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Abstract 1 

Identification of rare variant associations is crucial to fully characterize the genetic architecture 2 

of complex traits and diseases. Essential in this process is the evaluation of novel methods in 3 

simulated data that mirrors the distribution of rare variants and haplotype structure in real data. 4 

Additionally, importing real variant annotation enables in silico comparison of methods that 5 

focus on putative causal variants, such as rare variant association tests, and polygenic scoring 6 

methods. Existing simulation methods are either unable to employ real variant annotation or 7 

severely under- or over-estimate the number of singletons and doubletons reducing the ability to 8 

generalize simulation results to real studies. We present RAREsim, a flexible and accurate rare 9 

variant simulation algorithm. Using parameters and haplotypes derived from real sequencing 10 

data, RAREsim efficiently simulates the expected variant distribution and enables real variant 11 

annotations. We highlight RAREsim’s utility across various genetic regions, sample sizes, 12 

ancestries, and variant classes.   13 
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Introduction 1 

Studies of rare variants are important to gain a full understanding of the genetics of health 2 

and disease, informing targeted drug development and precision medicine. Rare variants (minor 3 

allele frequency (MAF) <1%) have been associated with traits across many diseases including 4 

cancer, kidney, neurodevelopmental, cardiovascular, and infectious disease. With decreasing 5 

sequencing costs, rare variant data are increasingly accessible1 resulting in large sequencing 6 

studies (e.g. >35,000; 45,000; and 70,000 subjects), databases including the UKBiobank, 7 

GenomeAsia, and NIH programs such as the Genome Sequencing Program (GSP) and Trans-8 

Omics for Precision Medicine (TOPMed). Rare variant methods continue to be developed (e.g. 9 

SKAT-O, iECAT, ProxECAT, and ACAT) to take advantage of the ever increasing sequencing 10 

data.  11 

Simulation studies enable evaluation of methods and study design (e.g. power and sample 12 

size estimates) in known and controlled settings. Simulations that do not adequately mirror 13 

essential properties of real data may have issues generalizing to real data, potentially resulting in 14 

incorrect conclusions of method efficacy or power. In general, four qualities are necessary to 15 

emulate in rare variant simulations of a genetic region: (1) allele frequency spectrum (AFS), (2) 16 

total number of variants, (3) haplotype structure, and (4) variant annotation. To our knowledge, 17 

no rare variant simulation method currently exists that incorporates all four qualities.  18 

(1) AFS is the distribution of variant allele frequencies within a genetic region. Numerous 19 

studies have shown that the AFS is skewed towards very rare variants with the vast 20 

majority of variants being singletons and doubletons2-4.  21 
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(2) The total number of variants, especially very rare variants, differs by ancestry and 1 

sample size. The total number of known variants is expected to increase as more 2 

ancestrally diverse and larger samples are sequenced5,6.  3 

(3) Haplotype structure, the linkage disequilibrium (LD) and probability that rare single 4 

nucleotide variants (SNVs) appear on the same haplotype background, varies across the 5 

genome and by ancestry.  6 

(4) Variant annotation is often used in rare variant methods and is thus essential for 7 

accurate evaluation of those methods. For instance, weighting functional variants has 8 

been shown to increase power to detect rare variant association in a gene region1,7,8. 9 

Other variant annotation, such as association with disease, is used to evaluate pleiotropy 10 

and in genetic correlation and polygenic risk scores. A great variety of variant annotation 11 

exists such as functional consequences, conservation score, chromatin state, eQTLs, 12 

epigenetic information, and prior disease associations, among others9. While in silico 13 

simulation of variant annotation can capture and emulate some annotation patterns, 14 

simulations derived from real data can easily incorporate precise empirical patterns from 15 

multiple annotation types, even those unique to a specific genetic region of interest, 16 

providing a more direct link between simulations and real data. 17 

 18 

Population genetics simulation methods, such as Wright-Fisher10,11 and coalescent12, 19 

require only demographic and recombination information as input and often achieve an AFS, 20 

total number of variants, and LD structure similar to real data. However, these methods can be 21 

extremely computationally expensive or are not designed to emulate existing genetic regions 22 

resulting in an inability to use real variant annotations. Alternatively, resampling methods create 23 
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 5 

haplotype mosaics from real genetic data using techniques that mimic recombination and 1 

mutations, maintaining the ability to use existing annotations. These methods, such as 2 

HAPGEN213 derived from the original work of Li and Stephens14, are relatively computationally 3 

efficient and maintain the appropriate AFS, expected number of variants, and haplotype structure 4 

when simulating common variants13,15. However, as we and others16 show, HAPGEN2 does not 5 

simulate the correct total number or AFS for rare variants simulating too few rare and very rare 6 

variants (e.g. singletons and doubletons). There is currently no available software to simulate 7 

rare variant genetic data with a realistic AFS while retaining variant annotation.  8 

To address this gap, we present RAREsim, a flexible and scalable genetic simulation 9 

method designed for accurate simulation of rare variants. We assess and show the utility of 10 

RAREsim across a variety of genetic regions, datasets, ancestries, and sample sizes. We provide 11 

