ∼60 distinct codon-to-amino acid paths. Thus, context-independent mutational biases result257

in the enrichment of broad classes of codon-to-amino acid substitutions and will therefore tend to perform poorly in258

predicting distributions of adaptive events that are highly concentrated on a small set of paths, whether this is because259

of relatively few available adaptive paths in a given selective environment (small �), limited sample size (zeros in260

observed spectrum), or a distribution of adaptive substitutions concentrated on the few fittest variants (large #`)261

To quantify both the breadth of the adaptive spectrum and its effects on the predictive power of our model, we262

calculated the entropy of the spectrum of adaptive substitutions. We normalized the entropy so that it takes on its263

minimumvalue of 0when all adaptive events correspond to a single codon-to-amino acid change and its maximumvalue264

of 1 when the adaptive events are uniformly distributed across all possible codon-to-amino acid changes (Methods).265

Thus, the entropy quantifies how evenly distributed the adaptive events are among the 354 possible codon-to-amino266

acid changes.267

Fig. 4c shows that the entropy of the spectrum of adaptive substitutions indeed decreases as mutation supply268

increases, and that for any level of mutation supply, a lower proportion of beneficial mutations likewise decreases the269

entropy. To determine whether these patterns of decreasing entropy are sufficient to explain differences in the predictive270

power of our model across the range of model parameters, we plotted the correlation between predicted and observed271

events against the entropy of the spectrum of adaptive substitutions (Fig. 4d). We see that increasing entropy, either272

via a decreased mutation supply or an increased proportion of beneficial mutations, increases the correlation between273

simulated and predicted spectra of adaptive substitutions. These observations from the evolutionary simulations are274

qualitatively similar to our empirical observation that as the entropy of the spectrum of adaptive substitutions increases275

from M. tuberculosis to E. coli to S. cerevisiae, there is a corresponding increase in the correlation between predicted276

and observed spectra of adaptive substitutions (Table 1). Indeed the correlations for our three empirical data sets are277

well within the range of what we would expect from our simulations given their respective entropies (Fig. 4d). We278

thus conclude that many different factors could potentially influence the predictive power of our model via effects on279

the entropy of the spectrum of adaptive substitutions, and that these likely include both population genetic parameters280

such as mutation supply, as well as the genetic architecture of the trait being selected, and the number and diversity of281

adaptive challenges used to construct the spectrum of adaptive substitutions.282
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Assessing possible effects of contamination283

A key assumption of the analysis above is that the observations used to construct the spectrum of adaptive codon-to-284

amino acid changes are indeed adaptive. While this is likely the case for the M. tuberculosis data set, we now consider285

the possibility that some fraction of observations in the S. cerevisiae and E. coli data sets represent contamination such286

as hitchhikers. If contaminants reflect the mutation spectrum more than genuine adaptive changes, this will exaggerate287

the correspondence with mutational predictions.288

Following [8], we use the observed dN/dS among all substitutions in the adapted lines to estimate the fraction of289

events in our data sets that are non-adaptive hitchhikers rather than adaptive drivers (Methods). We find such proportions290

to be ∼24% and ∼13% for S. cerevisiae and E. coli, respectively. We then assess the influence of contamination by291

randomly removing a fraction @ of observations, sampled according to the empirical mutation spectrum: this procedure292

simulates the removal of a hypothetical contaminant fraction of size @ under the worst-case scenario that the nucleotide293

changes in the contaminant fraction mirror the mutation spectrum. As shown in Fig. S4, even under the assumption294

that 40% of the mutations are contaminants, we observe a strong and statistically significant influence of mutation295

bias on adaptive evolution. In fact, we estimate that ∼65% and ∼44% of contamination—for S. cerevisiae and E. coli,296

respectively—would be required to increase the ?-value of V to the point where the influence of mutation bias would297

no longer be detectable.298

We only carried out this procedure for the S. cerevisiae and E. coli data sets, because they include all missense299

changes in the genomes of adapted strains, rather than only driver mutations that are verified experimentally, and are300

therefore likely to include a minority of hitchhikers [28, 38]. By contrast, the M. tuberculosis data set only includes301

mutations that have been shown experimentally to confer antibiotic resistance [5]. This kind of data set represents the302

ideal that, perhaps, can be expected to predominate in the future, as it becomes easier to carry out genome editing and303

functional assays in a high-throughput manner.304

DISCUSSION305

A growing body of evidence suggests that specific mutation biases influence the types of genetic changes that cause306

adaptation [5,19–26], consistent with a small body of theoretical work on how biases in the introduction of variation—307

both low-level mutational biases and higher-level systemic biases—are expected to influence evolution [33–36]. Here,308

we have developed and applied a general approach to assess how the mutation spectrum shapes the spectrum of309

adaptive substitutions. Our approach uses negative binomial regression to model the spectrum of adaptive substitutions310

as a function of codon frequencies and the mutation spectrum, measuring the influence of mutation in terms of the311

regression coefficient V. Such an approach can be applied to any sufficiently large data set of substitutions associated312

with adaptation, given codon frequencies and an estimate of the mutation spectrum. Applying our model to three313

such species (Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis), we uncovered a clear314
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signal that the mutation spectrum shaped the spectrum of adaptive substitutions. The influence of mutation bias on the315

spectrum of adaptive substitutions is proportional in the sense that the inferred value of V is not significantly different316

from 1 in any species. This result holds even when we account for contamination by hitchikers in the data sets for317

S. cerevisiae and E. coli.318

Our approach also illustrates how the spectrum of adaptive substitutions may be interrogated to reveal clues about319

the genetic basis of adaptation. We used our fitted models to predict the spectrum of adaptive substitutions in each320

species, and uncovered variation in their predictive capacity, decreasing from S. cerevisiae to E. coli to M. tuberculosis.321

Using evolutionary simulations, we uncovered multiple potential sources of this variation. Specifically, we found that322

the degree to which the mutation spectrum is a good predictor of the spectrum of adaptive substitutions depends on how323

the adaptive events are distributed amongst all possible codon-to-amino acid changes, with distributions concentrated324

on a small number of codon-to-amino acid changes associated with reduced predictive capacity. Factors that affect this325

distribution include data set size, population genetic conditions, diversity of selective environments, and the genetic326

architecture of adaptive traits. Importantly, population genetic conditions that modulate the influence of mutation bias327

on adaptation, such as mutation supply, and non-population genetic conditions, such as the diversity of environmental328

conditions included in the data set, can affect the predictive capacity of our model in similar ways. Additional work is329

needed to disambiguate these various causes of differing model fits between species.330

For example, the three species studied here vary in their population genetic and environmental conditions, as well331

as their mutational target sizes. M. tuberculosis has one of the lowest mutation supplies of all bacteria [39], a small332

population size upon infection [40], and the 11 antibiotics considered here target specific gene products [5]. For333

example, Rifampicin targets the beta subunit of bacterial RNA polymerase, and only a small handful of mutations334

to the rpoB gene that encodes this subunit cause resistance [41]. Thus, while the population genetic conditions of335

M. tuberculosis are more likely similar to origin-fixation dynamics than clonal interference dynamics, and the set of336

observations is large, the mutational target size for antibiotic resistance is small. In contrast, E. coli experiences clonal337

interference due to a relatively higher mutation supply [38], but adaptation to temperature stress involves a larger338

mutational target [8, 42]. Similarly, S. cerevisiae experiences clonal interference due to a high mutation supply [28],339

but because the data we study include adaptation to several environmental conditions, the mutational target size is large.340

Thus, the inferred influence of mutation bias on adaptation in these three species, increasing from M. tuberculosis341

to E. coli to S. cerevisiae, is consistent with our findings from evolutionary simulations that mutation supply and342

mutational target size modulate the influence of mutation bias on adaptation.343

Though this simple model has proven useful, further work may benefit from a broader consideration of sources of344

heterogeneity. For instance, a more sophisticated treatment of the mutation spectrum would include effects of local345

sequence context [43, 44]. Likewise, the influence of the genetic code could be parameterized separately, as a step346

toward understanding the broader evolutionary issue of how genotype-phenotype maps shape the course of evolution.347
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Our analysis of mutational effects includes heterogeneity in fitness effects among beneficial paths (captured348

implicitly via the dispersion parameter of the negative binomialmodel), but does not suppose any systematic relationship349

between fitness and codon-to-amino-acid paths. If some beneficial codon-to-amino acid changes have systematically350

higher selection coefficients than others, which onemight expect from generic differences in amino acid exchangeability351

[45], this may influence how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. If the352

nucleotide changes favored by mutation are not the same as those favored by selection, this could diminish the influence353

of mutation bias on adaptation [35]. This kind of effect might be particularly strong due to the dominance of a small354

number of idiosyncratic paths. That is, if fitness effects are highly heterogeneous, such that a small number of mutations355

have exceedingly high selection coefficients, and these nucleotide changes are not those favored by mutation, this could356

diminish the predictive capacity of our model. The data set for M. tuberculosis contains such “jackpot” mutations [5],357

e.g., the G→C transversion that causes the S315T substitution in KatG and confers resistance to isoniazid [30]. Because358

the mutation spectrum of M. tuberculosis is biased toward transitions [12], this jackpot mutation likely reduces the359

predictive capacity of our fitted model.360

The discovery that the mutation spectrum strongly shapes the spectrum of adaptive substitutions has several361

implications. First, this finding has implications for the predictability of evolution [46–48], because it shows that the362

nucleotide changes that are more likely to arise via mutation are also those more likely to contribute to evolutionary363

adaptation, an effect that is both large and readily predictable from data on the mutation spectrum. Long-term364

laboratory evolution experiments often uncover molecular diversity in adaptive convergence, meaning that in replicate365

populations, distinct sets of mutations cause adaptation to identical environments [8]. We uncover an additional layer366

of convergence: though distinct sets of mutations cause adaptation in different replicate populations, the influence of367

mutation bias causes these sets to converge on similar patterns of nucleotide changes and codon-to-amino-acid changes.368

Secondly, the discovery of a direct influence of mutation bias on evolutionary adaptation parallels recent reports369

that driver mutations in cancer reflect the underlying biases of cancer-associated mutational processes, including370

exogenous effects of UV light and tobacco exposure, and endogenous effects of DNA mismatch repair and APOBEC371

activity [49–51]. The increased predictability of such changes, due to mutational effects, can inform rational drug372

design, as has been suggested for drugs for leukemia, prostate cancer, breast cancer, and gastrointestinal stromal373

tumors [26]. The same may be true for designing antibiotic treatments for mycobacteria, which evolve multi-drug374

resistance via a sequence of mutations, several of which interact epistatically, such that only a subset of possible375

mutational trajectories to multi-drug resistance are possible [52]. If some of these paths comprise nucleotide changes376

that are less likely to arise via mutation, then this could inform treatment regimens.377

Finally, the broadest context for the present work is a debate about the relative roles of mutation and selection378

in shaping the course of evolution. Arguments dating back to the Modern Synthesis emphasize selection as the379

sole directional force, with mutation treated as a weak and ineffectual pressure due to the smallness of mutation380
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rates [53–55], e.g., Haldane concluded that mutation can influence the course of evolution only under neutral evolution,381

or when mutation rates are unusually high [53]. More recent theory shows how such conclusions depend on assuming382

that evolution begins with abundant standing genetic variation, so that mutation acts only as a frequency-shifting force383

and not as the source of genetic novelty [33]. When evolution depends on mutation as a source of novelty, biases in the384

introduction of variants, such as toward particular nucleotide changes, systematically influence which genetic changes385

are involved in adaptation [34, 56].386

Some authors have responded to the theory of mutation-biased adaptation by arguing that such an influence is387

unlikely, on the grounds of requiring sign epistasis or unusually small population sizes [57]. However, modeling here388

and in other work [35, 36] shows that mutation bias can influence adaptation across a range of conditions, including389

conditions that induce clonal interference among concurrent mutations. More broadly, while theoretical arguments are390

surely helpful for sharpening our understanding, ultimately the prevalence and magnitude of the mutational influence391

on adaptation is an empirical question, and the impact of mutational biases has now been shown for several different392

types of mutations, in a range of systems from bacteriophage to birds to somatic evolution in human cancers [5,19–26].393

This growing body of work, in turn, provides a population-genetic mechanism for previously proposed theories394

concerning how variational properties influence the evolutionary process. For instance, evo-devo arguments about bias395

or constraint relate evolutionary patterns to tendencies of developmental variation, but the causal nature of this link, in396

terms of population-genetic principles, is typically unspecified (e.g., [58,59]). Though some sources invoke constraints397

in the context of quantitative genetics [60], the latter framework only applies to dimensional biases in quantitative traits,398

whereas the theory of biases in the introduction process is suitable for molecular and other discrete traits, e.g., this399

theory plausibly applies to a small body of work on the tendency of evolution to prefer more findable structures in400

cases such as RNA folds [61] or regulatory circuits [62]. Our results improve the population-genetic underpinnings of401

these theories by showing that mutational biases, which are a similar but even simpler set of biases, have a clear and402

measurable impact on the distribution of variants fixed during adaptive evolution.403

METHODS404

Data405

Our modeling framework is built around three key quantities, which are specific to each species: A spectrum of406

adaptive substitutions n, a table of codon frequencies 5 , and a mutation spectrum `. These are all constructed using407

empirical data, as described below.408

Spectrum of adaptive substitutions409

We curated a list of missense mutations associated with adaptation from the published literature for each of three410

species: S. cerevisiae, E. coli, and M. tuberculosis. For each mutation, these lists specify a genomic coordinate,411

nucleotide change, amino acid substitution, and literature reference (Tables S2-S4). We refer to each unique combination412
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of genomic coordinate and nucleotide change as a mutational path and each instance of adaptive change along a413

mutational path as an adaptive event. The number of adaptive events per mutational path are also reported in Tables414

S2-S4.415

For S. cerevisiae, the adaptive events were reported in four studies, each of which considered one or more416

environmental or genetic challenges, including high salinity [27], low glucose [27], rich media [28], and gene knockout417

[29]. The list contains 721 adaptive events across 534 mutational paths (Table S2).418

For E. coli, the adaptive events were reported in a single study of 115 replicate populations adapting to temperature419

stress [8]. The list contains 602 adaptive events across 492 mutational paths (Table S3).420

For M. tuberculosis, the adaptive events were reported in a single study of the influence of mutation bias on421

adaptation to antibiotic stress [5]. The underlying mutational paths were derived from two separate meta-analysis422

of the literature on antibiotic resistance (one performed for the study and another previously published [4]), with423

each mutational path required to pass stringent tests for conferring antibiotic resistance. A total of 11 antibiotics424

or antibiotic classes were considered: Rifampicin, ethambutol, isoniazid, ethionamide, ofloxacin, pyrazinamide,425

streptomycin, kanamycin, pyrazinamide, fluoroquinolones, and aminoglycosides. The adaptive events were inferred426

from a phylogenetic reconstruction of public M. tuberculosis genomes. We merged the adaptive events from the two427

meta-analyses. The resulting list contains 4413 adaptive events across 283 mutational paths (Table S4). Analyzing428

the adaptive events from the two meta-analyses separately (Table S1) produced qualitatively similar results to those429

reported in Table 1.430

For each species, we constructed the spectrum of adaptive substitutions n from the list of adaptive events described431

above, assigning each adaptive event to its respective codon-to-amino-acid change. Each element n(2, 0) of the432

spectrum of adaptive substitutions therefore tallies the number of adaptive events that changed codon 2 to amino acid433

0. Note the adaptive events tallied for any codon-to-amino-acid change often reflect more than one genomic coordinate434

and/or nucleotide change (i.e., different mutation paths). These spectra are reported in Table S5.435

Codon frequencies436

We used the tables of codon frequencies reported in the Codon Usage Database [63], found via query to an exact437

match to Saccharomyces cerevisiae, Escherichia coli, andMycobacterium tuberculosis. These frequencies are reported438

in Table S6 and shown in Fig. S1e-g.439

Empirical mutation spectra440

For S. cerevisiae and E. coli, we used mutation rates derived from mutation accumulation experiments, as reported441

in Figure 3 of reference [15] and Table 3 of reference [14], respectively. For M. tuberculosis, we used mutation rates442

derived from single-nucleotide polymorphism data, extracted from Figure 2A in reference [12] using a web-based443

image analysis tool [64]. For E. coli, we corrected the mutation rates for GC content, following [12]. For S. cerevisiae444
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and M. tuberculosis, the rates were already corrected [12, 15].445

These spectra are reported in Table S7 and shown in Fig. S1a. We used these estimated mutation rates to define446

a total codon-to-amino acid mutation rate `(2, 0) for each of the 354 codon-to-amino acid changes allowed by the447

standard genetic code, summing the rates of all point mutations in codon 2 that lead to amino acid 0. For example,448

the probability of the substitution from codon CAC to Glutamine (Q) is the sum of the probabilities of point mutations449

C→A and C→G, since both mutations in the third position of CAC lead to codons for Glutamine (Q).450

Entropy of the spectrum of adaptive substitutions451

The spectrum of adaptive substitutions n describes the number of adaptive events per codon-to-amino acid change.452

We calculate the entropy � of this spectrum as453

� =
−∑<

8=1 ?(=8) log ?(=8)
log(<) (3)454

where ?(=8) is the proportion of adaptive events that correspond to the 8th codon-amino acid change, and < = 354 is455

the number of codon-to-amino acid changes allowed by the standard genetic code.456

Evolutionary simulations457

We used SLiM v3.4 for the evolutionary simulations [32]. We ran each simulation until a single mutation went458

to fixation, which we recorded as an adaptive event. We recorded 1000 such events per replicate by running 1000459

independent simulations. We performed 50 replicates per combination of the parameters # , `, and �.460

Each of the 1000 simulations per replicate used the same initial population, which comprised # copies of a461

nucleotide sequence of length ! = 1500 (i.e., 500 codons), randomly generated using the codon frequencies for462

S. cerevisiae. All sequences in the initial population were assigned a fitness of one. The fitness effects assigned to each463

of the possible codon-to-amino acid changes from each of the 500 codons were drawn at random from a distribution464

of fitness effects, and were held constant across the 1000 simulations per replicate.465

A unique distribution of fitness effects was constructed for each replicate, such that synonymous mutations were466

neutral, a fraction � of non-synonymous codon-to-amino acid changes were beneficial, and a fraction 1 − � of non-467

synonymous codon-to-amino acid changes were deleterious. The fitness effects of beneficial codon-to-amino acid468

changes were drawn from an exponential distribution with density469

51 (G) = _4−_G (4)470

where _ = 33.33, so that the expected advantageous selection coefficient was 0.03. The fitness effects of deleterious471

codon-to-amino acid changes were drawn from a gamma distribution with density472

15 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 (G) =
G (0−1)4−(G/B)

B0 Γ(0) (5)473

where 0 = 0.2 and B = 6.6. Fig. S5 shows representative distributions of fitness effects for different proportions of474

beneficial mutations �.475

Each simulation proceeded until a single mutation went to fixation. In each generation C, # sequences were chosen476

from the population at generation C − 1 with replacement and with a probability proportional to their fitness. Mutations477

were introduced according to the product of the genome-wide mutation rate ` and the per-nucleotide mutation rate478

defined by the mutation spectrum for S. cerevisiae, with each mutation affecting fitness as defined at the onset of the479

simulation.480

Contamination estimates481

For each type of mutation, we calculated the number of synonymous and non-synonymous sites for each possible482

codon, and we estimated the total number of synonymous and non-synonymous sites in the genome by taking into483

account the codon usage patterns of S. cerevisiae and E. coli (Fig. S1e-f). We then calculated dN/dS ratios among all484

substitutions in the adapted lines correcting for the mutation rates of each type of mutation (Fig. S1a). Following [8],485

we estimated the proportion of adaptive non-synonymous mutations from such ratios as H = (G − 1.0)/G, where G is486

the estimated dN/dS ratio (4.24 and 7.76 for S. cerevisiae and E. coli, respectively). Finally, we estimated the fraction487

of hitch-hikers in our data sets as 1 − H.488

ACKNOWLEDGMENTS489

The identification of any specific commercial products is for the purpose of specifying a protocol, and does490

not imply a recommendation or endorsement by the National Institute of Standards and Technology. This project /491

publication was made possible through the support of a grant from the John Templeton Foundation (grant #61782,492

D.M.M.) and from the Swiss National Science Foundation (grant #PP00P3_170604, J.L.P.). The opinions expressed493

in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.494

D.M.M. also acknowledges additional support from an an Alfred P. Sloan Research Fellowship and from the Simons495

Center for Quantitative Biology.496

REFERENCES497

[1]S. Yokoyama and F. B. Radlwimmer. The molecular genetics and evolution of red and green color vision in498

vertebrates. Genetics, 158(4):1697–710, 2001.499

[2]B. Ujvari, N. R. Casewell, K. Sunagar, et al. Widespread convergence in toxin resistance by predictable molecular500

evolution. Proc Natl Acad Sci U S A, 112(38):11911–6, 2015.501

16 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


[3]C. Natarajan, J. Projecto-Garcia, H. Moriyama, et al. Convergent evolution of hemoglobin function in high-altitude502

Andean waterfowl involves limited parallelism at the molecular sequence level. PLoS Genet, 11(12):e1005681, 2015.503

[4]Abigail Manson, Keira Cohen, Thomas Abeel, et al. Genomic analysis of globally diverse Mycobacterium tubercu-504

losis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 49:395–402,505

2017.506

[5]Joshua L. Payne, Fabrizio Menardo, Andrej Trauner, et al. Transition bias influences the evolution of antibiotic507

resistance in Mycobacterium tuberculosis. PLoS Biology, 17(5), 2019.508

[6]W. Liu, D. K. Harrison, D. Chalupska, et al. Single-site mutations in the carboxyltransferase domain of plastid acetyl-509

coa carboxylase confer resistance to grass-specific herbicides. Proceedings of the National Academy of Sciences of510

the United States of America, 104(9):3627–32, 2007.511

[7]J. R. Meyer, D. T. Dobias, J. S. Weitz, et al. Repeatability and contingency in the evolution of a key innovation in512

phage lambda. Science, 335(6067):428–32, 2012.513

[8]Olivier Tenaillon, Alejandra Rodríguez-Verdugo, Rebecca L. Gaut, et al. The molecular diversity of adaptive514

convergence. Science, 2012.515

[9]Roel M. Schaaper and Ronnie L. Dunn. Spectra of spontaneous mutations in Escherichia coli strains defective516

in mismatch correction: The nature of in vivo DNA replication errors. Proceedings of the National Academy of517

Sciences, 84:6220–6224, 1987.518

[10]Zhaolei Zhang and Mark Gerstein. Patterns of nucleotide substitution, insertion and deletion in the human genome519

inferred from pseudogenes. Nucleic Acids Research, 31:5338–48, 2003.520

[11]Peter Keightley, Urmi Trivedi, Marian Thomson, et al. Analysis of the genome sequences of 3 Drosophila521

melanogaster spontaneous mutation accumulation lines. Genome research, 19:1195–201, 2009.522

[12]Ruth Hershberg and Dmitri A. Petrov. Evidence that mutation is universally biased towards AT in bacteria. PLoS523

Genetics, 2010.524

[13]S. Ossowski, Korbinian Schneeberger, José Lucas-Lledó, et al. The rate and molecular spectrum of spontaneous525

mutations in Arabidopsis thaliana. Science, 327:92–4, 2010.526

[14]Heewook Lee, Ellen Popodi, Haixu Tang, and Patricia L. Foster. Rate and molecular spectrum of spontaneous527

mutations in the bacteriumEscherichia coli as determined bywhole-genome sequencing.Proceedings of the National528

Academy of Sciences of the United States of America, 2012.529

[15]Yuan O. Zhu, Mark L. Siegal, DavidW. Hall, and Dmitri A. Petrov. Precise estimates of mutation rate and spectrum530

in yeast. Proceedings of the National Academy of Sciences, 2014.531

[16]Sibel Kucukyildirim, Hongan Long, Way Sung, et al. The rate and spectrum of spontaneous mutations inMycobac-532

terium smegmatis, a bacterium naturally devoid of the post-replicative mismatch repair pathway. G3, 6:2157–2163,533

2016.534

17 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17]Matthew D. Pauly, Megan C. Procario, and Adam S. Lauring. A novel twelve class fluctuation test reveals higher535

than expected mutation rates for influenza A viruses. eLife, 6:e26437, 2017.536

[18]V. Katju and U. Bergthorsson. Old trade, new tricks: Insights into the spontaneous mutation process from the537

partnering of classical mutation accumulation experiments with high-throughput genomic approaches. Genome Biol538

Evol, 11(1):136–165, 2019.539

[19]Darin Rokyta, Paul Joyce, Stanley Caudle, and Holly Wichman. An empirical test of the mutational landscape540

model of adaptation using a single-stranded DNA virus. Nature Genetics, 37:441–444, 2005.541

[20]Craig Maclean, Gabriel Perron, and Andy Gardner. Diminishing returns from beneficial mutations and pervasive542

epistasis shape the fitness landscape for Rifampicin resistance in Pseudomonas aeruginosa. Genetics, 186:1345–54,543

2010.544

[21]Alejandro Couce, Alexandro Rodríguez-Rojas, and Jesus Blazquez. Bypass of genetic constraints during mutator545

evolution to antibiotic resistance. Proceedings of the Royal Society London B, 282:20142698, 2015.546

[22]Andrew M Sackman, Lindsey W McGee, Anneliese J Morrison, et al. Mutation-driven parallel evolution during547

viral adaptation. Molecular Biology and Evolution, 34(12):3243–3253, 2017.548

[23]Arlin Stoltzfus and David M McCandlish. Mutational biases influence parallel adaptation. Molecular Biology and549

Evolution, 34(9):2163–2172, 2017.550

[24]Jay F. Storz, Chandrasekhar Natarajan, Anthony V. Signore, et al. The role of mutation bias in adaptive molecular551

evolution: insights from convergent changes in protein function. Philosophical Transactions of the Royal Society B:552

Biological Sciences, 374(1777):20180238, 2019.553

[25]Frederic Bertels, Christine Leemann, Karin J Metzner, and Roland R Regoes. Parallel evolution of HIV-1 in a554

long-term experiment. Molecular Biology and Evolution, 36(11):2400–2414, 2019.555

[26]Scott Leighow, Chuan Liu, Haider Inam, Boyang Zhao, and Justin Pritchard. Multi-scale predictions of drug556

resistance epidemiology identify design principles for rational drug design. Cell Reports, 30:3951–3963, 2020.557

[27]Linda M. Kohn and James B. Anderson. The underlying structure of adaptation under strong selection in 12558

experimental yeast populations. Eukaryotic Cell, 13(9):1200–1206, 2014.559

[28]Gregory I. Lang, Daniel P. Rice, Mark J. Hickman, et al. Pervasive genetic hitchhiking and clonal interference in560

forty evolving yeast populations. Nature, 500(7464):571–574, 2013.561

[29]Béla Szamecz, Gábor Boross, Dorottya Kalapis, et al. The genomic landscape of compensatory evolution. PLoS562

Biology, 12(8), 2014.563

[30]Shengwei Yu, Stefania Girotto, Chiuhong Lee, and Richard Magliozzo. Reduced affinity for Isoniazid in the S315T564

mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. The Journal of Biological565

Chemistry, 278:14769–14775, 2003.566

[31]P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition. Chapman & Hall/CRC Monographs567

18 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


on Statistics & Applied Probability. Taylor & Francis, 1989.568

[32]Philipp W. Messer. SLiM: Simulating evolution with selection and linkage. Genetics, 2013.569

[33]Lev Y. Yampolsky and Arlin Stoltzfus. Bias in the introduction of variation as an orienting factor in evolution.570

Evolution & Development, 3(2):73–83, 2001.571

[34]Arlin Stoltzfus.Mutation-biased adaptation in a protein NKmodel.Molecular Biology & Evolution, 23:1852–1862,572

2006.573

[35]Alejandro V. Cano and Joshua L. Payne. Mutation bias interacts with composition bias to influence adaptive574

evolution. PLOS Computational Biology, 16:1–26, 09 2020.575

[36]Kevin Gomez, Jason Bertram, and Joanna Masel. Mutation bias can shape adaptation in large asexual populations576

experiencing clonal interference. Proceedings of the Royal Society B: Biological Sciences, 287(1937):20201503,577

2020.578

[37]D.M. McCandlish and A. Stoltzfus. Modeling evolution using the probability of fixation: history and implications.579

Quarterly Review of Biology, 89(3):225–252, 2014.580

[38]Benjamin Good, Michael Mcdonald, Jeffrey Barrick, Richard Lenski, and Michael Desai. The dynamics of581

molecular evolution over 60,000 generations. Nature, 551:45–50, 2017.582

[39]Vegard Eldholm and Francois Balloux. Antimicrobial resistance in Mycobacterium tuberculosis: The odd one out.583

Trends in Microbiology, 24:637–648, 04 2016.584

[40]Sebastien Gagneux. Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews Microbiology,585

16(4):202–213, 2018.586

[41]Christopher Ford, Rupal Shah, Midori Maeda, et al. Mycobacterium tuberculosis mutation rate estimates from587

different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nature Genetics,588

45:784–790, 06 2013.589

[42]Daniel Deatherage, Jamie Kepner, Albert Bennett, Richard Lenski, and Jeffrey Barrick. Specificity of genome590

evolution in experimental populations of Escherichia coli evolved at different temperatures. Proceedings of the591

National Academy of Sciences, 114:201616132, 2017.592

[43]Way Sung, Matthew Ackerman, Jean-François Gout, et al. Asymmetric context-dependent mutation patterns593

revealed through mutation-accumulation experiments. Molecular Biology and Evolution, 32:1672–1683, 2015.594

[44]Rachael Aikens, Kelsey Johnson, and Benjamin Voight. Signals of variation in human mutation rate at multiple595

levels of sequence context. Molecular Biology and Evolution, 36:955–965, 2019.596

[45]L. Y. Yampolsky and A. Stoltzfus. The exchangeability of amino acids in proteins. Genetics, 170(4):1459–1472,597

2005.598

[46]J. Franke, A. Klozer, J. A. de Visser, and J. Krug. Evolutionary accessibility of mutational pathways. PLoS599

computational biology, 7(8):e1002134, 2011.600

19 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


[47]D. L. Stern and V. Orgogozo. Is genetic evolution predictable? Science, 323(5915):746–51, 2009.601

[48]M. Lässig, V. Mustonen, and A. M. Walczak. Predicting evolution. Nat Ecol Evol, 1(3):77, 2017.602

[49]D. Temko, I.P.M. Tomlinson, S. Severini, B. Schuster-Bockler, and T.A. Graham. The effects of mutational603

processes and selection on driver mutations across cancer types. Nature Communications, 9:1857, 2018.604

[50]R.C. Poulos, Y.T. Wong, R.Ryan, H. Pang, and J.W.H. Wong. Analysis of 7,815 cancer exomes reveals associations605

between mutational processes and somatic driver mutations. PLoS Genetics, 14:e1007779, 2018.606

[51]J.D. Mandell Cannataro, V.L. and J.P. Townsend. Attribution of cancer origins to endogenous, exogenous, and607

actionable mutational processes. bioRxiv, page 10.1101/2020.10.24.352989, 2020.608

[52]S. Borrell, Y. Teo, F. Giardina, et al. Epistasis between antibiotic resistance mutations drives the evolution of609

extensively drug-resistant tuberculosis. Evolution, Medicine, and Public Health, 14:65–74, 2013.610

[53]J.B.S. Haldane. A mathematical theory of natural and artificial selection. v. selection and mutation. Proc. Cam.611

Phil. Soc., 26:220–230, 1927.612

[54]J.B.S. Haldane. The part played by recurrent mutation in evolution. Am. Nat., 67(708):5–19, 1933.613

[55]R.A. Fisher. The Genetical Theory of Natural Selection. Oxford University Press, London, 1930.614

[56]Arlin Stoltzfus. Mutationism and the dual causation of evolutionary change. Evolution & Development, 8:304–317,615

2006.616

[57]E. I. Svensson and D. Berger. The role of mutation bias in adaptive evolution. Trends Ecol Evol, 34(5):422–434,617

2019.618

[58]J. Maynard Smith, R. Burian, S. Kauffman, et al. Developmental constraints and evolution. Quart. Rev. Biol.,619

60(3):265–287, 1985.620

[59]Sara Green and Nicholaos Jones. Constraint-based reasoning for search and explanation: Strategies for understand-621

ing variation and patterns in biology. Dialectica, 70(3):343–374, 2016.622

[60]G. H. Bolstad, T. F. Hansen, C. Pelabon, et al. Genetic constraints predict evolutionary divergence in dalechampia623

blossoms. Philos Trans R Soc Lond B Biol Sci, 369(1649):20130255, 2014.624

[61]Kamaludin Dingle, Fatme Ghaddar, Petr Šulc, and Ard A. Louis. Phenotype bias determines how RNA structures625

occupy the morphospace of all possible shapes. bioRxiv, page 2020.12.03.410605, 2020.626

[62]Kun Xiong, Mark Gerstein, and Joanna Masel. Non-adaptive factors determine which equally effective regulatory627

motif evolves to generate pulses. bioRxiv, page 2020.12.02.409151, 2020.628

[63]Yasukazu Nakamura, Takashi Gojobori, and Toshimichi Ikemura. Codon usage tabulated from international DNA629

sequence databases: status for the year 2000. Nucleic acids research, 28(1):292–292, 2000.630

[64]Ankit Rohatgi. Webplotdigitizer: Version 4.3, 2020.631

20 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data Neg. binomial regression Prediction model Spectrum elements
Species Paths Events V ?V Correlation ?corr Non-zero Entropy

S. cerevisiae 534 721 1.05 ± 0.08 < 10−16 0.68 < 10−16 265 0.91
E. coli 492 602 0.98 ± 0.14 < 10−11 0.41 < 10−14 176 0.80

M. tuberculosis 283 4413 0.87 ± 0.23 < 10−3 0.16 0.003 111 0.53

TABLE 1. Data and model fits. Shown are the observed numbers of paths and events for adaptive changes in the
three data sets, along with calculated values for the mutation coefficient V (with standard error) and its ?-value, the
Pearson’s correlation between observed and predicted spectra of adaptive substitutions and its ?-value, the number of
non-zero elements in the spectrum of adaptive substitutions (out of 354), and the entropy of the spectrum of adaptive
substitutions.
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Data Neg. binomial regression Prediction model Spectrum elements
Study Paths Events V ?V Correlation ?corr Non-zero elements Entropy

Basel [5] 126 2319 0.86 ± 0.27 0.001 0.15 0.005 78 0.53
Manson [4] 168 2094 0.86 ± 0.27 0.002 0.17 0.002 80 0.52

TABLE S1. Separately analyzing the adaptive events from the two meta-analyses of antibiotic resistance
mutations in M. tuberculosis yields qualitatively similar results to analyzing them together. Shown are the
observed numbers of paths and events, the mutation coefficient V (with standard error) and its ?-value, the Pearson’s
correlation between observed and predicted spectra of adaptive substitutions and its ?-value, as well as the number of
non-zero elements of the spectrum of adaptive substitutions and the entropy of the spectrum of adaptive substitutions.
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Figure 1. Workflow. (A) We use data from laboratory evolution experiments (E. coli and S. cerevisiae) and clinical isolates (M. tuberculosis) to 
curate a (B) list of genetic changes associated with adaptation. Many factors influence which genetic changes drive adaptation, including 
population genetic and environmental conditions, genomic composition, and mutation bias. Only the latter two are included in our 
modeling framework. (C) From the list of adaptive substitutions, we construct the spectrum of adaptive mutational events. Each element in 
this spectrum corresponds to one of the 391 unique codon-amino acid changes allowed by the standard genetic code, and records the 
number of times that particular genetic change occurred in our list of adaptive substitutions. We calculate several summary statistics of this 
spectrum, including its entropy and the fraction of the 391 elements that are non-zero. (D) We perform negative binomial regression to 
model the influence of mutation bias on the spectrum of adaptive mutational events, using codon frequencies derived from genome 
sequences and mutation spectra derived from mutation accumulation experiments. (E) We use the fitted model to predict the spectrum of 
adaptive mutational events.
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Fig. 1. Workflow. (a) We use data from laboratory evolution experiments (E. coli and S. cerevisiae) and clinical
isolates (M. tuberculosis) to curate (b) a list of genetic changes associated with adaptation for each species. (c) From
each list of adaptive mutations, we construct the spectrum of adaptive substitutions n. Each element in this spectrum
n(2, 0) corresponds to one of the 354 distinct changes from codon 2 to amino acid 0 that can be produced by a single
nucleotide substitution under the standard genetic code and tallies the number of adaptive events per codon-to-amino
acid change. (d) We perform negative binomial regression to model the influence of mutation bias on the spectrum of
adaptive events, using codon frequencies derived from genome sequences and experimentally characterized mutation
spectra. (e) We use the fitted model to predict the spectrum of adaptive events.

23 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 101
100

101

O
bs

er
ve

d 
m

ut
at

io
na

l e
ve

nt
s

100 101 102

Predicted mutational events

100

101

102

100 102
100

102

10-2 10-1 10010-2

10-1

100

Fr
eq

ue
nc

y 
am

on
g

ad
ap

tiv
e 

su
bs

tit
ut

io
ns

10-2 10-1 100

Empirical mutation spectra
10-2 10-1 100

100 101
100

101

O
bs

er
ve

d 
m

ut
at

io
na

l e
ve

nt
s

100 101 102

Predicted mutational events

100

101

102

100 102
100

101

102

103

E. coliS. cerevisiae M. tuberculosis

G > C

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

G > T

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

A > T

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

A > C

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

A > G

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

G > A

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Em
pi

ric
al

 m
ut

at
io

n 
sp

ec
tru

m

0 0.1 0.2 0.3 0.4
Ideal mutation spectrum

0 0.1 0.2 0.3 0.4

a b c

d e f
Empirical mutation rate

Predicted adaptive events

O
bs

er
ve

d 
ad

ap
tiv

e 
ev

en
ts

Fig. 2. Predicted and observed substitutions at the nucleotide and codon-to-amino acid levels. (a-c) The
frequency of nucleotide changes among adaptive substitutions is plotted as a function of the empirical mutation rate
for (a) S. cerevisiae, (b) E. coli, and (c) M. tuberculosis. The symbols correspond to the six different types of point
mutations (inset in panel a). (d-f) The predicted spectra of adaptive substitutions are shown in relation to the observed
spectra of adaptive substitutions for (d) S. cerevisiae, (e) E. coli, and (f) M. tuberculosis. For visualisation purposes, a
pseudo count of 1 event and a jitter of range [0,0.3] were added to both the observed and predicted numbers of events
in panels (d-f).
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Fig. 3. Empirical mutation rates explain the spectrum of adaptive substitutions better than randomized rates.
In the upper panels, the white bars show the distribution of log-likelihood differences for randomized vs. empirical
mutation rates for (a) S. cerevisiae, (b) E. coli, and (c) M. tuberculosis. A value of 0 (dashed vertical line) means that
a simulated rate performs as well as the empirical mutation rate. The fraction of randomized rates providing a better
model fit than the empirical rates (i.e., right of 0) is 0.2 %, 3.7 %, 3.5 % for panels a, b and c, respectively. Data
based on 106 randomized rates. Note that the three panels have different limits on their horizontal axes. In the lower
panels, the empirical mutation rate is shown in relation to the inferred mutation rate on a double logarithmic scale for
(d) S. cerevisiae, (e) E. coli, and (f) M. tuberculosis. Symbol types correspond to inset in (e). The dashed diagonal
line indicates H = G.
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Fig. 4. Evolutionary simulations showmutation supply andmutational target size jointlymodulate the predictive
power of our model. (a) The inferred mutation coefficient V as a function of #` for five different values of �, the
fraction of beneficial mutations (the same color scheme for � is used in all panels). Dashed horizontal lines are drawn
at V = 0 and V = 1 to indicate no influence and proportional influence of the mutation spectrum on the spectrum of
adaptive substitutions, respectively. (b) Pearson’s correlation coefficient between predicted and simulated spectra of
adaptive substitutions as a function of #` for five different values of �, and (c) entropy of simulated spectra of adaptive
substitutions as a function of #` for five different values of �. In (a-c), the black lines show the mean and the gray
areas show the standard deviation. (d) The Pearson’s correlation coefficient between predicted and simulated spectra of
adaptive substitutions is shown in relation to the entropy of the simulated spectra of adaptive substitutions for different
levels of mutation supply. The dashed vertical lines show the entropy of the spectrum of adaptive substitutions for each
of our three study species.
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Fig. S1. Empirical mutation spectra and codon frequencies. (a) Bar plots of the empirical mutation spectra for
S. cerevisiae, E. coli, and M. tuberculosis. Bar color indicates the species; see legend. (b-d) Relative difference in
mutation rates per mutation type, Relat diff(1, 0) = 1/0. Bar color indicates the species with the highest mutation rate
for each mutation type. The vertical axis is logarithmically scaled for visual clarity. (e-g) Bar plots of the empirical
codon frequencies for (e) S. cerevisiae, (f) E. coli, and (g) M. tuberculosis.
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Fig. S2. The correlation between predicted and randomized spectra of adaptive substitutions depends on
mutational target size, even under origin-fixation dynamics. The distribution of correlations between predicted and
randomized spectra of adaptive substitutions using the codon frequencies, mutation spectra, and number of non-zero
elements in the spectrum of adaptive substitutions are shown for S. cerevisiae, E. coli, and M. tuberculosis. Data
pertain to 103 simulations. Triangles show the correlations reported in Table 1, for reference.

28 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


10-3

10-2

10-1

 p
 m

ut
 c

oe
ff 

0

0.5

1

St
d.

 e
rro

r m
ut

 c
oe

ff 

10-4 10-2 100

Mutation supply (N )

10-5

100

 p
 c

or
re

la
tio

n
a

b

c

Fig. S3. High mutation supply diminishes the influence of mutation bias on adaptive evolution. The a) average
?-value and b) standard error of the mutation coefficient V, and c) the average ?-value of the correlation between
predicted and simulated spectra of adaptive substitutions are shown in relation to mutation supply #`. Data pertain to
those shown in Figs. 4a-c.
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Fig. S4. Contamination analysis supports the influence of mutation bias on adaptation. (a) Fraction of simulated
data sets in which the confidence interval includes V = 1. (b) Inferred mutation coefficients V, (c) p-values of the
regression coefficients V, (d) Pearson’s correlation coefficients between observed and predicted spectra of adaptive
substitutions, and (e) the p-values of the correlation coefficients, are all shown in relation to the percentage of mutations
randomly removed from the data sets of adaptive mutations.

30 A. V. Cano et. al, April 14, 2021

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.438663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.438663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fr
eq

ue
nc

y

B = 0.01

B = 1

B = 0.5

B = 0.1

B = 0.05

-0.8 -0.6 -0.4 -0.2 0 0.2
Selection coefficient

0

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2
0

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2
0

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2
0

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2
0

0.5

Fig. S5. Distributions of fitness effects. Representative distributions of fitness effects used in the evolutionary
simulations for five different proportions of beneficial mutations �.
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