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ABSTRACT: Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered novel quan-

tification methods, such as digital droplet polymerase chain reaction (ddPCR) and antibiotic heteroresistance analysis tool. For droplet anal-

ysis, researchers often use imaging techniques. Unfortunately, the analysis of images may require specific tools or programming skills to pro-

duce the expected results. In order to address the issue, we explore the potential use of standalone freely available software to detect droplets.

We select four most popular software and classify them into instinctive and objective types based on their operation logic. We test and evalu-

ate the software’s 1) ability to detect droplets, ii) accuracy and precision, and iii) overall user-friendliness. In our experimental setting we find

the objective type of software is better suited for droplet detection. The objective type of software also has simpler workflow or pipeline, espe-

cially aimed for non-experienced user. In our case, CellProfiler™ (CP) offers the most user-friendly experience for both single image and

batch processing analysis.

Droplet microfluidics has become a powerful tool for high-
throughput analysis over the last decades'. Compartmentalization
of samples and massive parallelization of experiments suitable for
excellent statistical data, screening of large numbers of compounds,
or for seeking rare events in large pools of molecules or organisms’.
Droplets are often applied for high sensitivity nucleic acid diagnos-
tics® or microbiological studies®.

[Imaging is a popular method to analyze droplet microfluidic ex-
periments]. This method helps researchers in practical detection,
such as bacterial surveillance of foodborne contamination®, screen-
ing specific substrates®, single cell analysis’ and detecting viable
bacteria utilizing smartphone®. Over four thousand articles have
been published during the last decade related to imaging and drop-
let microfluidics®. This shows that imaging is a popular technique,
either with brightfield or fluorescence microscopy'®. Though, imag-
ing techniques require image analysis tools to extract and interpret
the results.

[Image analysis (IA) tools are available for different scenarios, from
single image to real-time counting analysis]. These diverse tools
have been used for many different analyses, such as detecting drop-
lets" and screening protein crystals within droplets”. Moreover,
droplet microfluidics have been developed as frontier techniques in
chemistry and biology, e.g. for absolute DNA quantification by
Digital Droplet Polymerase Chain Reaction (ddPCR)"*** or detect-
ing viable bacteria and hetero-resistance in antimicrobial experi-

ment'>'°,

[However, implementing IA for droplet analysis often requires
specific skills in programming and the methods are not widely
available in non-specialist laboratories]. Most of the published
articles in droplet detection use scripted programs, such as Circular

Hough Transform in Python programming language', Mathemati-
ca'®?, Scikit-image in Python™, Image Processing Toolbox from
MATLAB?, and OpenCV in C++ **. There are some user-friendly
software and may be used for droplet microfluidics image analysis,
such as Zen imaging program® and NIS-Elements from NIKON?®.
Yet, these kinds of programs are only commercially available.

[There is a need for widely accessible and user-friendly IA tools for
droplet analysis]. Open-source software is available and can be
used to detect and/or analyze droplets. Such software are for ex-
ample FIJI/Image] which has been used to analyze image data in
general™ or droplets™, or CellProfiler which was developed to iden-
tify and measure various bioimage data. Even though some pub-
lished articles mention the use of the software, there are limited
information regarding their workflow (the data is often missing
from publications). Moreover, novel workflows can be constructed
by combining functions, modules or pipelines from different soft-
ware, like a puzzle”. [Here, we i) demonstrate how to use different
software for the analysis of droplet images and ii) explore the dif-
ferences and similarities of workflow logic in the different soft-
ware].