RAREsim as an R package to enable easy implementation and appropriate simulation of rare 12 

variant data. 13 

 14 

Results 15 

Algorithm 16 

 RAREsim uses two primary datasets: input simulation data and target data. The input 17 

simulation dataset is a sample of haplotypes (e.g. 1000 Genomes haplotypes3) with minor alleles 18 

coded as 1 and all reference alleles, including monomorphic bases, coded as 0. The target 19 

dataset is summary level data used to estimate RAREsim parameters. The target data has two 20 

components: the allele count at each variant and the total number of variants in a genetic region 21 

of interest at various sample sizes (e.g. downsamplings from gnomAD2). While the input 22 
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simulation dataset is required, the target dataset is not necessary if default or user defined 1 

parameters are used.  2 

 RAREsim has three main steps: (1) simulating haplotypes, (2) estimating expected 3 

number of variants, and (3) pruning rare variants to match expected. A flowchart summarizing 4 

the RAREsim algorithm is in Figure 1. 5 

(1) Simulating an abundance of rare variants 6 

RAREsim uses HAPGEN213 to simulate haplotypes for 𝑁𝑠𝑖𝑚 individuals. HAPGEN2 simulates 7 

haplotypes by creating mosaics of input and already simulated haplotypes, using recombination 8 

information so that regional LD is retained13,15. When all sequencing bases, including 9 

monomorphic, are included in the input haplotypes more de novo variants are simulated than 10 

expected. By sampling from previously simulated haplotypes to create a new haplotype, 11 

HAPGEN2 resamples de novo variants resulting in inflated numbers of rare variants. 12 

(2) Estimating expected number of variants per MAC bin 13 

The number of variants per MAC bin is estimated using two functions. The parameters for 14 

these functions are estimated using target data (described below). Alternatively, user-defined or 15 

default parameters can be used, eliminating the need for the user to provide and fit target data. 16 

The default parameters were derived using the default target data (Methods). 17 

(2a) Number of Variants Function 18 

The total number of variants in a region depends on the sample size. RAREsim estimates the 19 

expected number of variants per kilobase (Kb) for a sample size 𝑛 using the Number of Variants 20 

function. Specifically,  21 

 𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑛) = 𝜙𝑛𝜔 , 22 
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where  𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑛) is the number of variants per Kb for 𝑛 individuals. The parameters 𝜙 and 𝜔 1 

are estimated to modify the scale and shape of the function, respectively. When simulating 𝑁𝑠𝑖𝑚 2 

individuals, RAREsim calculates the total number of variants in the region by multiplying the 3 

size of the region in Kb, 𝑆𝐾𝑏 , by the expected number of variants per Kb, 𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑛 = 𝑁𝑠𝑖𝑚). 4 

The target data used for the Number of Variants function provides the observed number 5 

of variants per Kb, 𝑇𝑛, in the simulation region observed at sample size 𝑛. The parameters are 6 

optimized by minimizing a least squares loss function summed over all observed sample sizes in 7 

the target data: 8 

min
𝜙,𝜔

(∑(𝑇𝑛 − 𝜙𝑛𝜔)2

𝑛

). 9 

Sequential quadratic programming (SQP) via the slsqp function in the nloptr R package17 is used 10 

with constraints 0 < 𝜔 < 1 and 𝜙 > 0 to minimize the loss function. The initial starting values 11 

for the algorithm are 𝜔 = 0.45 and 𝜙 such that the largest observed sample size, 𝑛𝑚𝑎𝑥, fits the 12 

observed number of variants per Kb at 𝑛𝑚𝑎𝑥,  0.45𝑛𝑚𝑎𝑥
𝜔  = 𝑇𝑛𝑚𝑎𝑥

. If the initial starting values do 13 

not result in a sufficient fit (loss > 1,000), a range of starting values are evaluated: 𝜔 ∈14 

{0.15, 0.25, 0.35,0.45,0.55,0.65}. 15 

(2b) Allele Frequency Spectrum Function (AFS Function) 16 

The AFS function, 𝑓𝐴𝐹𝑆(𝑧),  estimates the proportion of variants with MAC = 𝑧. The 17 

largest MAC, 𝑧𝑚𝑎𝑥, has MAF ≈1% in the target dataset. For a target dataset with 𝑁𝑡𝑎𝑟𝑔𝑒𝑡  18 

individuals, 𝑧𝑚𝑎𝑥 = 𝑓𝑙𝑜𝑜𝑟(𝑁𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 2 ∗ 0.01). Specifically, 19 

𝑓𝐴𝐹𝑆(𝑧) = 𝑏 ×
1

(𝑧 + 𝛽)𝛼  
,  20 

𝑤𝑖𝑡ℎ b 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   ∑ 𝑓𝐴𝐹𝑆(𝑧)
𝑧𝑚𝑎𝑥 
𝑧=1 = 𝑝𝑅𝑉  21 
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 8 

𝑓𝑜𝑟 𝑧 ∈ {1,2,3, … , 𝑧𝑚𝑎𝑥 }. 1 

The scale parameter 𝑏 ensures the sum of all individual rare MAC proportions equals the total 2 

proportion of rare variants observed in the target data, 𝑝𝑅𝑉. Parameters 𝛼 and 𝛽 determine the 3 

shape of the distribution.  4 

Because individual MAC = 𝑧 may have no observed minor alleles in the target data, 5 

particularly for higher rare MACs (e.g. MAC=10, 11, 12), MAC bins are used to optimize 6 

parameters. MAC bins are mutually exclusive, exhaustive groups of rare MACs. Seven MAC 7 

bins are used here: singletons, doubletons, MAC = 3-5, MAC = 6-10, MAC = 11-20, MAC = 21- 8 

MAF = 0.5%, MAF = 0.5% - 1%, denoted as 𝐵𝑖𝑛1, 𝐵𝑖𝑛2, … , 𝐵𝑖𝑛7, respectively. The total 9 

number and thresholds to define the bins can be modified by the user. Within each bin j, the 10 

estimated proportion of variants, ∑ (
𝑏

(𝑧+𝛽)𝛼 
)𝑧∈𝐵𝑖𝑛𝑗
, is compared to the observed proportion of 11 

variants in the target data, ∑ 𝐴𝑧𝑧∈𝐵𝑖𝑛𝑗
. 𝐴𝑧 is the observed proportion of variants with MAC = 𝑧. 12 

Parameter estimates for 𝛼 and 𝛽 are found by minimizing the least squares loss over all bins 13 

using SQP17 constraining 𝛼 > 0, 14 

min
𝛼,𝛽

(∑ (∑ (
𝑏

(𝑧 + 𝛽)𝛼  
)

𝑧∈𝐵𝑖𝑛𝑗

− ∑ 𝐴𝑧
𝑧∈𝐵𝑖𝑛𝑗

)

2𝐵

𝑗=1
). 15 

 16 

(2c) Expected Number of Variants per Minor Allele Count Bin 17 

 RAREsim uses the total number of variants within a genetic region for 𝑁𝑠𝑖𝑚 individuals, 18 

𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑁𝑠𝑖𝑚) ∗ 𝑆𝐾𝑏 , and the proportion of variants in 𝐵𝑖𝑛𝑗 to obtain the expected number 19 

variants in each MAC bin, 𝔼𝐵𝑖𝑛𝑗
[𝑣],  20 
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𝔼𝐵𝑖𝑛𝑗
[𝑣] = 𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑁𝑠𝑖𝑚) ∗ 𝑆𝐾𝑏 ∗ ∑ 𝑓𝐴𝐹𝑆(𝑧)

𝑧∈𝐵𝑖𝑛𝑗

 1 

The expected total number of rare variants is calculated by summing across all rare MAC bins. 2 

𝔼[𝑣] = ∑ 𝔼𝐵𝑖𝑛𝑗
[𝑣]

𝑗

 3 

 The total number of simulated rare variants (𝑀𝑆𝑖𝑚) is calculated by summing over all MAC 4 

bins. 5 

𝑀𝑆𝑖𝑚 = ∑ 𝑀𝑆𝑖𝑚,𝐵𝑖𝑛𝑗

𝑗

 6 

(3) Pruning  7 

As described in (1), simulations using HAPGEN2 usually result in a larger total number 8 

of simulated rare variants than expected from step (2). Simulated variants are pruned by retuning 9 

all or a subset of alternate alleles to reference alleles. Within HAPGEN2 and similar to real 10 

haplotypes, rare alleles have a high probability of being on the same haplotype background. 11 

Pruning alternate alleles preserves the high likelihood that rare alleles are on the same haplotype. 12 

Variants are probabilistically pruned, creating variability over the simulation replicates in the 13 

number of variants per MAC bin.  14 

RAREsim sequentially prunes variants from high to low MAC bins starting with the 15 

highest rare MAC bin that has at least 10% more simulated variants than expected 16 

(i.e. 𝑀𝑆𝑖𝑚,𝐵𝑖𝑛𝑗
> 1.1𝔼𝐵𝑖𝑛𝑗

[𝑣]).  17 

(1) For MAC bins with more simulated variants than expected, a simulated variant is 18 

pruned with probability 𝑃(𝑟𝑒𝑚)𝑗 , where 19 

𝑃(𝑟𝑒𝑚)𝑗 =  1 −
𝔼𝐵𝑖𝑛𝑗

[𝑣]

𝑀𝑆𝑖𝑚,𝐵𝑖𝑛𝑗
  
. 20 
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For each variant within the bin, RAREsim randomly draws from a Uniform(0,1) 1 

distribution. If the draw is within [0, 𝑃(𝑟𝑒𝑚)𝑗], the variant is pruned. The location of 2 

a pruned variant is stored to allow variants to be added back at lower MAC bins that 3 

have fewer simulated variants than expected, as described in the next section.   4 

(2) For MAC bins with fewer simulated variants than expected (i.e. 𝑀𝑆𝑖𝑚,𝐵𝑖𝑛𝑗
<5 

𝔼𝐵𝑖𝑛𝑗
[𝑣]), each of the 𝐾 previously pruned variants from higher MAC bins are 6 

added to 𝐵𝑖𝑛𝑗 with probability, 7 

𝑃(𝑎𝑑𝑑)𝑗 =
𝔼𝐵𝑖𝑛𝑗

[𝑣] − 𝑀𝑆𝑖𝑚,𝐵𝑖𝑛𝑗

𝐾
. 8 

Random draws from Uniform(0,1) are used to determine which variants to add. The 9 

variant is added if the draw is within [0, 𝑃(𝑎𝑑𝑑)𝑗]. The MAC for each added variant 10 

is determined with a random sample from all possible MACs within 𝐵𝑖𝑛𝑗 . RAREsim 11 

then randomly samples without replacement the necessary number of haplotypes 12 

containing the alternate allele for the given variant. The allele for all other 13 

haplotypes is returned to reference.  14 

 15 

Results 16 

Evaluation of Number of Variants and Allele Frequency Spectrum Functions 17 

 AFS and Number of Variants functions were fit using target data from gnomAD v2.1 for 18 

four ancestry/sample-size groups (African, N = 8,128; East Asian, N = 9,197; Non-Finnish 19 

European, N=56,885; South Asian, N = 15,308) (Supplemental Table 1). Data from 20 

chromosome 19 was divided into 1 cM blocks; six blocks were merged with the preceding 21 

adjacent block (Methods), resulting in 101 blocks for simulation (Supplemental Table 2).  22 
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The ancestry/sample-size specific fitted Number of Variants function closely matches the 1 

observed values for all four ancestries (Figure 2, Supplemental Figure 1). Ninety percent of cM 2 

blocks had a relative difference within 2.42% for the estimated vs. observed number of variants 3 

per Kb. The average relative difference for all ancestries was −1.10% (90% CI = 4 

(−1.17%, −1.02%)), with ancestry specific averages of −0.65% (African, 90% CI  = 5 

(−0.83%, −0.47%)) , −1.09% (East Asian, 90% CI = (−1.24%, −0.94%)), −1.64% (Non-6 

Finnish European, 90% CI  = (−1.74%, −1.55%)), and −1.00% (South Asian, 90%  CI   =  7 

