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Abstract 

With long-read sequencing we have entered an era where individual genomes are routinely 

assembled to near-completion and where complex genetic variation can efficiently be resolved. 

Here we demonstrate that long reads can be applied also to study the genomic architecture of 

individual human cells. Clonally expanded CD8+ T-cells from a human donor were used as 

starting material for a droplet-based multiple displacement amplification (dMDA) method 

designed to ensure long molecule lengths and minimal amplification bias. Sequencing of two 

single cells was performed on the PacBio Sequel II system, generating over 2.5 million reads 

and ~20Gb HiFi data (>QV20) per cell, achieving up to 40% genome coverage. This data 

allowed for single nucleotide variant (SNV) detection, including in genomic regions 

inaccessible by short reads. Over 1000 high-confidence structural variants (SVs) per cell were 

discovered in the PacBio data, which is four times more than the number of SVs detected in 

Illumina dMDA data from clonally related cells. In addition, several putative clone-specific 

somatic SV events could be identified. Single-cell de novo assembly resulted in 454-598 Mb 

assembly sizes and 35-42 kb contig N50 values. 1762 (12.8%) of expected gene models were 

found to be complete in the best single-cell assembly. The de novo constructed mitochondrial 

genomes were 100% identical for the two single cells subjected to PacBio sequencing, although 

mitochondrial heteroplasmy was also observed. In summary, the work presented here 

demonstrates the utility of long-read sequencing towards understanding the extent and 

distribution of complex genetic variation at the single cell level. 

Keywords 

Single-cell sequencing, long-read sequencing, structural variation, somatic variation, de novo 

assembly, droplet amplification, dMDA, Xdrop, HiFi sequencing  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439527
http://creativecommons.org/licenses/by/4.0/


 3 

Background 

During the last few years, long-read sequencing technologies have made remarkable progress 

in terms of throughput and data quality. Due to their capability to read through repetitive and 

high GC-content regions, these technologies are essential for the ambitious plans to generate 

reference genomes for virtually all of Earth’s eukaryotic biodiversity1, 2, as well as complete 

telomere-to-telomere maps of human chromosomes3, 4. A further advantage of long-read 

sequencing is that it facilitates genotyping of complex structural variation (SVs) and repeat 

elements, which can be difficult or impossible to identify with other genomic sequencing 

approaches5-7. Although clinical long-read sequencing is still in its infancy8, 9, several studies 

have already demonstrated the potential to discover novel disease-causing human genetic 

variation. Long sequencing reads can also enable the detection of clinically relevant genetic 

variation in ‘dark DNA’, representing regions of the human genome that cannot be analyzed 

with standard short-read technologies10.  

Long-read sequencing holds many promises, but one intriguing research area that remains 

unexplored is single-cell genomics. Human single-cell whole genome sequencing (WGS) 

emerged about a decade ago11-15, and has become an active field of research with potential to 

answer fundamental questions in several areas of cell biology, such as somatic genetic 

variation16, tumor evolution11, de novo mutation rates14, meiotic recombination of germ cells14, 

17, or neurogenetics18-20. Until now, single-cell WGS projects have focused on characterizing 

genetic variation detectable from short-read Illumina sequencing protocols21-25, including single 

nucleotide variants (SNVs)19, 21, 26-31, large-scale copy number variation30, 32-34 and 

retrotransposon elements12, 18, 35, 36.  To our knowledge, there are today no published reports of 

long-read WGS of individual human cells. In part, this can be explained by the throughput of 

long-read instruments, which until recently has been relatively modest. In addition, single-cell 
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genome sequencing is associated with technical challenges37. In a diploid cell, only two DNA 

molecules exist at each locus in the genome, and every molecule that is lost during sample 

preparation, or fails to be sequenced, inevitably leads to allelic drop-out and missing data. 

Moreover, the long-read sequencing protocols require large amounts, typically several 

micrograms, of input DNA. This is about a million times more DNA than what is contained 

within a single human cell, which implies that a substantial DNA amplification is required.  