Results and Discussion

[Most popular software for image analysis are Image], CP, Ilastik
and QuPath]. To find the popularity, we executed Twint*® Python
script using each of the software’s name as the keywords and find
through hashtags (#). The keywords were also used for finding the
popularity in published articles in Scopus’ repository. Our search
showed that most popular software are Image]*, CellProfiler”,
Hastik and QuPath (Figure 1a). Ilastik is a machine learning based
image analysis software® and QuPath has been used as whole slide
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Figure 1. Schematic of droplet generation and image analysis. (A) We generated water-in-oil droplets using flow-focusing microfluidic chip as de-
scribed previously by Bartkova et al.?* (left). We used fluorescent microscope to obtain “Raw images” of droplets that contained fluorescence produc-
ing bacteria (middle). For the analysis of droplet images we used four most popular image analysis that were selected according to hits in social media
(Twitter) and Scopus Search (obtained on February 11th, 2021) (right). (B) Droplet detection comparison between: i) Image], i) Cellprofiler, ii)
Hastik and iv) QuPath. (C) We divide the image processing software into two groups (Objective and Instinctive) and explore their logic and working
principle on three levels of complexity. 1) The first level shows that used software are very similar in their basic image processing logic. They usually
have three processing stages in their image analysis logic: pre-processing, processing, and post-processing. 2) The second level shows distinction
between two groups of software in droplet detection: Objective, where user defines how to detect droplets by giving specific parameters (e.g., thresh-
old or size) or Instinctive, where user classifies/annotates grouping of pixels on image. 3) The third level shows number of different steps and mod-
ules in processing stages. Purple circle = more than 8 options are available, orange circle = 2-8 options, and yellow circle = only 1 option is available.


https://doi.org/10.1101/2021.04.13.439618
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.13.439618; this version posted April 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

image analysis tool”>. We continued with these four popular soft-
ware tools and used them to detect droplets on images previously
described by Bartkova et al.** (Figure 1b). Then, we took a deeper
look into the working logic of the software and assessed their per-
formance with different key parameters (Figure 1c).

[We divided the selected software into two groups (objective and
instinctive) according to their logic and principle]. In the objective
software group (CP and Image]) user has to manually provide set-
tings for the program to select the pixels of interest with numeric or
known parameter in order to detect droplets. In the instinctive
group (Ilastik and QuPath), on the other hand, the user may select
the areas of image and manually annotate them as objects of inter-
est (e.g. droplets or background) for pixel classification. Based on
these characteristics, we described the complexity of the process
with three increasing levels and used it to direct the droplet detec-
tion.

We used terms i) pre-processing, ii) processing and iii) post-
processing. i) In pre-processing, we modified, adjusted, and pre-
pared the image data for further use. For instance, we performed
pre-processing to duplicate the image data or introduce features on
the image.

ii) In processing, we conducted segmentation or pixel partitioning
based on color, intensity or texture along with droplet detection or
counting process®. Usually, processing steps may help the user to
obtain specific type of data®. In our case, we introduced threshold-
ing to distinguish between the background (dark) and the fore-
ground (droplets). For the details, CellProfiler came handy and
only needed one module named “IdentifyPrimaryObject” which
contained some options to detect droplets. This included thresh-
olding, smoothing, segmentation, and automatic selection. In Im-
age], processing steps had three options: “Thresholding”, “Water-
shed” and “Analyze particle”. Similar to CP, these three steps will
provide selections to detect the droplets. In the processing part,
Hlastik had to process “Thresholding”, “Object Feature Selection”,
and “Object Classification” for selecting the droplets and discarded
the background. In QuPath, we found all of these features in “Pixel
Classifier”. The settings included classifier from Artificial Neural
Network with Multi-Layer Perception (ANN_MLP)* with high
resolution, using four multiscale features (Gaussian, Gradient
Magnitude, Hessian determinant, and Hessian Max Eigenvalue)
with probability as an output.

iii) For the last step, in post-processing, we prepared data extrac-
tion or generation for further use, for example to generate table of
data or type of images for visualization. In CellProfiler, this last step
was performed with “OverlayOutlines”, “OverlayObject”, “Dis-
playDataOnImage”, “ExportToSpreadsheet”. These modules gen-
erated the images and results in .CSV format. The order was similar
in Image] and Ilastik but the option was available in “ROI Manag-
er” and “Export”, respectively. In QuPath, the results can be ob-
tained by exporting annotations from detected objects or called as
labeled image. We used Groovy script to generate this result using
commands in “Workflow” tab. For brief workflow/ pipeline, we
provide the scheme of third level complexity in Supp. Fig. S1.

[CP has more than 96% accuracy in detecting droplets]. By com-
paring the results with golden truth (7145 droplets by manual
count), we investigated the ability of analyzed software to detect
droplets. We only counted droplets that did not touch the image
border and did not make a bundle (joint droplets because of failed
segmentation). We performed sensitivity and specificity test using
True Positive (TP), False Positive (FP) and False Negative (FN)
values based on the comparison with manual counting®. The TP
confirms the positive droplet detection in the data. For FP, the
value is obtained by finding false droplet detection or underestima-
tion (type I error). In FN, the software does not detect the droplet
or performs overestimation (type II error). We defined TN as
background (black = 0). After the calculation, we obtained the
accuracy  ((TP+TN)/(TP+TN+FP+FN)) and  precision
(TP/(TN+TP)) from the detection. This accuracy explains the
ratio between the correct droplet detection and total number of
droplet detection. On the other hand, precision describes the prob-
ability to produce the correct droplet detection in total positive
detection¥¥. The accuracy of each detection ranging from 74.7%
up to 96.2%. One of the software managed to generate precision up
t0 99.8% (Supp. Table 1).

From the Figure 2, we can see how each group share similar errors
in every event (detection per image). We compared the false detec-
tion results (both FP and FN) from each of the software. We found
that the objective group (CP and Image]) have less false detection
compared to the instinctive group (llastik and QuPath). However,
Tlastik and QuPath received high error because they do not have filter
to eliminate the droplets which touch the border, and some droplets
are falsely detected as joint droplets (Supp. Fig. 2). The Figure 2 also
indicates the image which may have bad quality for droplet detection.
For instance, the image number 2, 19 and 64 depict the highest error
values from all four software. Notwithstanding, CP outperforms the
other software and has both high accuracy and precision.
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Figure 2. Droplet detection errors are higher in instinctive software in
the diagnostic test. The figure shows the False Positive (FP, wrong
detected droplet) and False Negative (FN, wrong undetected droplet)
events per image. Each block represents the event or image error detec-
tion. The scale shows the number of errors (dark = high, bright = low).

[CP is the most suitable software for batch analysis or high
throughput analysis]. In CP, we can analyze a whole set of images
with a press of one single button “Analyze Images” on the main
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menu. The software will process available images uploaded in the
“Images” module (default module). We tested and used the batch
processing option to analyze 64 images straight after we had our
pipeline/workflow set. In Image], we processed the batch analysis
using recorded macro from single image analysis. We also per-
formed some macro script cleaning (e.g., closing unnecessary tabs
during the process) which was written in the macro recorder. After
the cleaning, we selected the input and output folder and per-
formed the batch processing through the “Process” tab. For Ilastik,
we executed the batch processing after the last option of the pipe-
line. We just needed to upload the images and started the “Process
all files”. QuPath demanded macro programming commands for
executing batch analysis. However, this software provided auto-
mated script generator which simplified the macro record to per-
form batch analysis. Image] and QuPath required macro script for
batch analysis. Even though this macro script was easy to do, creat-
ing macro script for the first time could become an obstacle for
researchers who are not familiar with any programming language or
practices*. From our viewpoint, CP and Ilastik had user-friendly
interface for batch processing and did not require any program-
ming steps.

[Objective class software are flexible and have modular options to
process image(s)]. As objective tools, CP and Image] offered op-
tions which could be added and removed depending on the user’s
preferences, such as type of thresholding algorithm, filters, and
other modules. In instinctive software, the features were embedded
in the pipeline and had limited availability for additional settings.
For example, Ilastik had some pre-defined pipelines: one of them
was object classification and pixels classification®. These two were
fixed in the interface of Ilastik and might be re-arranged only
through Python programming. From the Figure 1(C), the third
level of complexity also represents the modularity in which Iastik
and QuPath were more limited than CP and Image]. For instance,
CP had “IdentifyPrimaryObject” module which could be duplicat-
ed in one pipeline, while in Ilastik, “Thresholding” could be per-
formed only once within the pre-defined workflow. This complica-
tion placed Ilastik as the least flexible tool, followed by QuPath.

Macro programming language affects the software processing time,
particularly in batch analysis]. CP or Image] expected less memory
for use since they did not implement machine learning classifica-
tion methods in our pipelines. The objective software used object
logic classification* and did not require training set to test the de-
fined parameter, e.g. size of the object or maximum length of the
object. In QuPath and Ilastik, the classification depended on a su-
pervised machine learning process*>*'. We used the manual annota-
tions (droplets and background) to make the classifier before pro-
cessing the whole pixels. We also compared the minimum hardware
requirements for each of the tools (Supp. Table 2). Based on the
comparison, Image] was the only one which did not put any mini-
mum requirement for the Random-Access Memory (RAM). We
also expected that the instinctive software might take more time to
process the whole set of images. Therefore, we also tried to run the
whole pipeline and compared the performance from each of the

tools. We tested each pipeline with the same computer having
Intel® Core™ i3-9100F processor, 8Gb RAM, NVDIA GeForce
GTX 1660 SUPER and 120Gb SSD PANTHER. We found that
CP and Ilastik had running time 978s and 76Ss while ImageJ and
QuPath only needed 98s and 38s. Tool’s batch processing language
(macros) may cause this difference. At the beginning, we expected
Tlastik and QuPath to have longer processing time than CP and
Image] because of the machine learning based processing. Yet,
Image] and QuPath performed faster than others. In principle,
there are two types of program which bioinformaticians use: com-
piled and interpreted*. Image] and QuPath use Java based (mac-
ros) code which is compiled once before the program process the
batch analysis. This allows the program to run faster. On the other
hand, CellProfiler and Ilastik use Python to process batch analysis.
In Python, variables and functions will be run through interpreter
every time the program needs to process the task, in our case to
detect droplets in every image. Therefore, we presume that these
differences in the implementation of batch processing might be the
reason for these differences in processing times.

[CellProfiler and Image] have sufficient examples and documenta-
tion for novice user]. Each of the software provide documentation
and examples for guiding their user. CellProfiler and Image] have
been developed since 1987 and 2005, respectively**®. Therefore,
these objective software have more users and examples, e.g. Image]
has a distribution for compiling the biological image analysis
plugins called Fiji*. CP also provides some tutorials, examples, and
other documentations on their website, e.g. detecting different cells
morphology and tracking objects (www.cellprofiler.org). On con-
trary, Ilastik and QuPath have limited documentation for accom-
panying new users. However, there are some forums such as im-
age.sc forum (forum.image.sc) which are actively helping other
bioimage researchers or software users.

[Plugins in CellProfiler and Image] can be used as an extensible
option in processing image]. Plugins or add-on can be used to im-
prove default options within the software. This may be utilized by
other software developers. As an additional option, plugins may
help the user to implement specific cases of detection. Before Ilastik
and QuPath were developed, Image] had plugins called Trainable
WEKA Segmentation which in principle works similarly to instinc-
tive software*. In CellProfiler, plugins are also available. For in-
stance, we found one plugin to analyze Mass Cytometry (multi-
plexed images), called ImcPluginsCP*. Here, we did not add any
plugins to detect droplets and we used similar settings to see the
tool’s ability to detect and count the droplets. The extension soft-
ware for CellProfiler, CellProfiler Analyst (CPA)*, could be an
option to enhance droplet detection and have been described brief-
ly our previous research®. Based on our classification, CPA belongs
to instinctive software because users need to supervise or train the
data at the beginning. However, this software is not a standalone
software and requires feature extraction or properties file which
contain the observed data from CP*"¥.

[Objective software are more suitable for analyzing droplet micro-
fluidics image data]. The objective software provide more options
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e.g. to disregard the object which touches the border/frame which
resulted on high accuracy and precision. On the other hand, the
instinctive software required more optimization to train the classi-
fier. We only used 12 lines (S lines for determining droplets and 7
lines to define borders between droplets and background) to su-
pervise each class (background and droplet). Each line represents
the pixels for each group. This pixel manual selection works better
if the image has similar properties in majority and represent the
pixels distribution of an object, for example, borders between drop-
lets and the empty droplets. Even though the droplet’s border looks
the same across the image, the pixel distributions are varied. We
picked more lines to define borders. However, this cannot repre-
sent all of the properties and may result joint droplets. To over-
come this, larger training set and improvement of classifier would,
presumably, give better result. As an image processing tool, the
instinctive software like QuPath has a more specific purpose. This
software was created to accommodate whole slide image and large
image data analysis, specifically for complex tissue images®. Yet,
there has been made a comparison between QuPath and CellPro-
filer coupled with CellProfiler Analyst*. The comparison also
shows the pro and cons between the objective and instinctive soft-
ware in renal tissue. Furthermore, Image], CellProfiler, Ilastik and
QuPath have shown their capability in detecting droplets and gen-
erating the results as standalone tools. Based on user-friendliness,
which is rated in the Table 1, CellProfiler is the easiest tool to use
for droplet detection.

Table 1. CP provides more simplicity among other software

Category CellProfiler Image]  Tlastik  QuPath
% Accuracy 96.2% 92.7% 74.7% 80.9%
% Precision 99.8% 96.3% 80.2% 83.1%
Batch Processing

Provided modules
Documentation
Available plugins

User-friendliness

Simple Complicated

Droplet detection is often used as preliminary step in droplet mi-
crofluidic experiment. It is possible to expand the pipeline for fur-
ther analysis e.g. bacteria detection®, enzyme reaction measure-
ment*, chemical purification analysis*’, and metal extraction®. This
step is usually performed to extract the different aspects of droplet
(size, texture, volume and etc.) through pixel analysis. Yet, each
software has their own option and feature to obtain the particular
information, for example, “MeasureObjectSizeAndShape” and
“MeasureObjectIntensity” in CP and “Set measurement” and “ROI
Manager” in Image]. Nonetheless, this further analysis is not in the
scope of this article. We try to focus on the principle of droplet
detection in different software and assess the user-friendliness.

Conclusion

This investigation gives insights to processing droplet microfluidic
images using the four currently most popular software tools. We

classified types of open-source software into objective and instinc-
tive group. Both groups have three levels of complexity that cover
pre-processing, processing, and post-processing steps. These steps
help users, specifically with no programming experience, to choose
and perform their image analysis. In our experimental setup we
found that the objective type of software is better suited for droplet
analysis. The objective type tools also have simpler workflow or
pipeline, especially aimed for non-experienced user. Considering all
of the aspects, in our case, CellProfiler™ offered the most user-
friendly and accurate experience for droplet detection. However,
the optimal software choice may definitely be different for other
users depending on their experiment conditions and acquired im-
ages. Our paper would serve as a starting point for them to compare
available solutions and start with settings optimization. In addition,
published research, documentation, or forum discussions (such as
www.image.sc) helps finding the most suitable software pipeline for
droplet image analysis.

Methods
[Software search and selection ]

We used selected software tools to detect droplets using procedure
explained by Bartkova et al*'. We found several available and acces-
sible software tools online such as CellProfiler”, Image]*, Ilastik™,
QuPath™, Icy”, BioFilmQ®, CellOrganizer©*, CellCognition*,

BioIlmageXD*, BacStalk®¢, Advanced CellClassifier"’,
Phenoripper®, and Cytomine©®. To find the most preferred tools,
we used Twint — Twitter Intelligence Tool script®® written in Py-

thon and used each tool’s name as a keyword. The processing was
executed in Jupyter Notebook (ver. 6.0.3)* within Anaconda Nav-
igator®. We also imported datetime and pandas as additional librar-
ies. The Scopus search was performed using same keyword and
both of the results were visualized using bokeh and numpy library

62-64

in Python
[Droplet generation and image acquisition].

We repeated the method described in Bartkova et al. to generate
droplets and their image data®. We used a set of 64 images to test
the most popular software to detect the droplets. Using the data, we
calculated accuracy by comparing the results with manual counting.

[Image analysis with most popular software].

The image data were analyzed first as a single image using Image]
(ver. 1.52p), CellProfiler (ver. 4.0.3), Ilastik (ver. 1.3.3), and
QuPath (ver. 0.2.3). We used our previous pipeline in CellProfiler
as a basis to explore the other tools. We used the “IdentifyPri-
maryObject” to detect droplets. We also used the same setting
which  also  provided in our GitHub repository
(github.com/taltechmicrofluidics/CP-for-droplet-analysis). ~The
“MeasureObjectIntensity” and “ExportToSpreadSheet” modules
were also set as previously. The results were obtained automatically
after pressing “Analyze Image” button.

For Image], we recorded the workflow in the macro record option.
This record was used to make scripts for batch processing. The
parameter was set within “Set Measurement” under “Analyze” tab
and we only ticked “Area” for obtaining the pixels’ area in one drop-
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let. This followed with processing workflow, which included seg-
mentation using “Threshold” under “Adjust” option in “Image” tab.
The threshold was determined as 1507, corresponding to 0.023
scale, described in our previous article using CP. The thresholding
was followed with “Watershed” to separate droplets from each
other. The counting was performed using “Analyze Particles” under
“Analyze” tab. We set the size corresponding to the range we de-
scribed in CellProfiler, 22500 up to 62500 pixel® with 0 circularity.
Once we finished the processing step, we downloaded the image
through “Flatten” option in the “ROI Manager” menu. We ob-
tained the results in the table which appeared straight after we per-
formed the analysis.

In Ilastik, we used “Pixel Classification” and “Object Classification”
pre-defined workflow. We loaded the image and selected the fea-
tures for the training set. Since we did not have any reference re-
garding this type of workflow, we used the recommendation from
image.sc forum, starting by adding 0.30, 1.00 and 3.50 sigma or
scale correspond to the selected features e.g. Gaussian Filter, for
color/intensity, edge, and texture. We trained the program to dis-
tinguish between background (dark) and the droplets using manual
annotations/label. For the thresholding, we used the default
smoothing value (1.0 and 1.0) with 0.70 threshold. For the size
filter, we put value correspond to the settings in Image], 22500 for
minimum size and 62500 for maximum size. This was followed
with standard object selection feature option and selecting the
detected droplets in object classification as a sample. After finishing
the setup, we obtained the results by exporting both object predic-
tions and measured features.

In QuPath, we started the workflow by uploading the image. Once
the selected image was ready, we performed annotations similar to
Hastik. This process aimed to distinguish the background and fore-
ground (droplets). After annotating the image, we performed “Pix-
el Classification” using Artificial Neural network (ANN_ MLP)
classifier with High (downsample = 4.0) resolution. For the fea-
tures, the scales were 1.0, 2.0, 4.0 for Gaussian, Gradient magni-
tude, Hessian determinant and Hessian max eigenvalue. We creat-
ed the object detection for droplets and measured all detected
droplets. We set thick boundary class to make borders between
each of the droplets. We saved the measurement data from meas-
urement menu.

[Batch processing from each of the software]

In CellProfiler, we performed batch processing by loading set of
images in the Images module and run the “Analyze Images” button.
For Image], we executed batch processing using “Batch Process”
option under “Process” tab. We used recorded macro with some
adjustments to execute the images in Input folder. By processing
the images through this option, we generated results directly to the
Output folder. In Ilastik, we continued the batch processing
straight after setting up the workflow. Similar to CellProfiler, we
executed the batch processing after uploading the images and only
needed to press “Process all images” button. In QuPath, we trans-
formed the workflow from single image into scripts to execute the
batch processing. Since QuPath provides the script builder, we did

not have to script by ourselves and we could start batch processing
by executing the script and ran it for the whole image set in the
project. However, the image results from QuPath require addition-
al script using Groovy. We managed to generate the results and you
may find the script in our Github. We store both single and batch
processing pipeline from each of the software here:
(github.com/taltechmicrofluidics/Software-Analysis).

[Data acquisition and processing]

We gathered all of the results and processed them in Microsoft
Excel as follows. We tested the results with sensitivity and specifici-
ty test and used manual counting as a golden standard**®%. We
used these formulas for the test:

F
FPRate—m
TPRate=m
procision — TP
recision = TP + FP

TP +TN

A =
CoUracy = Tp T FP+FN + TN

Precision * TP Rate
Precision + TP Rate

F1Score =2 * (.

TP = Correct droplet detection compared to ground truth

FP = Wrong detection (detecting background)

FN = Wrong detection (software cannot recognize existed droplet)
TN = Background (0)

Accuracy = Quality of correctness

Precision = Similarity upon repeatable counting

F1 Score = Test accuracy measurement in dataset
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