(−1.13%, −0.87%)) (Supplemental Figure 2). The negative mean relative differences indicate 8 

a slight but systematic overestimation of the number of variants per Kb for most blocks. Within a 9 

given target dataset, the Number of Variants function appears to slightly overestimate the 10 

observations of larger sample sizes and underestimate the observations of smaller sample sizes 11 

(Supplemental Figure 1).    12 

Observed and estimated variation in the number of variants per Kb across cM blocks 13 

increases with sample size (Figure 2A). However, even for the largest available target data 14 

sample size (Non-Finnish European, N=56,885), the variability of the number of variants per Kb 15 

remains low with 90% of the block-specific estimates within 35 variants of the median estimate. 16 

The AFS function matched the observed data well with no apparent systematic bias. The 17 

average absolute difference between the observed and estimated proportion of variants in each 18 

MAC bin over all ancestries, blocks, and MAC bins was 0.53% (90% CI = (0.51%, 0.55%)) 19 

(Figure 2B). Ninety percent of the estimated proportions were within 1.3% of that observed. The 20 

maximum absolute difference in MAC bin proportion was 4.50% (observed in East Asian, MAC 21 

3-5). Singleton counts matched particularly well, with a maximum absolute difference of 0.73%.  22 

Despite different ancestries and widely different sample sizes (from N = 8,128 to N =  23 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439644doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439644
http://creativecommons.org/licenses/by/4.0/


 12 

56,885 for African and Non-Finnish European respectively) the proportion of variants per MAC 1 

bin were similar (Supplemental Figure 3). There is more variation between ancestry/sample-2 

size groups for the total proportion of rare variants (i.e. proportion of all variants with MAF 3 

<1%) (Supplemental Figure 4). Regardless, within each ancestry, variation of the AFS between 4 

cM blocks remains small. For instance, the MAC bin with the most variation (East Asian 5 

singleton bin) has 90% of the blocks having estimated proportions within 6.3% of the median.  6 

 7 

Evaluation of Simulation Results 8 

One hundred replicates of each block were simulated using RAREsim and HAPGEN2 9 

matching the gnomAD sample size for each ancestry group (𝑁𝐴𝑓𝑟𝑖𝑐𝑎𝑛 = 8,128, 𝑁𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛 =10 

9,197, 𝑁𝑁𝑜𝑛−𝐹𝑖𝑛𝑛𝑖𝑠ℎ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 = 56,885, 𝑁𝑆𝑜𝑢𝑡ℎ 𝐴𝑠𝑖𝑎𝑛 = 15,308) (Figure 3). RAREsim 11 

produced a similar number of variants relative to gnomAD across all ancestry groups and MAC 12 

bins indicating that the total number of variants and AFS are representative of real sequencing 13 

data. Conversely, HAPGEN213 with only polymorphic SNVs greatly underestimated the total 14 

number of rare variants, especially very rare variants. HAPGEN2 simulations including all 15 

sequencing bases produced many more rare variants than observed. These results are consistent 16 

across all cM blocks and for the cumulative chromosome 19 coding region (Supplemental 17 

Figures 5-8, Supplemental Table 3-6).  18 

 19 

Generalizability of Default Parameters  20 

 Ancestry/sample-size specific default parameters for the Number of Variants and AFS 21 

functions (Table 1) were estimated using the median observation over cM blocks for each 22 

ancestry/sample-size group. RAREsim default parameters performed well, matching the 23 
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observed number of variants and AFS in a wide variety of situations including three GENCODE 1 

regions on chromosomes 1, 6 and 918, in non-coding regions within blocks, and in other 2 

datasets/sample sizes - gnomAD v3 and UKBioBank19 (Methods, Figure 4, Supplemental 3 

Figures 9 – 14). The simulated sample sizes evaluated were up to ~3x larger (gnomAD 4 

v3African) and ~2x smaller (gnomAD v3 Non-Finnish European) than the sample sizes used to 5 

derive the default parameters. The default parameters often performed similarly to the cM block 6 

specific simulation parameters and always outperformed HAPGEN2.  7 

 8 

Stratified Simulation of Functional and Synonymous Variants 9 

As expected, we observed more functional SNVs than synonymous2, with the largest 10 

differences observed at MAC ≤ 5 (Supplemental Figure 15). This resulted in substantially 11 

different fitted Number of Variants functions for the two types of variants (Supplemental 12 

Figure 16). Stratified simulation of functional and synonymous variants closely approximated 13 

the number of variants observed in each MAC bin and suggests utility in separately simulating 14 

different groups of variants (Supplemental Figure 17).  15 

 16 

Simulation of Large Sample Sizes 17 

As discussed previously (Generalizability of Default Parameters), RAREsim accurately 18 

simulated 21,042 African samples to match gnomAD v3 using ancestry specific default 19 

parameters derived from African gnomAD v2.1 (N=8,128). We currently assume that the AFS 20 

does not change with sample size. Consistent shape of AFS was observed over the gnomAD v2.1 21 

ancestry/sample size groups (𝑁𝐴𝑓𝑟𝑖𝑐𝑎𝑛 = 8,128, 𝑁𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛 = 9,197, 𝑁𝑁𝑜𝑛−𝐹𝑖𝑛𝑛𝑖𝑠ℎ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 =22 

56,885, 𝑁𝑆𝑜𝑢𝑡ℎ 𝐴𝑠𝑖𝑎𝑛 = 15,308). Further, ancestry specific fitted Number of Variants functions 23 
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extrapolated to larger sample sizes than observed were similar to the shape of the fitted Number 1 

of Variants function for the total gnomAD v2.1 sample (N=125,748) (Supplemental Figure 18). 2 

Therefore, we believe simulating sample sizes up to ~125,000 is likely reasonable. 3 

 4 

Computation Time 5 

The time to simulate one replicate using a desktop with 32GB RAM for a cM block on 6 

chromosome 19 varied between 15 seconds for the smallest block (3,183 bp) and sample size 7 

(NAfrican=8,128) and 12 hours 32 minutes 20 seconds for the largest block (81,235 bp) and sample 8 

size (NNon-Finnish European=56,5885). The median run time was 4 minutes 16 seconds 9 

(Supplemental Table 7).  10 

The amount of time to simulate haplotypes with RAREsim is dependent on the number of 11 

samples being simulated and the size of the region. Simulating a region with ~19 Kb varied 12 

between 1 minute 34 seconds for N=8,128 and 37 minutes 34 seconds for N=56,885. When 13 

simulating N=15,308 individuals, RAREsim simulations took between 16 seconds for a region of 14 

~3 Kb and 11 minutes 31 seconds for a region of ~81 Kb. The rate limiting step in large 15 

simulations was HAPGEN2. For the largest region and sample size, HAPGEN2 took over 11 16 

hours to simulate when using a machine with 32 GB RAM. The same region was simulated in ~1 17 

hour and 19 minutes using 192 GB RAM indicating that memory capacity was reached using the 18 

original computing specs (Methods). 19 

 20 

Discussion 21 

Here we present RAREsim, a rare variant simulation algorithm. Unlike HAPGEN2, 22 

which either severely under or over simulates the proportion of very rare variants, RAREsim 23 
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simulates the expected proportion of rare and very rare variants across a variety of genetic 1 

regions, ancestries, and sample sizes. RAREsim produces simulations that match the expected 2 

AFS, total number of variants, and haplotype structure while enabling variant annotation. To our 3 

knowledge, no other existing simulation software is able to emulate real data in all of these areas. 4 

We show that RAREsim’s ancestry specific default parameters derived from the coding regions 5 

of chromosome 19 generalize to other chromosomes, datasets, sample sizes19, and non-coding 6 

regions, approximating the number of variants per MAC bin with remarkable accuracy. We offer 7 

user flexibility by enabling use of RAREsim with default parameters, user defined parameters, or 8 

parameters estimated to match user provided target data.  9 

For typical uses of simulated genetic data (i.e. evaluating or comparing methods and 10 

general power analysis) we recommend simulating with the default parameters. Default 11 

parameters were shown to be robust across sample sizes, chromosomes, coding and intergenic 12 

regions, and datasets. It is possible, although we believe unlikely, that the default parameters will 13 

perform poorly when used in scenarios not evaluated here. If precise matching of a particular 14 

empirical data characteristic such as functional variant type, genetic region, sample size, or 15 

ancestry is important, we recommend re-estimating the simulation parameters using RAREsim 16 

functions. Additionally, parameters are able to be specified without fitting target data. For 17 

example, to simulate a specific ancestry, a user could make an educated decision on the total 18 

number of variants based on the relationship to the ancestries evaluated here (e.g. total number of 19 

variants between that of African and European).  20 

RAREsim simulates haplotypes in the same form as HAPGEN2: hap/leg/sample files20. 21 

Haplotype files can be converted to vcf files using the SHAPEIT convert command21 or bcftools 22 

haplegendsample2vcf command22. Genetic association with disease can be simulated from a 23 
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sample of generated haplotypes using an existing software such as PhenotypeSimulator23. 1 

Simulation of families or large pedigrees can be performed with a pedigree simulation software 2 

such as ped-sim24.  3 

It has been shown that sample sizes in the tens to hundreds of thousands are needed to 4 

have sufficient power to detect associations with rare variants25. Due to the lack of very large 5 

(>100,000), ancestry specific, publicly available target data at the time of publication, we could 6 

not assess the accuracy of the RAREsim simulations for very large sample sizes. As genetic 7 

sequencing resources continue to increase in size, RAREsim will be ideally suited to simulate 8 

large sample sizes with estimation of new simulation parameters. For the Number of Variants 9 

function, the extrapolated, ancestry specific Number of Variants functions were compared with 10 

that of the full sample available in gnomAD v2.1. We believe that the Number of Variants 11 

function is able to accurately simulate sample sizes up to what is observed in gnomAD v2.1 12 

(~125,000). Alternatively, users can use population-genetics theory or other resources to make 13 

an informed decision for the total number of variants expected for very large samples. One such 14 

resource is the Capture-Recapture26 algorithm, which can be used to estimate the number of 15 

segregating sites given allele count data. While Capture-Recapture can extrapolate to larger 16 

sample sizes, the software cannot be easily used for sample sizes that are smaller than the 17 

observed target data. RAREsim does not currently modify the AFS function as sample size 18 

increases. Consistent AFS were observed over the gnomAD sample sizes (N = 8,128 - 56,88). 19 

However, we expect the AFS to deviate with very large sample sizes. A user can update the AFS 20 

function parameters if desired, and research is ongoing to estimate the expected AFS for very 21 

large sample sizes. We believe that RAREsim can currently accurately simulate sample sizes up 22 

to ~125,000. 23 
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There are several limitations to RAREsim. First, RAREsim is only as good as the data on 1 

which the simulations are based. Errors or inconsistencies in the target data or input simulation 2 

haplotypes will be propagated through the simulations. Secondly, the default parameters were 3 

developed and evaluated on autosomes. A user may fit sex chromosome target data or assume 4 

parameters extend to sex chromosomes. Finally, RAREsim requires additional memory (e.g. >32 5 

GB RAM) when simulating large regions and sample sizes. For efficient simulation of large 6 

regions and sample sizes, highmem computing or breaking up the simulation region into smaller 7 

portions and combining after simulation is needed. We are actively working on extensions for 8 

these limitations. 9 

One of the primary benefits of RAREsim is its ability to match real target data, either 10 

provided by the user or as done here with gnomAD v2.1. Matching observed data allows 11 

RAREsim to adapt as sequencing data evolves due to technological advances or improved 12 

genetic resources from additional ancestral populations and increased sample sizes. For example, 13 

RAREsim will be able to approximate TopMED27 and ALFA, aggregated allele frequencies from 14 

dbGaP28 once these resources are released. RAREsim can also simulate unique characteristics of 15 

a specific genetic region such as haploinsufficiency, contribution to a polygenic risk score, or 16 

selection. The flexibility of RAREsim to emulate real data allows users to assess methods and 17 

complete power analyses for in relevant and realistic genetic regions and samples.  18 
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 4 

Methods 5 

Input Simulation Datasets  6 

For the input simulation dataset, we used haplotypes, legend files (an accompanying 7 

variant list), and a recombination map from 1000 Genomes Phase 3 (hg19)3. The files were 8 

modified to include information at each sequencing base. The recombination map was derived 9 

from the combined sample of all ancestries (OMNI)3. Links to these resources are in 10 

Supplemental Table 8. 11 

For the simulation haplotypes, African, East Asian, Non-Finnish European, and South 12 

Asian global ancestries were used with admixed African samples (African Caribbeans in 13 

Barbados (ACB) and Americans of African ancestry in Southwest Utah (ASW)) excluded. 14 

HAPGEN2 simulates biallelic SNVs. Hence, we omitted indels present in the 1000G haplotypes. 15 

For multiallelic SNVs, the first alternate allele in the legend file with at least one observed 16 

alternate allele was kept. 17 

 18 

Target Datasets 19 

Exome sequencing data from gnomAD v2.12 on chromosome 19 were used as target data to 20 

estimate the simulation parameters. For the Number of Variants function, the observed number 21 

of loss-of-function, synonymous, and missense variants by gene, ancestry group, and sample size 22 

(e.g. 500, 1000, 2000, 5000, etc.) from Karczewski et al.2 was used 23 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439644doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439644
http://creativecommons.org/licenses/by/4.0/


 19 

(https://storage.googleapis.com/gnomad-public/papers/2019-flagship-1 

lof/v1.0/gnomad.v2.1.1.lof_metrics.downsamplings.txt.bgz, Supplemental Table 8). The 2 

number of variants for all three function classification groups were summed to obtain the total 3 

number of variants observed per gene. The GENCODE v19 file18 (link in Supplemental Table 4 

8) contains the genomic positions of the canonical transcript coding regions used by Karczewski 5 

et al.2 to define genes. The total number of variants within the simulation region of interest was 6 

found by summing over all genes in the region. When a region contained overlapping genes, the 7 

proportion of overlap was calculated and removed from one gene, as to not count variants twice. 8 

For the AFS target data, allele counts for biallelic SNVs in the coding region of canonical 9 

transcripts for four ancestry groups from gnomAD v2.1 were used (African, N = 8,128; East 10 

Asian, N = 9,197; Non-Finnish European, N=56,885; South Asian, N = 15,308)2 11 

(https://storage.googleapis.com/gnomad-12 

public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz, Supplemental Table 8). 13 

We observed slight discrepancies for some regions in the total number of variants between the 14 

gnomAD v2.1 data used for the AFS target data and the gnomAD downsamplings data used for 15 

the Number of Variants target data (Supplemental Figure 19). Differences in the number of 16 

variants per gene likely arise due to inconsistencies between the two datasets with respect to 17 

classification of variant function, removal of variants in overlapping genes, as well as other 18 

differences. The discrepancies did not substantially affect the simulation results, as shown when 19 

the simulated haplotypes are compared to the gnomAD data (Results).  20 

 21 

Centimorgan Blocks 22 
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 Chromosome 19 was divided into 1 cM blocks for simulation. The cM blocks were 1 

defined using the 1000 Genomes Project recombination map estimated from the combined set of 2 

all ancestries3 (Input Simulation Datasets). Blocks were restricted to the coding region of the 3 

canonical transcript for each gene. Genes that overlapped multiple blocks or were between cM 4 

blocks (the recombination map did not contain information at all bp) were included with the 5 

previous cM block. Of the 107 cM blocks, two blocks did not meet the requirement of containing 6 

at least two genes (blocks 17 and 23). Additionally, there were four blocks (blocks 8, 50, 57, and 7 

92) with fewer than 100 SNVs in at least one ancestry in the gnomAD target data. These six 8 

blocks were merged with the preceding adjacent block, resulting in 101 blocks for simulation 9 

(Supplemental Table 2). Blocks ranged from 3,183 bp to 81,253 bp (median = 19,029; Q1 = 10 

11,037; Q3 = 27,204).   11 

 12 

Implementation of RAREsim 13 

 RAREsim was implemented for a genetic region of interest using the computing 14 

flowchart shown in Supplemental Figure 20. First, the input haplotype and legend files were 15 

modified to include all bp, including monomorphic bases. Then, haplotypes were simulated for 16 

each cM block using HAPGEN213 with default parameters. The relative risk was set to 1.0, and 17 

hence no disease loci were simulated. The random seed in HAPGEN is set by time. Therefore, 18 

simulation replicates cannot be run in parallel across multiple cores starting at the same time. To 19 

avoid this, we simulated replicates for the same simulation scenario on the same computing core 20 

in series. Alternatively, the pause Bash command could be used when simulating haplotypes in 21 

parallel. Then, the expected number of variants per MAC bin was calculated using the 22 

expected_variants RAREsim function with either default simulation parameters or region-23 
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specific simulation parameters estimated using fit_afs and fit_nvariants functions. Finally, the 1 

simulated haplotypes were pruned using the prune_variants function to identify pruning 2 

locations and a supplemental Bash script to efficiently prune the identified locations.  3 

 4 

Evaluation of Allele Frequency Spectrum and Number of Variants Functions 5 

 In our application, parameters for the Number of Variants and AFS functions were 6 

estimated for each of the 101 blocks and four ancestry groups from gnomAD. To evaluate how 7 

well the Number of Variants function fit the target data, we calculated the relative difference for 8 

the observed target data at the sample size available in gnomAD, 𝑇𝑁𝑔𝑛𝑜𝑚𝐴𝐷
, to the Number of 9 

Variants function estimate,  𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡
̂ (𝑛 = 𝑁𝑔𝑛𝑜𝑚𝐴𝐷). The relative difference was calculated as 10 

𝑇𝑁𝑔𝑛𝑜𝑚𝐴𝐷
 −  𝑓𝑁𝑣𝑎𝑟𝑖𝑎𝑛𝑡

̂ (𝑛 = 𝑁𝑔𝑛𝑜𝑚𝐴𝐷) 

𝑇𝑁𝑔𝑛𝑜𝑚𝐴𝐷

=
𝑇𝑁𝑔𝑛𝑜𝑚𝐴𝐷

− �̂�(𝑁𝑔𝑛𝑜𝑚𝐴𝐷)
�̂�

 

𝑇𝑁𝑔𝑛𝑜𝑚𝐴𝐷

. 11 

We evaluated fit of the AFS function with the difference between the estimated proportion of 12 

variants, 𝑓𝐴𝐹�̂�(𝑧), and the observed proportion in gnomAD, 𝐴𝑧, for each MAC 𝐵𝑖𝑛𝑗, 13 

∑ 𝑓𝐴𝐹�̂�(𝑧)
𝑧∈𝐵𝑖𝑛𝑗

− ∑ 𝐴𝑧
𝑧∈𝐵𝑖𝑛𝑗

= ∑ (
�̂�

(𝑧 + �̂�)�̂�  
)

𝑧∈𝐵𝑖𝑛𝑗

− ∑ 𝐴𝑧
𝑧∈𝐵𝑖𝑛𝑗

. 14 

 15 

Default Function Parameters 16 

 Ancestry specific default parameters were calculated using the median target data over all 17 

blocks (i.e. median number of variants per Kb at each sample size (Number of Variants function) 18 

and median proportion of variants in each MAC bin (AFS function)). For the Number of Variants 19 

function, the 5th and 95th percentile observations over the 101 blocks were used to estimate 5th 20 

and 95th percentile functions. 21 
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 1 

Evaluation of Simulation Results 2 

One hundred replicates of each block were simulated for the gnomAD sample size of 3 

each ancestry group (𝑁𝐴𝑓𝑟𝑖𝑐𝑎𝑛 = 8,128, 𝑁𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛 = 9,197, 𝑁𝑁𝑜𝑛−𝐹𝑖𝑛𝑛𝑖𝑠ℎ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 = 56,885,4 

𝑁𝑆𝑜𝑢𝑡ℎ 𝐴𝑠𝑎𝑖𝑛 = 15,308). The matched sample size enabled a direct comparison between 5 

gnomAD and simulated data as sample size greatly influences the number of variants expected in 6 

MAC bins. We compared RAREsim to the default implementation of HAPGEN2 with only 7 

polymorphic SNVs in the input simulation data and to HAPGEN2 using all bp, including 8 

monomorphic bp. Each block was simulated and pruned independently. To evaluate simulations 9 

from chromosome 19 as a whole, the variant counts for each MAC bin were summed over all cM 10 

blocks. 11 

 12 

Generalizability of Default Parameters  13 

 Generalizability of default parameters was assessed on different chromosomes, other 14 

sample sizes, in an intergenic region, and simulating data to match another dataset. To evaluate 15 

the performance of the default parameters for other chromosomes, we simulated GENCODE 16 

regions on chromosomes 1, 6, and 9 that were chosen to be representative of the genome18 17 

(Supplemental Table 9). As with the blocks on chromosome 19, the regions were restricted to 18 

canonical coding exons. These blocks were each 500 Kb, but when restricted to the coding 19 

region were 24,918; 12,519; and 17,051 bp on chromosomes 1, 6, and 9 respectively. 20 

Whole genome sequencing data from gnomAD v3 was used to evaluate the performance 21 

of default parameters for different sample sizes, and for intergenic regions. To evaluate default 22 

parameters for different sample sizes, we simulated three blocks (5th, 50th, and 95th percentile 23 
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block for number of variants) for the African ancestry group (N=21,042 for v3 compared to 1 

N=8,128 for v2.1) and Non-Finnish European ancestry group (N=32,299 for v3 compared to 2 

N=56,885 for v2.1). To evaluate the utility of default parameters for intergenic regions, we 3 

simulated intergenic regions within the three blocks limiting the original coding region size.  4 

Finally, to evaluate performance of the default parameters in another dataset and sample 5 

size, we simulated a Non-Finnish European sample to match the UK Biobank19. Due to an error 6 

in the UK Biobank 50K release, the 95th percentile block contained missing data; thus, we used 7 

the 5th, 50th, and 94th percentile blocks instead. We simulated 41,246 Non-Finnish European 8 

individuals, which was the number of individuals in exome sequencing British sample after 9 

removing ethnic outliers.  10 

 11 

Stratified Simulation of Functional and Synonymous Variants 12 

To demonstrate RAREsim’s ability to simulate different types of variants, such as 13 

variants in different functional classes, variants were stratified and simulated by functional and 14 

synonymous status. The reference and alternate allele are required for variant annotation. For 15 

polymorphic variants within gnomAD, the observed reference and alternate allele were used. 16 

Monomorphic bp in gnomAD were annotated using all possible alternate alleles with the 17 

convert2annovar function in ANNOVAR29. To restrict to one alternate allele, each allele was 18 

first annotated as a transition or transversion. Within the exome, Wang et al.30 observed 19 

transition to transversion ratios (Ti/Tv) between 2.79 and 2.84 across ancestries. Here, the 20 

average Ti/Tv of 2.815 was used to calculate the probability (0.7379) of a transition for each 21 

variant. For each monomorphic bp, we performed a random draw from a Uniform(0,1) 22 

distribution. If the random draw was within [0,0.7379], the transition alternate allele was used. 23 
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Otherwise, the variant was annotated as a transversion and the alternate allele was assigned 1 

randomly from the two possible alternate alleles.  2 

Variants were annotated using Ensembl Variant Effect Predictor (VEP)31 release 100. For 3 

variants with multiple annotations, the most severe consequence was chosen. Synonymous 4 

variants were those annotated as synonymous. Matching gnomAD’s annotation2, functional 5 

variants were those annotated as missense, frameshift, splice site disrupting, and stop gained. 6 

Stratified simulation with RAREsim by variant class, including refitting target data and pruning, 7 

was performed for the block with the median number of variants.  8 

 9 

Simulation of Large Sample Sizes 10 

 We fit the Number of Variants function to the median cM block for the total gnomAD 11 

v2.1 sample (N = 125,748) and compared the fitted, ancestry specific Number of Variants 12 

functions extrapolated to large sample sizes. 13 

 14 

Computing Time 15 

 Computing time was evaluated on an Ubuntu 18.04.2 LTS desktop with Intel® Core TM 16 

i7-6700 CPG at CPU 8 x 3.40Ghz. The desktop is 64-bit with 1.1 TB (disk) GNOME 3.28.2 and 17 

32GB RAM. For each ancestry, the simulation time for the cM block with the minimum (3,183), 18 

median (19,029), and maximum (81,235) bp was recorded. To re-evaluate the simulation of 19 

haplotypes with HAPGEN2 using more memory, a Dual Intel Xeon E5-2670v2 (2.5 Ghz x 10 20 

cores, each), 192GB PC3-12800R RAM (12x16GB sticks) was used. 21 

 22 
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All data used are publicly available with links found in Supplemental Table 8. The reference 1 

haplotype and legend files with all monomorphic sequencing bases within the coding regions 2 

included are available at https://github.com/meganmichelle/RAREsim_Example. 3 

 4 

Code Availability 5 

RAREsim is an open-source R package, and all code can be found at 6 

https://github.com/meganmichelle/RAREsim. A small example simulation with the necessary 7 

script is available at https://github.com/meganmichelle/RAREsim_Example. Code to complete 8 

the majority of the analyses included here can also found at 9 

https://github.com/meganmichelle/RAREsim_Example. 10 
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 1 

 2 

*Haplotypes must include information at all sequencing bases to allow for an abundance of 

variants for subsequent pruning. 

Figure 1. Flowchart of RAREsim Flowchart describing RAREsim simulation process. 

Simulation parameters can be estimated using target data, default parameters, or user defined 

parameters (gray). 
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Figure 2. Evaluation of function fit A) Number of Variants function: Fitted Number of 

Variants functions for all cM blocks. The median block is shown in black and the 5th and 95th 

blocks are shown in dark blue. The observed target data (*) for the median block are close to the 

fitted function for all four ancestries. Sample sizes up to 15,000 are shown here. The full sample 

size for the Non-Finnish European sample is in Supplemental Figure 1. B) AFS function: 

Difference between the gnomAD target data and estimates from the AFS function for the 

proportion of variants in each MAC bin for all chromosome 19 blocks by ancestry and MAC bin. 

All absolute differences are within 0.05, indicating the AFS function fits the target data well. 
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Figure 3. Evaluation of RAREsim. The distribution and number of variants simulated using 

RAREsim (green), HAPGEN2 with only polymorphic SNVs (default, pink), and HAPGEN2 

with all sequencing bases (blue) is compared to gnomAD (yellow) for the cM block with the 

median number of bp. Ancestry specific simulations are shown for African (N = 8,128; left) and 

Non-Finnish European (N = 56,885; right) matching the sample size observed in gnomAD v2.1. 

RAREsim emulates the expected number of variants within each MAC bin, while the other 

simulation methods either grossly underestimate (HAPGEN2 with polymorphic SNVs) or 

overestimate (HAPGEN2 with all sequencing bp) the number of variants. 
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Figure 2. Generalizability of Default Parameters Utility of RAREsim’s ancestry specific 

default parameters for different chromosomes (A), sample sizes (B & C), intergenic regions (B), 

and other target datasets (B & C). RAREsim simulations closely approximate the observed 

number of variants (y-axis) in each MAC bin (x-axis) in all scenarios. A) Simulations using 

South Asian default parameters for Chromosome 6 GENCODE region. B) Simulating a sample 

size of 21,042 using African ancestry default parameters (derived from N=8,128) for in an 

intergenic region from gnomAD v3. C) Simulating a sample size of 41,246 to match a British 

sample from the UK Biobank using Non-Finnish European default parameters (derived from 

N=56,885). 
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Table 1: Default function parameters estimates. 1 
 Number of Variants 

𝒇𝑵𝒗𝒂𝒓𝒊𝒂𝒏𝒕(𝒙) = 𝝓𝒙𝝎 

Allele Frequency Spectrum 

𝒇𝑨𝑭𝑺(𝒛) = 𝒃 ×
𝟏

(𝒛 + 𝜷)𝜶 
 

 �̂� �̂� �̂� �̂� �̂� 

African 0.1576 0.6247 1.5883 -0.3083 0.2872 

East Asian 0.1191 0.6369 1.6656 -0.2951 0.3137 

Non-Finnish European 0.1073 0.6539 1.9470 0.1180 0.6676 

South Asian 0.1249 0.6495 1.6977 -0.2273 0.3564 

 2 
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