Whole genome amplification has a profound detrimental effect on the sequencing results and 

should be avoided when possible, since it introduces amplification bias, chimeric molecules 

and allelic dropout. Several different amplification protocols have been developed15, 38, 39 and it 

is crucial to choose a method that minimizes artefacts and biases, while at the same time being 

compatible with the downstream sequencing technology. Multiple displacement amplification 

(MDA)39 has capacity to amplify kilobase-length molecules and could therefore a suitable 

approach for long-read sequencing. With regards to amplification bias, it has been proposed 

that a droplet-based MDA (dMDA) reaction, performed on DNA fragments contained within 

nano- or picoliter droplets, can minimize differences in amplification gain among the 

fragments40-42. Such a droplet-based amplification could also be an efficient approach to remove 

inter-molecular chimeras, since MDA chimeras only can be formed between molecules 

contained within the same droplet. 

Single-cell DNA fragments amplified by MDA methods are well-suited for PacBio high-

fidelity (HiFi) sequencing43, since this protocol enables to read molecules of at least 20kb 

length. Moreover, the resulting PacBio HiFi reads have very high accuracy (>QV20), and not 

only allows identification of complex genetic variation such as SVs and repeat elements, but 

also SNVs at an accuracy that matches the ability of short-read sequencing43. PacBio HiFi 

sequencing has also proven to be an excellent method for high-quality genome assembly4, 44-46, 

thereby raising the prospect of long-read de novo assembly of genomic DNA from individual 
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cells. Taken together, a more detailed analysis of single cell genomes using highly accurate 

long reads could allow detection of new classes of somatic variation, including for example 

SVs and repeats, which have not been possible to study in single cells before. Eventually, this 

could lead to a better understanding of somatic variation, mutation rates and the functional 

impact of these elements. The potential applications are not limited to human cells. Long-read 

WGS could also potentially generate improved genome assemblies also for other types of cells, 

such as single cellular organisms that are difficult to culture. 

In this study, we established a long-read based approach for single-cell whole genome 

sequencing using a new automated dMDA technique for single-cell whole genome 

amplification coupled with PacBio HiFi whole genome sequencing. The method was evaluated 

on two clonally expanded CD8+ T-cells from a human donor, and in parallel other cells from 

the same T-cell clones were sequenced with short-read Illumina WGS. Our data demonstrates 

that SV discovery in single cells is substantially improved by long-read sequencing, and that 

genetic variation can be discovered also in regions inaccessible by short reads. We further 

performed de novo assembly of each of the two human single cells. Albeit fragmented due to 

dropout, these assemblies represent the first step towards reference-free analysis of the genomes 

in individual cells. Taken together, these findings open up new possibilities to characterize the 

landscape of complex genetic variation and genome organization at unprecedented resolution.   
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Results 
 

Amplification of single-cell DNA in droplets 

We first aimed to develop a DNA amplification method that preserves molecule lengths and 

reduces amplification bias (Figure 1A). Briefly, one single cell is isolated by fluorescence-

activated cell sorting (FACS) and placed into a well containing lysis buffer, so that the DNA 

fragments are released. The DNA molecules are then encapsulated in approximately 50,000 

droplets, after which a dMDA reaction takes place within each droplet. The droplets have a 

diameter of <100 µm and are generated using the Xdrop system47 (Figure 1B). Only one or a 

few DNA fragments will be located in each droplet, and since the amplification takes place in 

a small volume containing limited reagents this will prevent molecules from being heavily over-

amplified. Moreover, the risk of forming inter-molecular chimeras during the dMDA reaction 

is greatly reduced, and completely eliminated in droplets harboring a single DNA fragment. 

Once the dMDA reaction is complete, the amplified DNA can be used for preparation of short- 

and long-read sequencing libraries. For our experiments, two individual CD8+ T-cells (A and 

B) from the same human donor were clonally expanded in vitro, and the resulting cell 

collections were used as starting material for whole genome amplification and sequencing 

(Figure 1C). In addition, bulk DNA isolated from peripheral blood mononuclear cells (PBMC) 

obtained from the same individual was analyzed by short-read WGS. 

 

dMDA increases whole-genome sequencing coverage uniformity 

Sixteen single-cell DNA samples from the two T-cell clones A and B were investigated using 

Illumina WGS. Eight of the samples were amplified using dMDA, while the remaining eight 

samples were subjected to regular MDA. The sequencing resulted in 100 to 200 million read 

pairs per sample, and these were aligned to the GRCh38 human reference build. To facilitate 

direct comparisons between the samples, all Illumina datasets were randomly subsampled to 
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contain about 100 million read pairs. As expected, the eight dMDA samples displayed a more 

uniform coverage across the genome as compared to the eight MDA samples (Figure 2A-C). 

The reduced bias in dMDA can also be seen in the mitochondrial genome, where dMDA 

resulted in more than 10-fold higher coverage as compared to regular MDA. Furthermore, our 

results reveal that the uneven coverage in the MDA samples originates from a limited number 

of fragments that are being amplified to extreme coverage (Figure 2D). For the MDA samples, 

on average 68.9% of the reads align to regions with ³200x coverage, while the corresponding 

percentage for dMDA is only 16.0%. In these downsampled datasets, 33.8% of bases were 

covered by at least one read in dMDA as compared to 23.4% for MDA (Figure 2E). Based on 

these results, we conclude that dMDA gives increased sequencing coverage uniformity as 

compared to regular MDA, thereby corroborating previous evaluations of droplet-based MDA 

methods40, 41. 

 

Long-read whole-genome sequencing of two individual T-cells 

Two dMDA single-cell samples, one from T-cell clone A and one from T-cell clone B, were 

selected for PacBio long-read sequencing. The dMDA reactions generated 3160 ng (T-cell A) 

and 1850 ng (T-cell B) amplified DNA and the fragment size distributions displayed peaks 

around 9 kb. The PacBio HiFi sequencing protocol for the Sequel II instrument requires 10 µg 

of input DNA, and to enable library preparation from smaller DNA amounts SMRT bell size 

selection was performed using beads instead of using a gel-based system (see Methods). The 

resulting SMRT bell libraries were run on two separate 8M cells with 30h movie time. Over 

2.5 million reads and ~20Gb HiFi data (>QV20) was obtained for each of the two samples 

(Table 1). Virtually all reads could be aligned to GRCh38 and the average alignment 

concordance was over 99%. More than 6 million alignments were produced per sample, 

indicating that chimeric artifacts from the dMDA are found in many reads, since each read 
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gives rise to between 2-3 separate alignments on average. The aligned read length is a good 

indicator of the non-chimeric part of a read, since it corresponds to the longest subsequence that 

can be continuously matched to the GRCh38 reference. The N50 aligned read length was 5.4 

kb for T-cell A and 6.4 kb for T-cell B, and the maximum read alignment was 43.4 kb (T-cell 

A) and 48.7 kb (T-cell B). An average of 6x coverage was obtained from both samples. 

However, just like in the Illumina data there is a high level of allelic drop out. For T-cell A, 

40% of the genome was covered, while T-cell B had an even lower genome coverage of 28%.  

 

Single nucleotide variants can be detected in single-cell long read data 

Having generated single-cell whole genome data both using short- and long-read technologies, 

we were interested to analyze single nucleotide variants (SNVs) in the different datasets. More 

than twice the amount of sequencing data was generated for the Illumina single-cell samples 

(average 48.7 Gb) as compared to PacBio (average 20.0 Gb). (Figure 3A). In the Illumina data, 

between 0.3 to 2.1 million SNVs were detected in each sample, and an average of 992k 

SNVs/sample were found to be overlapping with SNVs called in the PBMC bulk sequencing 

data. In the PacBio data, a total of 1.7M SNVs (T-cell A) and 1.2M SNVs (T-cell B) were 

detected by the software DeepVariant48. Of these, an average of 900k SNVs/sample were found 

to be overlapping with SNVs called in the PBMC bulk DNA sample (Figure 3B). This means 

that a similar number of germline SNVs were detected using PacBio as compared to Illumina, 

despite the much lower total data amount for PacBio. 78,775 of the PacBio SNVs that failed to 

be identified in the PBMC bulk sample sequenced on the Illumina platform were found to be 

located within previously reported “dark” genic regions of potential importance for human 

health10. One such region comprises introns and exons of NBPF8 (Figure 3C). Another example 

is CDC73, where a repeat resolved in the PacBio single-cell data is represented as an alignment 

gap in the Illumina bulk data (Figure 3D).  
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Single-cell analysis of structural variation 

We performed SV calling using Manta49 and TIDDIT50 in the Illumina datasets, while the 

PacBio SVs were called using PBSV51. To compare the number of detected true SVs called in 

single cells, we focused on germline SVs that overlapped with SVs called in the PBMC bulk 

sample. In the eight Illumina dMDA samples, an average of 326.5 SV events were overlapping 

with SVs detected in the PBMC bulk sample (Figure 4A). The corresponding number for the 

eight Illumina MDA samples was 46.4 SVs. By far, the highest numbers of SVs overlapping 

with the PBMC bulk sample were found in the PacBio data; 1620 for T-cell A and 1126 for T-

cell B. This finding demonstrates that PacBio sequencing outperforms Illumina in SV detection 

in single cells. As seen in Figure 4B, this pattern holds true for deletions, insertions and tandem 

duplications. We further developed a computational strategy to screen for somatic SV 

differences between the two T-cell clones A and B, which resulted in three candidate events. 

One of these is a 50 bp deletion on chromosome 1, clearly visible in the PacBio data for T-cell 

B (Figure 4C). The Illumina data for T-cell clone B also has support for a genomic aberration 

in this region, even though the exact break points are difficult to see in the short-read 

alignments. However, there is no visible support for this deletion either in the bulk sequencing 

data or in the single cell data for T-cell clone A. Due to the presence of heterozygous SNVs a 

few kb downstream of the 50bp deletion it is clear that both alleles have been sequenced in the 

bulk sequencing data, and the allele harboring the deletion event can be determined through 

phasing.  

 

De novo assembly of single-cell long-read data 

PacBio HiFi reads are ideal for generating high-quality assemblies of human genomes4, 43-46, 

and we were interested to see whether some pieces of the single-cell genomes could be 
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reconstructed de novo. Since assembly of single-cell PacBio data is challenging due to allelic 

dropout and chimeric reads, we developed a filtering method to remove chimeric reads from 

the dataset prior to assembly. Because of the dMDA, chimeras are mainly formed within the 

same molecule, and by screening each read for inverted or duplicated elements, chimeric reads 

could be identified and removed ab initio (see Methods). For T-cells A and B, 44.2% and 46.6% 

of PacBio reads, respectively, passed our filtering criteria. However, this filtering is very 

stringent and does not only remove chimeras, but also many correct reads harboring repeat 

elements. Hifiasm52 generated primary assemblies of size 598.3 Mb for T-cell A and 454.1 Mb 

for T-cell B, corresponding to approximately 19% and 15% of the human reference (Table 2). 

The contig N50 values were 35 kb (T-cell A) and 42 kb (T-cell B), and the largest contig of 

578.3 kb was detected in the T-cell B assembly. In addition, approximately 40 Mb of alternative 

contigs were found in each sample. These alternative contigs correspond to regions where 

hifiasm reported two distinct haplotypes. We further performed an analysis of BUSCO gene 

models53 and could conclude that 12.8% of genes (n=1762) were completely assembled for T-

cell A, and 9.0% of genes (n=1236) for T-cell B. Complete mitochondrial genomes were 

obtained and these were identical for T-cells A and B. Looking closer at the mtDNA data, there 

is one location (chrM:16,218) where a C>T nucleotide substitution occurs in 42% of PacBio 

reads for T-cell B, while being completely absent from PacBio reads for T-cell A as well as 

from the Illumina bulk DNA sample. By further analyzing the Illumina dMDA data for the two 

single cell clones, we validate that the nucleotide substitution is present in T-cell B, but not in 

T-cell A, consistent with mitochondrial heteroplasmy in T-cell clone B.  

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439527
http://creativecommons.org/licenses/by/4.0/


 11 

Discussion 
 
By a combination of methods for single-cell isolation, whole-genome amplification and PacBio 

HiFi sequencing, we were able to sequence long DNA fragments from two human T-cells. The 

long sequencing reads give improved analyses of genetic variants as compared to short-read 

technologies, including single nucleotide variation in “dark” regions of the human genome, 

larger structural variants, and even enables de novo assembly of single cell genomes. The single 

cells used as starting point for this study were obtained through in vitro expansion of CD8+ T-

cells from a healthy human donor. These T-cells are more challenging to obtain as compared 

to cells from an established cell line, but have the advantages of being representative of healthy 

somatic cells from a human being, and additionally enable screening for somatic variation 

between clones based on known lineage relationships.  

 

By short-read sequencing we could demonstrate that dMDA of single-cell DNA results in more 

uniform coverage and improved SV calling as compared to regular MDA. However, the best 

performance is obtained when coupling dMDA with PacBio HiFi sequencing. Despite that the 

HiFi sequencing yield was below 50% of the average data amount generated for the Illumina 

single-cells, a similar number of SNVs and 3-5 times as many SVs could be detected. Most 

likely, there are many additional true events among the remaining PacBio SNVs and SVs calls, 

although only high-confidence events overlapping with variants called in an unamplified bulk 

sample were considered in the current report. Furthermore, our data allowed us to identify 

somatic SVs that distinguish the two expanded T cell clones. 

 

A human cell contains about six picograms of DNA, and this is a major challenge for PacBio 

HiFi sequencing which typically requires several micrograms of input material. Recently, an 

ultra-low input HiFi protocol was released54, but this still requires five nanograms DNA. Thus, 
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we have ventured far beyond the limits of available protocols, with about 1000-fold less DNA, 

and with a large (3 Gb) genome size. The single cell assemblies presented here represent a 

reduced overall completeness relative to published human long-read studies44-46, 55. This is not 

surprising since HiFi sequencing has previously only been performed on bulk DNA isolated 

from millions of cells, which typically yield reads of 15-20 kb length, uniformly distributed 

across the genome, and without amplification errors and chimeras. It is, however, encouraging 

that genome assembly can also be achieved at the single cell level, despite the errors and biases 

present in single cell data that can be expected in all available technologies for whole genome 

amplification. Taken together, the results presented here represent the very first benchmark for 

reference-free analysis of single human cells. 

  

Allelic dropout is always a challenge for single-cell WGS, and our results could be improved 

by having a higher proportion of DNA fragments encapsulated and amplified in the droplets. 

Several factors could lead to allelic dropout, such as DNA molecules that gets stuck in plastic, 

problems with getting sufficient reagents into all droplets, or DNA fragments that are either are 

too short or too long to be efficiently encapsulated. Another important issue is that the whole 

genome amplification introduces chimeras and errors. To some extent this might be helped by 

alternative amplification methods or modified experimental conditions, but regardless of such 

optimizations, there will likely remain a significant proportion of amplification errors in the 

resulting reads. This opens up for new bioinformatics tools, specifically designed for single-

cell long-read WGS data, which are able to resolve amplification errors and maximize the utility 

of the data. 

 

In this project, we opted for PacBio HiFi sequencing since it currently offers the highest per-

read accuracy56. