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Abstract 

With the continued promise of immunotherapy as an avenue for treating cancer, understanding how host genetics 

contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer risk screening and 

treatment strategies. Using genotypes from over 8,000 European individuals in The Cancer Genome Atlas 

(TCGA) and 137 heritable tumor immune phenotype components (IP components), we identified and investigated 

482 TIME associations and 475 unique TIME-associated variants. Many TIME-associated variants influence gene 

activities in specific immune cell subsets, such as macrophages and dendritic cells, and interact to promote more 

extreme TIME phenotypes. TIME-associated variants were predictive of immunotherapy response in human 

cohorts treated with immune-checkpoint blockade (ICB) in 3 cancer types, causally implicating specific immune-

related genes that modulate myeloid cells of the TIME. Moreover, we validated the function of these genes in 

driving tumor response to ICB in preclinical studies. Through an integrative approach, we link host genetics to 

TIME characteristics, informing novel biomarkers for cancer risk and target identification in immunotherapy. 
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A systematic screen for common germline variants associated with the tumor immune microenvironment across 

> 8000 tumors reveals novel immune SNPs that predict disease risk, prognosis and potential to respond to 

immune checkpoint therapy. 

 

Introduction 

Cancer is a disease characterized by heterogeneous somatic and germline mutations that promote 

abnormal cellular growth, evasion from the immune system, dysregulation of cellular energetics, and 

inflammation1–4. Immunotherapy has emerged as a promising treatment; however, response rates are low and the 

determinants of response remain elusive5,6. The potential of galvanizing the immune system is still unmet due to 

an incomplete understanding of the complex tumor immune microenvironment. In particular, knowledge of 

germline factors and other intrinsic factors that interact with characteristics of tumors to render them sensitive to 

host-immunity or immunotherapy is lacking. 

Germline variation is responsible for a considerable proportion of variation in immune traits in healthy 

populations7,8. In the context of tumors, germline variants have the potential to influence immune infiltration, 

antigen presentation and immunotherapy responses9,10. Autoimmune germline variants modify ICB response and 

variants underlying leukocyte genes predict tumor recurrence in breast cancer patients11,12. The common single 

nucleotide polymorphism (SNP) rs351855 in FGFR4 was found to suppress cytotoxic CD8+ T cell infiltration 

and promote higher immunosuppressive regulatory T cell levels via increased STAT3 signaling in murine models 

of breast and lung cancer13. Normal genetic variation underlying major histocompatibility complex molecules, 

MHC-I and MHC-II, dictate which mutations in an individual’s tumor can elicit immune responses, and play a 

role in antigen-driven host anti-tumor immune activity that influences tumor genome evolution through immune 

selection14,15. Polymorphic variation in these regions has also been linked to treatment outcomes16–18. Recent 

literature highlights polymorphisms in other immune-related genes such as CTLA419, IRF520 and CCR521,22 that 

also affect treatment outcomes. 

Efforts to identify germline variation influencing anti-tumor immune responses have pointed to effects on 
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immune infiltration levels and immune pathways, such as TGF-β and IFN-ɣ9,10,23. eGenes (genes with significant 

cis-eQTLs) in the TCGA are enriched for immune-related genes and associated with immune cell abundance 

within the tumor immune microenvironment (TIME)24. These studies provide evidence that variants may act 

through specific effects on immune cells. eQTL profiling of 15 sorted immune cell subsets from healthy 

individuals found that the effects of many eQTLs were specific to immune cell subsets25. Understanding 

mechanisms and cell-type effects of TIME host genetic interactions could identify needed prognostic biomarkers 

for ICB response, implicating targetable cell types and molecules to boost ICB response rates. 

Here, we present a comprehensive pan-cancer approach to study germline determinants underlying the 

tumor immune microenvironment. We used genotype data from the Cancer Genome Atlas (TCGA) to identify 

and investigate 482 TIME associations and 475 TIME-associated variants. These variants were predictive of 

immunotherapy response in melanoma, non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) 

human cohorts and implicated 15 ICB-response genes that specifically alter macrophage polarization. Through 

preclinical murine studies, we discovered genes such as LILRB2, LILRB4, CTSS and LAIR1 as potential 

therapeutic targets to modify ICB response. The study design is summarized in Figure 1.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.436660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.436660


 

 

 

Figure 1: Overview of Analyses. Flowchart of TCGA genotype and phenotype analysis for TIME germline 

variant discovery and identification of ICB response genes.  
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Figure 2: Characterization of Tumor Immune Microenvironment (TIME) IP components. (A) Clustermap 

of Pearson correlation analysis of 741 curated immune phenotypes. (B) Network plot of most correlated 

phenotypes; in coral=immune cell specific, outlined by pink diamonds=cancer specific. (C) Scatterplot of PC1 

and PC2 for TCGA cohort colored by inverse rank normalized Thorsson et al. Macrophage Regulation 

phenotype score. (D) Scatterplot of PC2 and PC3 colored by inverse rank normalized Thorsson et al. 

Proliferation phenotype score. (E) Grid plot of hazards ratios and false discovery rate (FDR) of CoxPH analysis 

of 10 PCs with overall survival by TCGA cancer type. 
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Characterization of Immune Phenotype Components (IP components) in the Tumor Immune 

Microenvironment 

To characterize the TIME, we conducted analysis with 724 immune-related genes and 17 composite 

phenotypes describing immune states and infiltration across 30 TCGA tumor types (immune phenotype “IP” 

components) (Table S1). Immune-related genes were derived from 5 signatures involving activation of 

macrophages/monocytes26, overall lymphocyte infiltration27, TGF-β response28, IFN-ɣ response29, and wound 

healing30 . To assess relatedness, we calculated pairwise Pearson correlations across the 741 inverse rank 

normalized IP components on TCGA dataset and performed hierarchical clustering (Figure 2A). Several IP 

components were highly correlated or anti-correlated with each other, including those curated from distinct 

literature or computational sources (Figure S1B). Among the modules of correlated IP components in tumors, 

the largest one was related to macrophage and lymphocyte regulation (Figure 2B). Other correlated modules 

included TGF-β and IFN-ɣ pathway activities; anti-correlated modules included wound healing and 

CREBBP/EP300 activity. 

As IP components included expression of genes more specifically expressed in immune cells than tumors, 

we expected a number of genes to be differentially expressed in distinct types of immune cells. Indeed, multiple 

genes showed immune cell type-associated differences in expression; the largest proportions were differentially 

expressed in monocytes and NK cells (Figure S1C). This supports the potential of our IP components to identify 

germline modifiers that are putatively mediated by a broad array of immune cell types.  As tumor-immune 

interactions can further be influenced by sex and age31, we evaluated expression levels of collected immune-

related genes with respect to these variables; the majority of phenotypes had higher expression values in females 

versus males and sex was included as a covariate for all subsequent analyses (Figure S1D). 

Given the high degree of correlation among phenotypes, we evaluated their potential to capture 

independent TIME characteristics that associate with survival outcomes in cancer. Principal Component Analysis 

(PCA) was conducted on the expression of IP components in TCGA tumors to obtain principal components (PCs) 

of orthogonal immune variance; the first 10 principal components (PCs) each contributed to at least 1% of 
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variance across TCGA samples (Figure S1E). We observed a significant association of all 10 PCs with overall 

and progression free survival in different cancer types (Figure S1F and S1G, respectively) (Cox Proportional-

Hazards analysis; Methods). The Thorsson et al Macrophage Regulation score32 was a major contributor to the 

first principal component (PC1), which also explained ~19% of variance across tumors (Figure 2C). Thorsson et 

al Proliferation scores contributed greatly to PC3, which explained ~6% of variation (Figure 2D). PC4 had strong 

effects on overall survival in renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), and urothelial 

bladder carcinoma (BLCA); this principal component was driven by TGF-β response. While all PCs were 

generally associated with survival outcomes across most tumors, hazards ratios for some components seemed to 

have large effects in a subset of tumor types, indicating that different aspects of the TIME may be particularly 

relevant to outcomes in those diseases (Figure 2E). As many IP components can interact with age and sex, we 

conducted Ordinary Least Squares (OLS) regression with PCs and age and sex. PC2, driven by EP300/proteasome 

expression, was significantly associated with age of diagnosis (Table S2). Most principal components were not 

significantly associated with sex, although PC7 and PC4 had suggestive associations. Taken together, these results 

showed that the expression of IP components play a role in cancer prognosis and orthogonal variance of these 

components capture different features of the TIME.  
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Figure 3: Heritability Analysis of IP components. (A) Scatterplot of -log10 FDR and V(g)/V(p) for 741 

immune phenotypes in the TCGA cohort of European ancestry (Cutoffs: Vg/Vp > 0.05; FDR < 0.05). (B) Barplot 

of V(g)/V(p) values for 137 heritable immune phenotypes using a two-state Genome-wide Complex Trait 

Analysis (GCTA) model: highly polymorphic regions (HPRs) (blue), rest of the genome (orange). (C) Grid plot 

of beta values from Ordinary Least Squares (OLS) regression of principal components with TIME characteristics. 
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Characterization of Heritable IP Components in Cancer 

To focus our analyses on IP components with strong genetic components, we performed heritability 

analysis (Step 1, Figure 1). We identified 137 IP component genes whose expression variance is “heritable” 

(>5% of expression variance attributable to genetic variance; i.e. Vg/Vp; FDR < 0.05; Figure 3A). Of these 137 

heritable IP component genes, 70 were immunomodulators, 41 were antigen presentation genes, 11 were immune 

checkpoint genes, 10 were immune cell-type specific genes, 3 were genes in the TGF-β pathway, 1 was a gene in 

the IFN-ɣ pathway, and 1 described immune cell infiltration. 

Genes in the HLA region were highly heritable, with genetics explaining a large proportion of variance in 

gene expression. To assess the well-known contribution of highly polymorphic regions (HPRs), such as HLA and 

KIR regions, to all 137 heritable IP component genes, we compared variance explained by 1) the HPRs and 2) 

the rest of the genome without HPRs. Among the 137 heritable IP component genes, 17 had a larger fraction of 

heritability attributable to the HPRs whereas heritability of 120 of the 137 heritable IP genes originated outside 

of these regions (Figure 3B). The 17 heritable IP genes for which HPRs had higher contribution were all on 

chromosome 6 and within the HLA class I/II genomic regions. These genes included HLA class I and II genes in 

addition to genes critical for antigen presentation, such as MICA, MICB, PSMB9, BTN3A2 and TAP2. We 

employed a separate pipeline to analyze HLA region variants as the region is highly polymorphic (HLA Region 

Conditional GWAS, Figure 1). 

We repeated clustering and PCA analysis with the 137 heritable IP component genes and observed 

modules of IP component genes (Figure S2A); the largest clustering module is a subnetwork of the large 

macrophage regulation network from Figure 2B (Figure S2B). Comparing PCs obtained for the 741 IP 

components and 137 heritable IP components, the first two PCs were highly correlated, corresponding to 

macrophage regulation and EP300/proteasome gene expression33 respectively (Figure S2C). Cox Proportional-

Hazards analysis conducted with PCs based on 137 heritable IP component genes showed similar results (Figure 

S2D,E); stronger effects of PC1 on overall survival were observed for melanoma (SKCM) and stronger effects 

of PC2 on progression-free survival in urothelial bladder carcinoma (BLCA). PC3 and PC4 were highly correlated 
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with IFN-ɣ response and Thorsson et al Wound Healing, respectively. PD-L1 expression was highly correlated 

with PC1 (beta=3.7, p=2.2e-308) and PC3 (beta=0.66, p=2.6e-115) (Figure 3C). These results confirm that the 

heritable IP component genes we identified are related to immune pathways, such as macrophage regulation, 

TGF-beta expression and IFN-gamma expression, which are known to modify the TIME, with the predominant 

TIME characteristic being related to macrophage regulation. 
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Figure 4: Identification of Novel TIME-associated Variants. (A). eQTL grid of SNP position and gene 

association position. Phenotypes without gene positions are not shown; “X” =loci identified in previous GWAS 

studies, size=-log10 p-value. (B). Manhattan plot of GWAS analysis conducted on 120 heritable IP component 

genes with low HPR contribution. 

 

Identification of Novel TIME-associated Variants 

As the next step (Step 2, Figure 1), we performed genome-wide association analyses for the 120 heritable 

IP component genes where HPR regions did not contribute significantly to heritability in the TCGA (Figure 

S3A). Only common germline variants with minor allele frequency > 1% were considered and imputation quality 

was accounted for to ensure high accuracy (Figure S3B). Using the linkage and distance-based clumping34, we 

identified 482 associations across the 120 heritable IP component genes at a threshold of 8.3x10-7 (Bonferroni-

corrected suggestive threshold of 1x10-5) with 442 of the 482 (91.7%) passing a significance threshold of 5x10-8 

and 296 of the 482 (61.4%) passing a Bonferroni-corrected genome-wide significant threshold of 4.2x10-10 

(Figure 4). Of the 482 associations, 475 unique TIME-associated variants were identified. The majority (81.1%) 

of associations were cis (+/-1Mb from immune gene transcription start site35), while 18.9% of the associations 

were trans. ERAP2 (69), CCBL2 (35), MARVELD2 (35), DHFR (27) and LAIR1 (24) had the most germline 

associations (Figure S3C). Beta values were robust to differences in bioinformatic pipelines used to process RNA 

sequencing data (Figure S3D). 

We found that 144 of the 475 unique TIME-associated variants have been implicated in previous GWAS 

studies36. These 144 variants were associated with 48 of the 120 heritable IP component genes tested. Of these 

144 variants, most were associated with immune traits or diseases, such as white blood cell count, neutrophil 

count, Crohn’s disease, ulcerative colitis, and chronic inflammatory conditions (Figure S3E). Additionally, a 

number of variants were associated with risk of prostate, breast and colorectal cancer. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.436660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.436660


 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.436660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.436660


 

 

Figure 5: Analysis of cell-type effects of TIME-associated variants reveals macrophage and dendritic cells 

as important modifiers of the TIME. (A) Conceptual model to show that variants can have cell-type effects, 

acting more strongly in immune or tumor cells specifically. (B) Barplot of number of cis and trans TIME 

associations which were significant GTEx eQTLs. (C) Scatter plot of cis association beta values in GTEx 

versus TCGA. (D) Venn diagram of SNPs with “deviant” behavior in GTEx versus TCGA variant analysis and 

whether behavior is supported by TCGA normal germline behavior or GTEx Whole Blood germline behavior. 

(E) Barplot of cell-type interaction eQTLs (ieQTLs) for each cell-type deconvoluted by xCell37 with 

Clustermap of overlap between ieQTLs. (F) Barplot of number of TIME-associated variants (475) which are 

DICE immune cell type eQTLs. (G) rs410852 effects on LILRA3 expression across 7 immune cell types 

profiled in DICE. (H) Mean enrichment ratio of immune microenvironment variants in histone marks with 

corresponding enrichment ratios in specific cell types  

 

Analysis of Cell-Type Effects of TIME-associated Variants Reveal Macrophage and Dendritic cells as 

Important Modifiers of the TIME.  

As variants can act more strongly in specific cells (Figure 5A), we sought to examine the role of TIME-

associated variants with respect to tissue type using GTEx cis-eQTL data.  Of 482 associations, 44.0% of cis 

associations and 45.1% of trans associations were significant GTEx eQTLs in at least 1 tissue type (Figure 5B). 

To determine how much trans associations contribute to IP component expression variance, we conducted 

heritability analysis using only cis associations and then all associations; trans associations modestly increased 

the variance explained in general but appeared to be a major contributor in certain cases (Figure S4A). Strengths 

of cis-eQTL SNP associations varied across tissue types in GTEx data, and the strongest effects most often 

appeared in whole blood (Figure S4B), suggesting that many of our identified TIME-associated variants could 

have strong effects within immune cells. To determine if cis-eQTLs were affecting gene expression specifically 

in either tumor or immune cells, we compared cis associations significant in Whole Blood eQTLs versus those in 

other tissue types (Figure S4C). Variants associated with B2M, LILRB2, LILRB4, LNPEP, and OAS1 were 
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exclusively Whole Blood eQTLs, whereas variants associated with COX17, DBNDD1, and GPLD1 were 

exclusively Breast Mammary Tissue eQTLs. This suggests that variants may act exclusively on the immune or 

tumor axis to modify cancer progression. 

We then compared beta coefficients of TIME-associated variants between TCGA and GTEx to determine 

whether variants exhibit different behavior in a normal tissue context or tumor tissue context. Generally, beta 

coefficients from tumor and normal tissues correlated well (Figure 5C); however, we noted a subset of 68 SNPs 

for which effects sizes were significantly different between the two datasets (Methods). To determine whether 

these deviations in behavior are due to differences in immune infiltration, we compared beta coefficients of TIME-

associated variants to coefficients in TCGA tissue-matched normal RNA and from GTEx Whole Blood cis-eQTL 

information. 57 of the 68 deviant eQTLs had behavior similar to GTEx Whole Blood cis-eQTLs, suggesting that 

theses variants may be acting more specifically in immune cell types (Figure S4D). 26 of these 57 deviant eQTLs 

exhibited consistent behavior in TCGA tissue-matched normal samples and GTEx datasets, suggesting that 

different variant behavior in tumors may be due to biological rather than technical differences between datasets 

(Figure 5D). 

To obtain more information about variant cell-type specific effects (TIME-Variant Cell-Type Effects, 

Figure 1), we used the GTEx consortium cell type interaction eQTL (ieQTL) discovery pipeline (Methods). Of 

the 482 associations, 36 were M1 macrophage ieQTLs, 32 were macrophage ieQTLs, 21 were dendritic cells 

ieQTLs, and 18 were activated dendritic cell ieQTLs (Figure 5E). There were also ieQTLs identified for non-

immune cell types, such as adipocytes and melanocytes. To further assess cell-specificity of our immune 

microenvironment associations, we analyzed our variants against the DICE database of immune cell-type specific 

eQTLs38. 43 of 475 unique SNPs were eQTLs in 1 or more of the 12 immune cell types profiled (Figure 5F), and 

25.6% (n=11) were specific to a single cell type (Figure S4E). rs410852 is an eQTL for LILRA3 in classical and 

non-classical monocytes, but not other immune cell types (Figure 5G). TIME phenotypes that were eQTLs in the 

DICE database included TREX1, ERAP1, CTSS, and genes tightly correlated to Macrophage Regulation such as 

LILRB4, PLEK, LILRB2 (Figure S4F). These findings reveal a subset of variants that are specifically modifying 
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immune rather than tumor behavior.  

Furthermore, several TIME-associated variants were within non-coding genomic regions and could be 

located in regulatory elements. We conducted GREGOR41 enrichment analysis with publicly available ENCODE 

ChIP-seq experiments. Variants associated with TIME IP components were generally enriched in regions with 

histone marks H3K36me3, H3K4me3, H3K27ac, H3K9ac, H2AFZ and depleted in H3K9me3 histone marks 

(Figure 5H). Such enrichment patterns were preferentially associated with specific immune cell types than others. 

The strongest enrichment in cis-regulatory elements was seen in PBMCs, CD14+ monocytes, B cells and CD8+ 

T cells. TIME-associated variants were also enriched at binding sites for important transcription factors (Figure 

S5A). These results further support cell-type specific behavior of our identified TIME-associated variants. 

Our study identified a number of trans associations with IP components that could also potentially act in 

a cell-type specific manner. In GTEx, we found that trans associations are often cis-eQTLs for nearby genes, 

suggesting trans associations may act through mediator genes that influence downstream IP components. Most 

mediator genes are protein-coding with a sizable fraction related to regulatory RNAs, such as lincRNAs, and 

pseudogenes. LINC00680, which has previously been implicated in poor prognosis in glioblastoma39,40 and non-

small cell lung cancer39, was identified as a mediator gene for 5 IP components. rs2693076 was significantly 

associated with increased LINC00680 expression and downregulation of several immune genes related to 

macrophage regulation, such as LAIR1, MYO1F, and PLEK (Figure S4G) and served as an eQTL for several 

immune cell types, such as TH1 cells, naive CD8+ T cells, regulatory T cells and naive B cells (Figure S4H). 

Thus far, our analyses have focused on individual TIME-associated variants, but variants can interact to 

more strongly influence disease phenotypes. Our PCA analysis of 137 heritable IP component genes suggest that 

there exist multiple independent immune variance components across TCGA tumors. We investigated the 

relationship of the 475 TIME-associated variants by running associations with the first 10 principal components. 

PC1 correlated strongly with macrophage regulation (Figure 2C) and was associated with the largest number of 

variants (n=28). Two of our 28 PC1-correlated SNPs were DICE eQTLs for LINC00680 and IL10RA in classical 

monocytes and non-classical monocytes, respectively. We quantified the similarity of the effects of the 28 PC1-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.436660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.436660


 

 

correlated SNPs across all 120 heritable IP component genes with explained heritability outside the HPRs. 

Clustering SNPs according to their effects suggested that a subgroup of these SNPs act very similarly (Figure 

S5B). We constructed a network from the SNPs and their associated IP components, removing variants with beta 

values less than 0.25. This revealed a group of SNPs with similar behavior but broad effects on IP components. 

We also noted SNPs that have stronger effects on expression of only a few genes, such as ERAP2, SIGLEC5, and 

LAIR1. (Figure S5C). To evaluate synergistic effects, we calculated burden scores for TCGA individuals based 

on PC1-associated SNPs; individuals with a higher burden score had higher Thorsson et al. macrophage regulation 

scores (Figure S5D). 

PC2 was driven by the EP300/proteasome axis. PC2-associated SNPs were mutually exclusive with the 

28 PC1-associated SNPs. One of the 13 PC2-associated SNPs was a DICE immune cell eQTL for ERAP1 in 

TH17 cells. Clustering of the Pearson correlation values showed that several of these SNPs are related to each 

other, but not in LD (R2>0.5) (Figure S5E). Network analysis of SNP-IP component associations filtered for 

beta values of 0.25 again showed SNPs that have strong effects on IP components and SNPs that have strong 

effect on a specific gene, such as LILRB4, GLPD1 and ERAP1 (Figure S5F). Higher PC2-associated SNP burden 

scores were associated with more extreme values of EP300 (Figure S5G). Genes strongly affected by variants 

seemed to be distinct between PC1 and PC2, indicating that underlying pathways and biological processes may 

differ. Taken together, these results demonstrate the complex epistatic interactions of TIME-associated variants 

and underlying pathways driving TIME components. 
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Figure 6: Variant Discovery in the HLA region. (A) Confusion matrix of HLA region associations (B) 

Example conditional GWAS for TAP2 expression (top) Iteration 1 identifies rs2621321 as significant variant 

(bottom) Iteration 2 identified rs4148876 as significant variant after conditioning on rs2621321. (C) Significant 

variants identified through conditional analysis of HLA expression quantified through traditional alignment. (D) 

Significant variants identified through conditional analysis of HLA expression quantified through allele-specific 

alignment. (E) HLA-A expression (Firebrowse) by rs1143146 and rs2844806 genotype. (F) Overall survival 

CoxPH Hazards Ratio by TCGA cancer type for patients with 0, 1, 2 of HLA-A variants. (G)  OLS regression 

with age of diagnosis by TCGA cancer type for patients with 0, 1, 2 of HLA-A variants. (H) Predicted peptide 

binding affinity for borderline presentable cancer-driver mutations for patients with 0, 1, 2 of HLA-A variants. 

(I) Odds Ratio plot of HLA-A alleles significantly associated with rs1143146 and rs2844806 variants. 

 

Variant Discovery in the HLA Region 

Given the polymorphic nature of the HLA region, we employed a separate analysis pipeline for the 17 

heritable IP component genes for which HPRs contributed most to phenotypic variance. Heritability estimates of 

HLA region gene expression were >50%, yet high linkage disequilibrium within this region makes analysis 

difficult. Indeed, clustering suggested many genes shared significant variants; MHC class II genes showed the 

highest overlaps (Figure 6A). To filter out HLA region associations solely attributable to LD structure, 

conditional GWAS analysis was conducted until no SNPs with significance threshold < 1e-06 remained. 

Conditional analysis with all 3 RNA processing pipelines retained two SNPs associated with TAP2 expression, 

rs4148876 and rs2621321 (Figure 6B). Both have previously been implicated in GWAS studies; rs4148876 has 

been associated with type 2 diabetes risk, and rs2621321 with strep throat, psoriatic arthritis, platelet distribution 

width and thyroid peroxidase antibody positivity (Figure S6A). In total, 40 independent SNPs were associated 

with HLA region expression (Figure 6C); HLA-DQB1 and MICA each had 4 significant LD-independent SNPs. 

Generally, LD-independent SNPs clustered by genomic regions with HLA-A, HLA-B, HLA-C variants in MHC 

Class I genomic region and HLA-DQB1, HLA-DQA1, HLA-DPB1, HLA-DRB5 variants in MHC Class II genomic 
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region. Alignment to a general HLA gene reference may introduce error into expression level estimates due to 

the highly polymorphic nature of these genes. We therefore revisited SNP associations with gene expression 

estimates derived from allele-specific RNA alignments (Methods). GWAS analysis was performed on combined 

expression of called TCGA patient HLA alleles. This approach identified 10 variants associated with HLA 

expression, of which 4 were associated with HLA-DQB1 (Figure 6D). 

As antigen presentation via the major histocompatibility complex plays a central role in host-tumor 

immune responses, we sought to investigate whether SNPs modulating HLA-A gene expression affected other 

TIME characteristics. The minor allele of rs1143146 was associated with decreased HLA-A allele expression and 

was also associated with decreased infiltration of CD8 and CD4 T cells (Figure S6B). The major allele of 

rs2844806 was associated with decreased HLA-A expression; patients with both HLA-A variants tended to have 

lower HLA-A expression (Figure 6E). To evaluate whether patients with both HLA-A variants had differential 

survival outcomes, we conducted Cox Proportional Hazards analysis with overall survival; pancreatic 

adenocarcinoma (PAAD) and adrenocortical carcinoma (ACC) patients with both expression-reducing variants 

had worse survival outcome (Figure 6F), in line with previous literature that increased expression of HLA 

corresponds with better survival and prognosis42. Ordinary Least Squares (OLS) regression with age of diagnosis 

showed the melanoma (SKCM) patients with both expression-reducing variants had later ages of diagnoses 

(Figure 6G). 

Our previous work suggests that effective immune surveillance is also dependent on binding affinities of 

somatically altered peptides for the MHC14. Patients with both HLA-A variants had higher affinities (scores closer 

to 0) for peptides overlapping driver mutations (Methods), suggesting that the HLA alleles associated with these 

SNPs also differ (Figure 6H). Further analysis identified specific HLA-A alleles that were more commonly 

observed in association with the minor allele (Figure 6I). Thus, rs1143146 and rs2844806 were associated not 

only with differences in HLA-A expression, but also in alleles and peptide binding specificities, potentially 

explaining variable association with clinical characteristics across tumor types. 
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Figure 7: TIME-associated Variants are Implicated in Disease Risk and Response to Immune Checkpoint 

Blockade (ICB). (A) Disease-Phenotype network of UK Biobank PheWAS results; purple=ICD10 diagnosis 

code, gray=variant, pink= IP component. (B) General Linear Model (GLM) regression beta 

coefficients/log(odds ratio) and -log10 p-value for 23 ICB-associated variants with ICB response, immune gene 

expression and macrophage infiltration; color=coefficient value, size=-log10 p-value. (C) Boxplot of pre-

treatment LILRB2, TREX1 and LAIR1 expression in Riaz et al. ICB melanoma cohort. (D) Boxplot of pre-

treatment and post-treatment LILRB2, TREX1 and LAIR2 expression in Riaz et al. ICB melanoma cohort 

responders vs nonresponders. (E) Clustermap of z-scored expression of ICB-response genes across 15 profiled 

immune cells in DICE database (F) Scatterplot of 23 ICB-associated variant burden score and M1 Macrophage 

infiltration. (G) Scatterplot of 23-ICB associated variant burden score and M2 Macrophage infiltration. (H) 

AUC curves for optimized polygenic risk models (Optuna framework, Leave One Out cross-validation) 

constructed from 69 variants for melanoma, renal cell carcinoma and non-small cell lung cancer cohorts. (I) 

Tumor growth curves of responders or non-responders to anti-PD-1 in MC38 tumor-bearing mice. (J) Grid plot 

of OLS results (beta, p-values) for on-treatment RNA for ICB responders and non-responders in humans (Riaz 

et al) and mice (MC38); color=OLS beta value, size=-log10 association p-value, red outline=significant p-

values (< 0.1), square=expression levels not available. (K) Boxplot of post-treatment Pirb (human LILRB 

ortholog) and Ctss in M4 mice treated with anti-CTLA4. (L) Correlation of 12-gene mouse TIME signature 

with M1 macrophage infiltration. (M) Correlation of 12-gene mouse TIME signature with M2 macrophage 

infiltration.  Two-sided Mann-Whitney U-tests were used for Panel C; paired T-tests were used for Panel D. 

 

TIME-associated variants are implicated in disease risk and response to Immune Checkpoint Blockade 

(ICB) 

To assess disease relevance of TIME-associated variants, we evaluated their effects on disease 

progression, risk and response to therapy. First, we ran Kaplan-Meier analysis on TCGA overall and progression-

free survival for all 475 TIME-associated variants comparing minor allele and major allele homozygotes (Disease 
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Relevance, Figure 1). Immune microenvironment variants were associated with overall and progression-free 

survival in multiple tumor types (Figure S7A). Eight variants were associated with overall survival in testicular 

germ cell tumors (TGCT); 5 were associated with progression-free survival in head and neck squamous cell 

carcinoma (HNSC). The rs2098952 minor allele was associated with LILRB4 expression and poor prognosis in 

rectum adenocarcinoma (READ) (Figure S7B). LILRB4 is an immunoinhibitory receptor, specifically expressed 

on monocytes, macrophages, and dendritic cells43 and is being investigated as a potential therapeutic target for 

monocytic acute myeloid leukemia44. CCBL2-modifying variant rs1932757 was associated with progression-free 

survival in stomach adenocarcinoma (STAD). CCBL2 is part of the kynurenine pathway, which some studies 

suggest can play a role in immune evasion (Figure S7C)45. 

To assess the role of TIME-associated variants in disease risk, we performed PheWAS with ICD10 codes 

in the UKBB for our 475 unique TIME-associated variants and 50 HLA region-associated variants. Eighty-four 

TIME-associated variants were significantly associated with cancer-related or immune-related phenotypes in the 

UKBB (Figure S7D). rs7751376 linked to infiltration of tumors by M2 Macrophages was associated with 

malignant neoplasms of digestive organs, malignant neoplasms of skin, and aplastic and nutritional anemias, 

suggesting a macrophage-mediated etiology to not only cancer risk but other immune-related disorders (Figure 

7A). We also identified 2 novel SNPs modulating MARVELD2 expression, that are associated with cancer risk in 

the UKBB cohort. MARVELD2 is involved in regulating epithelial tight junctions and has been implicated in 

epithelial-mesenchymal transition (EMT), which greatly changes the tumor immune microenvironment46. These 

two analyses demonstrate the effects of TIME-associated variants on the occurrence and progression of cancer 

and immune-related diseases. 

To investigate the implication of TIME variants for ICB response (Therapeutic Target Discovery, 

Figure 1), we collected sequencing and phenotype information for 383 patients with melanoma, renal cell 

carcinoma, and non-small cell lung cancer treated with ICB-blockade from 6 studies47–52, and imputed SNPs from 

exome sequencing data. Accuracy of imputation was assessed based on TCGA which provides both exome 

sequencing and SNP data; most variants were accurately imputed aside from variants on chromosome 6 within 
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HLA gene regions (Figure S7E). SNP associations with response were evaluated for each ICB study and 

combined for meta-analysis53. 69 of the 475 TIME-associated variants with minor allele frequency > 0.01 in all 

ICB cohorts were considered. Of these variants, 23 were significantly associated with ICB response, implicating 

genes such as CCBL2, LAIR1, LYZ, SLC11A1, TREX1, PSMD2, CTSW, LILRB2, SLC25A40, LILRB4, CTSS, 

B2M, and SIGLEC5 (Figure 7B). Indeed, several of these genes behaved differently based on ICB response status. 

Pre-treatment, LILRB2, TREX1 and LAIR1 were expressed at lower levels in patients with iRECIST complete 

response compared to progressive disease (Figure 7C). Comparing pre- and on-treatment measurements, we 

noted a significant increase in LAIR1, TREX1, and LILRB2 expression among tumors with partial and complete 

response, but no change among patients with progressive disease (Figure 7D). These increases are consistent 

with remodeling of the composition of the TIME in responders, as was recently reported in another 

immunotherapy study with on-treatment profiling54. Moreover, they imply these genes may drive responses to 

ICB in cancer patients. 

 As several ICB response genes implicated by TIME-associated variants are upregulated in M2 

macrophages and monocytes (Figure 7E), we hypothesized that TIME-associated variants influence ICB 

response through modulation of properties of the myeloid landscape. For example, variant 19:54754385:T:G was 

associated with decreased LILRB2 expression, better ICB response, and increased M1 macrophage infiltration. 

Indeed, other ICB-associated variants, such as 12:69744014:C:A, 1:89735314:G:A, and 19:52130638:C:A were 

also associated with increased M1 infiltration (Figure 7B). We revisited analysis to determine whether these 

variants interact to promote more extreme TIME characteristics, such as observed with Macrophage Regulation 

score strength and EP300 expression. We constructed a burden score with the 23 ICB-associated variants by 

summing the alleles that were associated with better response in melanoma and ran OLS regression with M1 

macrophage infiltration. Indeed, ICB patients with a higher burden score had increased M1 infiltration (Figure 

7F), but not necessarily increased M2 infiltration (Figure 7G). These findings suggest that TIME-associated 

variant effects on ICB response may be mediated through effects on macrophage behaviors.  

To determine the value of TIME-associated variants as prognostic biomarkers for ICB, we evaluated 
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TIME-associated variants using an optimized classification framework. With germline variants alone, we 

achieved ROC AUCs of 0.65, 0.71 and 0.71 for melanoma, non-small cell lung cancer (NSCLC) and renal cell 

carcinoma (RCC), respectively (Figure 7H). Variants with strongest odds ratios differ between cancer types; in 

renal cell carcinoma, B2M variant 15:42439444:C:T had stronger effects compared to melanoma and non-small 

cell lung cancer. In contrast to melanoma and NSCLC, RCC TMB is typically low and its link to ICB response 

is less clear55. Underlying TIME-associated variants may shed light on mechanisms mediating ICB response in 

RCC.  

Through a genome-wide approach, we have thus identified germline variants predictive of response to 

ICB, as well as genes implicated by them. We further validated the functional relevance of our identified ICB-

response genes in a preclinical study. C57Bl/6 mice were implanted with syngeneic murine MC38 cells, followed 

by treatment with anti-PD-1. Interestingly, the tumors showed diverse responses, a clinical situation frequently 

observed in cancer patient cohorts receiving ICB treatment. We classified responders as those with tumor volumes 

<500 mm3 after mice receiving the last dose of anti-PD-1, and those exhibiting growth kinetics similar to controls 

as non-responders (Figure 7I). At post-inoculation day 20, the tumors were harvested for RNA extraction. We 

quantified expression through qPCR of 12 of the 15 human genes for which we identified mouse orthologs. The 

results were compared with human on-treatment RNA-seq data from Riaz et al. Similar to human responders, 

mouse ICB responders had significantly higher levels of Ctsw and Ctss (Figure 7J) and higher levels of Lair1 

and Trex1 post treatment. Increased CTSS expression in dendritic cells can alter antigen presentation and result 

in a more diverse TFH repertoire56. CTSW plays an important role in cytotoxic immune response57 and has been 

associated with immune infiltration in breast cancer58.  

 To confirm the value of the identified genes as biomarkers for different ICB therapies, we analyzed the 

RNA sequencing data generated from a mouse “M4” melanoma model receiving anti-CTLA-4 treatment59. Gene 

expression levels (TPM) were analyzed by deconvolution with immune gene signatures to obtain immune cell 

infiltration levels. As expected, across the post-treatment tumors, the expression of the 12-gene mouse TIME 

signature correlated positively with inflammatory M1 macrophage levels (Figure 7K) and negatively with 
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immunosuppressive M2 macrophage levels (Figure 7L). Since LILRB and CTSS are involved in phenotype 

switching of macrophages, we examined their expression in the post-treatment regressing (responder), stable and 

growing (non-responder) tumors. The responder and stable tumors expressed significantly higher levels of Pirb 

(human LILRB ortholog) and Ctss than non-responder tumors (Figure 7M), suggesting these may serve as 

therapeutic targets for enhancing the ICB efficacy in cancer treatment.   

 

Discussion 

Understanding the host genetics that influence the characteristics of the TIME may suggest strategies for 

better risk stratification and response prediction. In this study, we present a comprehensive analysis of multiple 

genomic and clinical databases to understand germline variants underlying characteristics of the tumor immune 

microenvironment, disease progression and response to therapy. We identified 482 TIME associations and 475 

TIME-associated variants in the TCGA from analysis of 137 heritable IP components. IP components mainly 

characterized macrophage behavior, EP300/proteasome expression, IFN-ɣ. Integration of GTEx, DICE, and 

ENCODE gave us insight into roles of TIME-associated variants in normal tissue setting, cell-type manner, and 

epigenetic landscape. Finally, we evaluated the role of TIME-associated variants in disease risk and ICB response, 

achieving predictive value for response in ICB cohorts of 3 different cancer types. Ultimately, we believe this 

study will pave the path for better understanding how individual heterogeneity contributes to the TIME and aid 

precision medicine initiatives. 

The characteristics of the TIME that varied most across tumors were macrophage regulation and activity 

of EP300 and the proteasome. We note that macrophages are typically the most abundant cell type in immune 

cell infiltrates, thus our study design may have been best powered to detect SNPs associated with macrophage 

characteristics. We identified variants modifying macrophage-related genes, such as CD53, FCGR2A, FCGR3A, 

VSIG4, LILRB4, LILRB2, in a cell-type specific manner. Of these, we found that variants associated with LILRB2 

and LILRB4 expression were associated with response to immune checkpoint blockade therapy. Not only are 

these genes involved in macrophage infiltration, but also macrophage polarization. LILRB2 mediates polarization 
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of macrophages to inflammatory phenotypes and may be a myeloid immune checkpoint60. In vivo studies in 

syngeneic mice suggested that targeting LILRB2 could reprogram macrophages and improve antitumor immune 

responses; additionally phase 2 clinical trials are in development to target LILRB2 and boost anti-PD1 response60. 

LILRB2 may not only serve as a promising therapeutic target, but also a useful biomarker for ICB responders. 

LILRB4 is upregulated on acute myeloid leukemia (AML) cells44. Our study did not include hematologic 

malignancies but suggests that LILRB4 may be relevant to determining TIME characteristics in solid tumors as 

well. LILRB3 has also been implicated as a potent myeloid checkpoint61; however, we did not find evidence that 

genetic variation affecting this gene influenced the TIME in the current cohort. We also note that the Macrophage 

Regulation score is tightly correlated with the TGF-β score described in Thorsson et al; TGF-β plays a role in M2 

Macrophage polarization62. Indeed, we found also that these variants have cell-type specific behavior through 

integration of DICE eQTL dataset and interaction term linear regression models; variants associated with LILRB2, 

LILRB4, and LAIR1 were specific to monocytes or macrophages. 

The EP300/proteasome axis was the second most variable characteristic of the TIME and associated with 

infiltration of tumors by TH1 cells. EP300 and the proteasome work together to regulate stress responses through 

modulation of Heat Shock Factor 1 (HSF1) activity33. A shift in Th1/Th2 cytokines underlies stress responses in 

mouse colon cancer models63. We detected 2 variants which were significantly associated with expression of 

MARVELD2 and LILRB2 specifically in Th1 cells; however, a better understanding of cell-types is needed. Thus, 

EP300 activity may broadly contribute to an immunosuppressive tumor microenvironment via effects on several 

cell types64. Importantly, EP300 has also been implicated as an oncogene in tumor cells65–68, thus it will be 

important to understand the specific roles of EP300 in each cell type to effectively target its activity 

therapeutically. 

We also investigated SNP associations in the HLA region, using two strategies to deal with the high levels 

of polymorphism in this region. Using conditional analysis and allele-specific expression greatly reduced the 

number of significant associations. These two approaches returned slightly different results; however, it is 

difficult to determine whether this was due to the loss of sample size when acquiring allele-specific expression, 
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or a higher error rate when aligning to a general reference. We identified several variants not only influencing 

MHC class I and II genes, but other genes implicated in the antigen presentation pathway, such as TAP2, TAP1, 

and PSMB9. SNP rs1143146 influenced expression levels of HLA-A, with no effect on HLA-B or HLA-C 

expression and interacted with rs2844806. Patients with both variants had poorer outcomes in pancreatic and 

rectal adenocarcinoma; further tumor samples may be needed to implicate variants in other cancer types.  Patients 

with both variants also had differences in potential to present borderline driver mutations and biases for certain 

HLA-A alleles, suggesting variants may affect multiple aspects of MHC function and more investigation must be 

done to determine which are important for effective immune responses. Several variants identified through HLA 

analysis were also associated with disease risk in UK Biobank; this suggests that immune-related dysregulation 

could not only have a role in cancer, but other diseases. 

The tumor immune microenvironment is a determinant of response to immunotherapy, with both the 

number and quality of T cells implicated as being determinants of immune response69. Other studies have 

implicated IFN-ɣ response, cytotoxicity, T cell activation and T cell exhaustion signatures51,70–73. Non-T cell 

factors, such as PD-L1 expression, neoantigen load, antigen presentation pathways, mesenchymal transition, and 

wound healing have been implicated in ICB response as well50,52,74–77. We therefore evaluated the predictive 

potential of our TIME-associated variants for ICB response. Of the 23 variants implicated in ICB response, many 

modulate genes involved in myeloid activation, such as LILRB2, LAIR1, LYZ, PSMD2, SLC11A1, and CTSS. 

Genes, such as LILRB4 and LILRB2, are overexpressed in macrophages and typically have an immunoinhibitory 

role. Our studies suggest that genetic variation affecting these immunoinhibitory molecules may aid in risk 

stratification for cancer survival and ICB response. Specifically, we were able to achieve an AUC of 71% in renal 

cell carcinoma; the link between tumor mutation burden (TMB) and ICB response in RCC is not clear, in contrast 

to high TMB diseases like Melanoma and NSCLC where higher TMB is associated with better responses52,78–80. 

Possibly, in a setting with low TMB such as in RCC, host genetics have more value as prognostic biomarkers.  In 

this study, we only assessed predictive value of germline variation to ICB response, but these predictive models 

could potentially be augmented with somatic features, such as TMB, PD-L1 positivity, and neoantigen load. 
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Additionally, most of the SNPs tested for ICB response had minor allele frequency > 10% in TCGA; through the 

incorporation of rare variants, this AUC could be boosted81,82. 

Discovery of TIME influential SNPs is dependent on the availability of paired genomic and transcriptomic 

data from tumors, which is currently available only for a few cohorts. Effect sizes associating genetic variants 

with cellular phenotypes are likely to be larger than those linking genetic variants to diseases83–85, however the 

number of associations detected may still be limited by available sample sizes and the limited population diversity 

thereof. We were able to impute a subset of our SNPs into existing ICB study cohorts that had only exome 

sequencing, but others falling outside of exonic regions could not be analyzed in this context. Studies focused on 

tumor exomes and transcriptomes could include SNP chips to allow more effective integration into future studies 

of germline genomic variation. 

 

Conclusion 

Interindividual differences encoded by germline variation contribute to considerable population variation in 

heritable traits, including in the immune system. Our analysis highlights the utility of studying this variation in 

the context of the tumor immune microenvironment. Identification of SNPs associated with major axes of immune 

variation provide clues as to the major factors influencing anti-tumor immune responses. TIME-associated 

variants associated with cancer risk or response to immunotherapy merit further investigation as possible entry 

points for future efforts to engineer the tumor immune microenvironment. 
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processed clinical, 

array, and 

sequence data 

NCI 

Genomic 

Data 

Commons 

https://portal.gdc.cancer.gov/ SCR_014514 

DICE Schmiedel et 

al. 2018 

https://dice-database.org/ SCR_018259 
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ChIP-seq Sloan et al. 

2016 

https://www.encodeproject.org/ SCR_015482 

RCC ICB trial 

data 

Miao et al 

2018 

    

Melanoma ICB 

trial data 

Hugo et al. 

2016, Van 

Allen et al. 

2015, Riaz et 

al, Snyder et 

al 

    

NSCLC ICB trial 

data 

Rizvi et al.     

Software and 

Algorithms 

      

bam2fq NA http://www.htslib.org/ SCR_002105 

Bedtools Quinlan et 

al. 2010 

https://github.com/arq5x/bedtools2 SCR_006646 

Birdsuite Korn et al. 

2008 

https://gaow.github.io/genetic-analysis-

software/b/birdsuite/ 

SCR_001794 
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BWA (v0.7.17-

r1188) 

Li et al. 2010 http://bio-bwa.sourceforge.net/ SCR_010910 

CaviarBF Chen et al. 

2015 

https://bitbucket.org/Wenan/caviarbf SCR_000502 

CIBERSORTx Newman et 

al. 2019 

https://cibersortx.stanford.edu/ SCR_016955 

Cytoscape Shannon et 

al. 2003 

https://cytoscape.org/ SCR_003032 

DeepVariant 

(v0.10.0-gpu) 

Poplin et al. 

2018; Yun et 

al. 2020 

https://github.com/google/deepvariant   

fastq-pair Edwards et 

al. 2019 

https://github.com/linsalrob/fastq-pair   

GATK (v3.8-1-0) McKenna et 

al. 2010; 

DePristo et 

al. 2011; 

Van der 

Auwera et 

al. 2013 

https://gatk.broadinstitute.org/hc/en-us SCR_001876 
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GCTA 

(1.93.0beta) 

Yang et al. 

2011; Yang 

et al. 2010 

https://cnsgenomics.com/software/gcta/#Overview   

GREGOR 

(v1.4.0) 

Schmidt et 

al. 2015 

https://genome.sph.umich.edu/wiki/GREGOR SCR_009165 

HLApers Aguiar et al. 

2019 

https://github.com/genevol-usp/HLApers   

Michigan 

Imputation Server 

Das et al. 

2016 

https://imputationserver.sph.umich.edu/index.html#! SCR_017579 

NetMHCpan4.0 Jurtz et al. 

2017 

http://www.cbs.dtu.dk/services/NetMHCpan-4.0/   

Networkx Aric et al. 

2018 

https://networkx.org/documentation/stable/index.html SCR_016864 

Picard NA https://broadinstitute.github.io/picard/ SCR_006525 

Plato (v2.0.0)   https://ritchielab.org/plato   

PLINK Purcell et al. 

2007 

http://zzz.bwh.harvard.edu/plink/ SCR_001757 

RSEM (v1.2.21) Li et al. 2011 http://deweylab.biostat.wisc.edu/rsem/ SCR_013027 
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Samtools     SCR_002105 

STAR (v2.4.1d) Dobin et al. 

2013 

https://github.com/alexdobin/STAR SCR_015899 

VEP (Ensembl 

Variant Effect 

Predictor) v87 

  http://www.ensembl.org/info/docs/tools/vep/index.html SCR_007931 

  

TCGA Subject Details 

The Cancer Genome Atlas (TCGA) consists of tumor and matched normal samples for over 11,000 patients. The 

Genomic Data Commons (GDC) legacy archive contains germline data for 11,542 samples from 10,875 unique 

individuals. Samples with TCGA project IDs: DLBC, LAML, THYM were excluded as they represent cancers 

derived from immune cells. Pairs of individuals with estimated KING kinship coefficient > 0.177, which 

represents first-degree relatedness were excluded. TCGA individuals were consented for general research use and 

no attempts were made to reidentify or contact subjects. Both females and males were included, using sex along 

with individual age as a covariate.  Experimenters were not blinded and randomization of subjects was not relevant 

to the study. We did not check for sample sizes using a power analysis because our sample sizes were over 10,000 

individuals. 

  

TCGA Genotypes 

Normal (non-tumor) level 2 genotype calls generated from Affymetrix SNP6.0 array intensities using 

BIRDSUITE (RRID: SCR_001794) software86 were retrieved from TCGA GDC Legacy Portal. In these files, 

each of 906600 SNPs was annotated with an allele count (0=AA, 1=AB, 2=BB, -1=missing) and confidence score 

between 0 and 1. Genotypes with a score larger than 0.1 (error rate > 10%) were set to missing and data were 

reformatted for PLINK (RRID:SCR_001757)34. We discarded 322 SNPs with probe names that did not match the 
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hg19 UCSC Genome Browser (RRID:SCR_005780) Affymetrix track (track: SNP/CNV Arrays, 

table:snpArrayAffy6). Allele counts were converted to alleles using the definitions in metadata distributed with 

BIRDSUITE (RRID: SCR_001794) and negative strand genotypes were flipped to the positive strand using 

PLINK (PLINK, RRID:SCR_001757). 

Pre-imputation processing of autosomal and X chromosome genotypes consisted of the following steps: 

1. SNPs with call rate <90% were removed 

2. SNPs with minor allele frequency (MAF) <1% were removed 

3. Individuals with genotype coverage <90% were removed 

4. Individuals with conflicting gender assignments were flagged 

5. Heterozygous haploid SNPs were set to missing. 

After applying these filters, the remaining 800644 autosomal and 32809 X chromosome SNPs were input to the 

secure Michigan Imputation Server87. Additional SNPs were imputed with Minimac3/Minimac4 and ancestry-

matched reference panel -- European (HRC Version r1.1 2016 reference, Eaglev2.3), African (CAAPA, 

Eaglev2.3), and Asian (Genome Asia Pilot).  

Post-imputation processing of genotypes included: 

1. SNPs with MAF <1% were removed 

2. Autosomal SNPs with Hardy-Weinberg Equilibrium <1e-9 were removed 

3. Individuals with high heterozygosity rates (>3 SDs of mean) were removed 

4. Pairs of individuals with 

Rsq values from INFO files were extracted to assess genotyping quality. The final genotyping data included 8217 

individuals and 7,884,718 variants. 

  

TCGA Population Stratification 

Ancestry filtering was applied using two techniques: (1) k-means clustering and (2) outlier identification. For k-

means clustering, TCGA and HapMap Phase III populations were combined. HapMap Phase III genotypes were 
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obtained from the NCBI HapMap ftp site and lifted to hg19 using the liftOver utility88. Genotypes were merged 

and reduced to a set of 33,675 independent SNPs determined previously85,88 through linkage-based filtering using 

PLINK (RRID:SCR_001757). Pairwise identity-by-state (IBS) between all individuals was calculated and the 

resulting IBS matrix was used for PCA analysis. K-means clustering trained on HAPMAP Phase III separated 

individuals into the following groups: (1) TSI, CEU, (2) JPT, CHD, CHB, (3) MEX, (4) GIH, (5) MKK, (6) YRI, 

ASW, LWK. This trained model was used to predict groups in TCGA. Cluster (1) were identified as European 

individuals. 

We ran aberrant R package v1.0 with lambda 20 for outlier identification89. Intersection of k-means clustered 

individuals and non-outlier individuals from outlier identification analysis was used to include TCGA individuals 

in the European ancestry discovery cohort. 

  

TCGA RNA-seq processing 

Three TCGA RNA sources were considered for TCGA phenotype characterization. One was processed RNAseq 

data from a previous analysis90, where RNA-seq sequencing reads obtained from TCGA were realigned and 

quantified using Sailfish v.0.7.66091 with default parameters. The others included Level_3 

RSEM_genes_normalized firebrowse data (version 2016_01-28), from the firebrowse portal 

(http://firebrowse.org/, date: 06/12/20) and PanCanAtlas RNA data from GDC PanCanAtlas Publications 

Supplemental Data (https://gdc.cancer.gov/about-data/publications/pancanatlas). Only primary tumors (barcode: 

01A/01B/01C) were considered in our analysis. Corresponding clinical metadata were obtained from the GDC 

Portal (https://tcga-data.nci.nih.gov/docs/publications/tcga/). 

  

PCA analysis 

Inverse-ranked phenotypes from 3 RNA-processing pipelines -- Firebrowse, Sailfish, and Pancan Atlas -- were 

combined by taking the median of values. Individuals with > 10% phenotypes missing were removed from 

analysis. Sklearn was used to scale values (Standard Scaler) and conduct principal component analysis. Ordinary 
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least squares (OLS) regression was conducted with age, sex and tissue type as covariates. Variance explained by 

each component were computed and first 10 principal components were considered for analysis. 

  

TCGA Phenotype Data 

The following phenotypes were extracted or generated using all 3 TCGA RNA sources. 

1. Immunomodulators: 436 genes used to define immune states from Thorsson et al. 

2. Immune checkpoint molecules: 78 immune checkpoint stimulatory and inhibitory molecules from 

Thorsson et al. 

3. Antigen Presentation: 231 antigen presentation genes from Gene Ontology [GO_REF:0000022] 

4. Immune cell markers: 60 immune cell type markers from Danaher et al. 

5. IFN-ɣ: IFN-ɣ genes retrieved from Biocarta [Systematic Name: M18933] 

6. TGF-β: TGF-β genes retrieved from Biocarta [Systematic Name: M22085) 

7. Immune states: Individual level scores for 6 immune states [wound healing, IFN-ɣ dominant, 

inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant] from Thorsson et al. 

8. Immune infiltration levels: 61 relative immune infiltration estimates from CIBERSORTx92 using 5 

signature matrices: LM22, DICE, melanoma, Non-Small cell Lung Cancer (NSCLC), Head and Neck 

Squamous Cell Carcinoma (HNSCC). 

Phenotypes with greater than 10% zero values were excluded and rank-based inverse normal transformation 

(Figure S1) was applied to each tissue type using Eqn 193. 

qnorm((rank(x,na.last="keep")-0.5)/sum(!is.na(x)))    Eqn 1 

A total of 741 phenotypes remained for preliminary analyses. 

Antigen Affinity scores for all TCGA individuals were calculated for missense and in-frame indel somatic 

mutations using NetMHCpan4.094 and NetMHCIIpan3.295 to predict peptide-MHC binding affinities for all 

peptides spanning the novel mutated protein sequence. For a more in-depth description see Marty et al. 201714, 

Castro et al. 201996. 
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Heritability Estimates 

Heritability estimates were calculated with the genomic-relatedness-based restricted maximum-likelihood 

(GREML) approach implemented in GCTA (Genome-wide Complex Trait Analysis)97,98. Genetic relationship 

matrices (GRMs) which measure genetic similarity of unrelated individuals (GRM <0.05) were constructed for 

the autosomal and X chromosomes for the European cohort. Benjamini-Hochberg false discovery rates (FDR) 

were calculated using statsmodels99. Immune traits were considered sufficiently heritable if the V(g)/V(p) value 

was >0.05 based on at least 2 of 3 RNA sources and FDR was <0.05 for at least 1 of 3 RNA sources. 

To assess heritability contribution from each chromosome, GREML was applied to each separated chromosome 

GRM. To assess heritability contribution from highly polymorphic immune loci as compared to the rest of the 

genome, GRMs were generated separately for the HLA/KIR regions and the whole genome excluding HLA/KIR 

regions. Immune phenotypes were considered as having majority heritability contribution from HLA/KIR 

polymorphic regions if at least 2 RNA sources had great HLA/KIR V(g)/V(p) estimates than non-HLA/KIR 

V(g)/V(p) estimates. All analyses were adjusted for covariates age and sex. 

  

GWAS Analysis 

PLINK (RRID:SCR_001757) GLM method was used to conduct association analyses with immune phenotypes. 

All associations were adjusted for covariates age, sex and first ten principal components. Gene expression values, 

CIBERSORTx relative infiltration estimates, and immune state scores were inverse-rank normalized by tissue 

type to control for tissue-type expression effects. Significant associations were identified with the PLINK 

(RRID:SCR_001757) clumping method using primary significance threshold (1e-5)/120100, kb threshold 1000, 

and R2 threshold of 0.1. Associations with minimum p-value passing suggestive threshold (1e10-5) Bonferroni-

corrected for number of phenotypes (120) were used as the final set of significant associations. 

Different thresholds were tested to determine ability to recover bonafide GWAS SNPs and functionally enriched 

SNPs (Table S3). Suggestive threshold 1e-06 recovered most functional SNPs. To reduce false positive rate, only 
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SNPs that were determined to be functional by another data source were considered for further evaluation. 

  

Conditional HLA analysis 

PLINK (RRID:SCR_001757) GLM method was used to run stepwise conditional analysis for identification of 

independent HLA associations101. First, associations with HLA region phenotypes were conducted identical to 

methods for non-HLA phenotypes. After identification of the most significant SNP with the lowest p-value, we 

re-ran the analysis conditioning on the most significant SNP as a covariate. Analysis was conducted until no SNPs 

with p-value < 1x10-6 remained. 

Conditional analysis was conducted with all 3 RNA processing pipelines -- Sailfish, Firebrowse, Pancan 

Atlas-- with the 17 phenotypes identified through GCTA analysis to be driven by variation in the HLA regions: 

HLA-A, BTN3A2, HLA-DQB2, HLA-C, TAP2, HLA-DQB1, HLA-B, HLA-DRB5, MICA, HLA-H, HLA-

DQA1, HLA-G, MICB, HLA-DQA2, HLA-F, PSMB9, HLA-DRB1. Only variants on chromosome 6 and 

identified by at least 2 RNA processing pipelines were further investigated. 

  

HLA Allele Specific Expression 

TCGA tumor specific RNA BAMs were downloaded from the GDC using a manifest from 07/16/2019. The 

HLApers102 kallisto-based pipeline was used with gencode.v30 annotations103. Default parameters were used and 

the two alleles with the highest calculated expression were retained for each HLA gene if there were more than 2 

alleles reported. The top 2 highest expressed HLA alleles were averaged for input into SNP analyses. If expression 

for at least two alleles was not calculated, expression was set as missing for the sample. 

Only primary samples (01A/01B/01B) were considered for analysis. Summed HLA allele specific expression was 

inverse-rank normalized by cancer type and used for downstream analyses. 

  

Affinity analysis 

A set of 723 driver mutations with potential to bind MHC-I were identified by constraining the median percentile 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.14.436660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.436660


 

 

rank binding affinity <5 across 2915 MHC-I alleles for 1018 driver mutations previously described in Marty et 

al14. Binding affinity was calculated using NetMHCpan4.094. HLA-A, HLA-B, and HLA-C gene-level driver 

affinity scores were obtained by taking the minimum (best) of the two allele-specific patient affinity scores using 

HLA alleles previously typed in Castro et al. 201996. Ordinary least squares (OLS) from the python statsmodels 

(v0.10.1) package was used to fit patient HLA-A, HLA-B, and HLA-C driver affinity scores for patient genotypes 

for 109 SNPs identified in HLA-region conditional analyses. 

  

DICE 

DICE eqtls were obtained at https://dice-database.org/. Methods associated with DICE eQTL discovery are 

published in Schmiedel et al38. 

  

GREGOR (RRID: SCR_009165) 

GREGOR (RRID: SCR_009165) was used to analyze SNP enrichment at epigenetic features. We obtained 479 

bed files for 11 histone experiments and 52 cell types from ENCODE (RRID:SCR_015482) (downloaded on 

May 3, 2020). Only “stable peaks” and “replicated peaks” files were kept for analysis. If more than 1 bed file 

for a cell type and histone mark were available, the files were combined. 

In addition, 323 bed files for 12 transcription factor binding experiments and 12 cell types were 

downloaded from ENCODE (RRID:SCR_015482) on August 4, 2020. Only “optimal IDR thresholded peaks” 

and “conservative IDR thresholded peaks” files were kept.  If more than 1 bed file for a cell type and transcription 

factor were available, the files were combined. 

GREGOR (RRID: SCR_009165) was run with EUR Reference files made from 1000G data with LD 

window size 1MB and LD r2 > 0.7. Enrichment ratios were calculated by taking the difference between observed 

and expected number of SNPs and dividing by the expected number of SNPs. Any files with Audit errors were 

excluded. 
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GTEx 

GTEx V8 full summary statistics from cis-eqtl analysis were downloaded from Google Bucket. SNPs were 

extracted from compiled parquet files for each cell type. If minor allele and major allele were reversed in GTEx, 

beta value signs were reversed. 

Significant GTEx eQTLs were retrieved from the GTEx download page. Cis associations were 

associations from which immune phenotype was the gene for which GTEx eQTL was associated with. Trans 

associations were associations for which a different gene from the immune phenotypes was the gene for which 

GTEx eQTL was associated with. 

Z-scores (beta/SE) were calculated for all SNPs. 1000 random SNP-gene combinations were selected to 

conduct association analyses. Z-scores for random SNP-gene pairs were calculated. The random distribution was 

sampled 1000 times and the percentage of samples with greater than observed score was calculated and averaged. 

If the average percentage of random samples was less than 1% for a SNP by at least 2 RNA processing pipelines, 

variants were identified as having deviating behavior in tumor states. The same approach was repeated with 

Whole Blood as the matching GTEx tissue. Variants were identified as having similar behavior to Whole Blood 

if the average percentage of random samples was not less than 1% for a SNP. A deviating SNP was identified to 

have normal tissue support if the z-score (tcga beta - gtex beta)/(gtex se) was lower using normal tissue association 

data than tumor tissue association data. 

  

Infiltration Interaction analysis 

We followed the GTEx approach for cell type interaction eQTL discovery35. We ran linear regression model with 

an interaction term accounting for interactions between genotype and cell type enrichment: 

p ∼ g + i + g ◦ i + C    Eqn 2 

where p is the immune phenotype vector, g is the genotype vector, i is the inverse normal transformed by tissue 

type xCell enrichment score37, and the interaction term g ◦ i corresponds to pointwise multiplication of genotypes 

and cell type enrichment scores. The same covariates, denoted by C, were used as in regular immune 
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microenvironment GWAS analysis. Benjamini-Hochberg FDR was calculated for beta coefficient of interaction 

term and only variants with FDR < 0.1 were evaluated. 

  

UKBB 

UKBB subjects were subsetted into separate ethnic-racial groups largely following continental ancestry prior to 

analysis. The sub-setting was performed to generate homogenous groups and reduce potential admixture bias in 

the genetic analyses. To identify the European-ancestry samples, we started with directly called genotype data 

and identified a set of overlapping SNPs with 1000 Genomes Project and AWS (RRID:SCR_008801) (1KG) 

population and then merged them together. Next, we pruned the SNP set so remaining SNPs were in linkage 

equilibrium using PLINK (PLINK, RRID: SCR_001757)34. flashpca was used to calculate principal 

components for 1KG SNPs104. The UKBB samples were projected onto 1KG space using flashpca. To identify 

subjects of European ancestry, we utilized Aberrant to generate clusters with a broad set of lambda values 

(clustering thresholds) and checked that the cluster included all 1KG subjects of European ancestry and 

maximized the total number of UKBB subjects (lambda=8.2)89. Finally, we compared the self-reported 

race/ethnicity of subjects within this cluster and removed samples that were discordant. We identified 454,487 

subjects of European ancestry. To identify the unrelated samples from the finalized European list, we used the 

relatedness file provided by UKBB and a custom script was used to select unrelated samples while maximizing 

sample counts. The final European unrelated set included 382,841 subjects. 

Variant dosages extracted from imputed UKBB BGEN files were used for phewas analysis with PLATO 

v2.0.0105. ICD10 diagnosis codes associated with neoplasms and immune disorders were collapsed according to 

level-1 groupings used by UKBB resulting in a total of 24 groups. For example, C00-C14 is one of the groups 

containing ICD10 codes associated with malignant neoplasm of lip,oral cavity, and pharynx. Individuals with 

diagnosis code in group were coded as 1, with the remaining individuals coded as 0. Logistic regression was 

conducted with UKBB binary files containing HLA-immune variants, logistic phenotype file, and age, sex, and 

principal components 1-10 as covariates. P-values were Benjamini-Hochberg FDR adjusted.   
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Immunotherapy Response Validation 

Raw fastq files were obtained for the following immune checkpoint trials: Hugo et al. 2016 (SRA accession: 

SRP090294, SRP067938; Cancer: melanoma)47, Van Allen et al. 2015 (SRA accession: SRP011540, Cancer: 

melanoma)48, Miao et al. 2018 (SRA accession: SRP128156, Cancer: clear cell renal carcinoma)49, Riaz et al. 

2017 (SRA accession: SRP095809, SRP094781; Cancer: melanoma)51, Rizvi et al. 2015 (SRA accession: 

SRP064805, Cancer: non-small cell lung cancer)50, Snyder et al. 2014 (SRA accession: SRP072934, Cancer: 

melanoma)106. Reads were aligned to UCSC hg19 coordinates using BWA ( RRID:SCR_010910) v0.7.17-

r1188107. Reads were sorted by SAMTOOLS ( RRID:SCR_002105) v0.1.19108,109, marked for duplicates with 

Picard ( RRID:SCR_006525) Tools v2.12.3 and recalibrated with GATK ( RRID:SCR_001876) v3.8-1-0110–112. 

Germline variants were called from sorted BAM files using DeepVariant v0.10.0-gpu113,114. The final 

immunotherapy cohort consisted of 70 clear cell renal carcinoma, 278 melanoma and 33 non-small cell lung 

cancer patients. 

Overlapping DeepVariant germline variants and imputed TCGA variants were used to impute genotypes 

for both immunotherapy trials and TCGA European discovery cohorts. Imputation performance was confirmed 

by comparing TCGA imputed genotypes using full Affymetrix 6.0 variants vs. variants overlapping WXS calls. 

Variants with >5% mismatch in genotype calls and minor allele frequency < 1% were excluded. Only variants 

with at least 1% frequency in all 5 ICB cohorts were considered for analysis, leaving 69 SNPs. 

Subject phenotypes were downloaded from supplementary information of ICB trial publications. PLINK (PLINK, 

RRID:SCR_001757) logistic regression was conducted with age and sex as covariates. Response phenotypes were 

determined from iRECIST criteria115. Patients were categorized as responders if they have iRECIST criteria: CR 

(complete response), PR (partial response) and SD (stable disease) with >1 year overall survival. Genome-wide 

association studies (GWASs) were conducted for ICB responders within each ICB-cohort using PLINK (PLINK, 

RRID:SCR_001757). Age and sex were included in the logistic analysis as covariates. We then used METAL53 

with a sample size weighting scheme to perform a pan-study meta-analysis for ICB response. Only SNPs with 
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MAF > 0.01 in all 6 studies were considered resulting in 69 SNPs for analysis. SNPs with Benjamini-Hochberg 

FDR less than 0.1 were reported as significant SNPs (14 SNPs). 

Polygenic risk scores for melanoma, RCC and NSCLC were based on an individual’s odds ratio weighted 

genotype. Given the limited number of samples in these ICB trials across cancer types we employed leave-one-

out cross validation to assess the overall predictiveness (AUC) of our identified germline variants. Specifically, 

variant odds ratios were generated for n-1 samples per cancer type. These odds ratios were then utilized to obtain 

a weighted genotype for all n samples. Hyperoptimized models were then trained on the discovery n-1 subset 

before holdout evaluation. The reported final AUCs are the result of n composite runs of this cross-validation, 

one for each unique n-1 fold in the data set. 

         For each cancer type we employed Bayesian optimization for model selection and hyperparameter 

optimization using the Optuna framework116. Model configurations that were evaluated for each cohort were as 

follows: random forest classifiers, support vector machine (SVM), and logistic regression. Hyperparameters 

evaluated focused on intrinsic model properties (e.g., SVM kernel) and regularization constraints and 

methodologies. Logistic regression was the identified optimal framework for both melanoma and NSCLC, 

however for RCC SVMs yielded the best performance. This approach was repeated for unweighted and complete 

response evaluations as well. 

  

ICB trial RNA 

FASTQ/BAM files were downloaded for 33 RCC and 120 melanoma patients. If BAM files were downloaded, 

they were converted to FASTQ using bam2fq109. Unpaired reads were removed using fastq pair117. Paired reads 

were aligned with STAR ( RRID:SCR_004463) v2.4.1d118 to GRCh37 reference alignment. RSEM119 was used 

for transcript quantification. TPM values were log2 transformed for analyses. 

  

Mouse experiments 

Wild-type C57BL/6 (RRID:IMSR_JAX:000664) were purchased from The Jackson Laboratory. All the animal 
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studies were approved by the Institutional Animal Care and Use Committee (IACUC) of university of California, 

San Diego, with protocol ASP #S15195. Mice at Moores Cancer Center, UCSD are housed in micro-isolator and 

individually ventilated cages supplied with acidified water and fed 5053 Irradiated Picolab Rodent Diet 20 lab 

diet. Temperature for laboratory mice in our facility is mandated to be between 65–75 ° F (~18–23 °C) with 40–

60% humidity. All animal manipulation activities are conducted in laminar flow hoods. All personnel are required 

to wear scrubs and/or lab coat, mask, hair net, dedicated shoes, and disposable gloves upon entering the animal 

rooms. 2x105 MC38 ( RRID:CVCL_B288) cells were transplanted into two flanks per C57Bl/6 

(RRID:IMSR_JAX:000664) mouse, aged 7-8 weeks. When tumors reached 100 mm3, mice were randomized and 

treated with anti-PD-1 (Bio X Cell Cat# BE0146, RRID:AB_10949053, clone RMP1-14) or isotype control 

antibody through intraperitoneal injection. Mice were given 300ug of anti-PD-1 (Bio X Cell Cat# BE0146, 

RRID:AB_10949053, clone RMP1-14) or isotype control every 3 days for a total of 6 doses. The mice were then 

euthanized after the completion of the treatment (or when control-treated mice succumbed to tumor burdens, as 

determined by the ASP guidelines). MC38 cells were not screened using STR profiled on site.  

RNA-seq and CIBERSORTx infiltration estimates for four additional murine melanoma models were obtained 

from GEO accession (GSE144946). Responders were mice whose size at harvest was smaller than the last dose 

of anti-CTLA4. RNA-seq counts were converted to TPM and log2 normalized. Out of 4 models, only M4 showed 

response to anti-CTLA4, thus analysis of PirB and Lair1 expression relative to response was confined to M4 

mice. Significance was determined by T-test. A gene signature comprising 12 genes was constructed by taking 

average of expression of mouse orthologs of human genes implicated by TIME-associated variants: HAUS1, B2M, 

SLC25A40, TREX1, LYZ, LILRB2, LAIR1, CTSW, PSMD2, CTSS, FCGR2B and SLC11A1. Average expression 

was then normalized by number of genes. Correlation was assessed using Ordinary Least Squares regression.  

 

Reagents 

PD-1 antibody (clone RMP1-14, Bio X Cell Cat# BE0146, RRID:AB_10949053) and isotype antibody (catalog 

#BE0091) were purchased from Bio X Cell. 
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RT-PCR 

RNA from MC38 ( RRID:CVCL_B288) tumors was extracted using the RNeasy Mini Kit (Qiagen catalog 

#74104). 500ng of RNA per reaction was used to prepare cDNA with the SuperScript™ VILO™ cDNA Synthesis 

Kit (ThermoFisher Scientific) following manufacturer’s instructions. The cDNA was used to set up the RT-PCR 

reaction with 4 technical replicates per tumor with the Fast SYBR™ Green Master Mix (ThermoFisher Scientific) 

according to manufacturer’s instructions. PCR quantification was conducted using the 2-ΔΔCT method and 

normalized to the housekeeping gene β-actin. All the primers used in this study were ordered from Sigma-Aldrich 

and the sequences are shown in Supplemental Table 5. 

  

Survival Analysis 

CoxPH analysis was implemented with the R Survival package in R statistical environment (version 3.6.1) using 

overall survival information retrieved from Liu et al120. The analysis was restricted to tumors in the TCGA 

European discovery cohort with available AJCC stage categorization, overall survival time less than 5 years and 

not identified as MSI-high. CoxPH with inverse-ranked phenotype values was conducted including age at 

diagnosis, sex and stage as covariates. Stage was collapsed into four groups: Stage I (Stage I, Stage IA, Stage IB), 

Stage II (Stage II, Stage IIA, Stage IIB), Stage III (Stage III, Stage IIIA, Stage IIIB, Stage IIIC), Stage IV (Stage 

IV, Stage IVB, Stage IVC). Categorical covariates were dummy coded (0/1) prior to model inclusion. Wald test 

p-values and hazard ratios for immune phenotypes were used for further analysis. Benjamini-Hochberg FDR 

values were calculated using the statsmodel package. 

Kaplan-Meier analysis of immune microenvironment associations were conducted with overall and progression-

free survival by cancer type using the lifelines package. TCGA individuals were divided into 3 groups based on 

genotype calls: minor allele homozygotes, heterozygotes and major allele homozygotes. Significance was 

conducted using the logrank test between minor allele and major allele homozygotes. SNPs with at least 1% 

frequency in cancers and more than 1 minor allele homozygous individual were considered for analysis. Logrank 
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p-values were corrected using the Benjamini-Hochberg method and only variants with FDR < 0.1 were 

considered. 
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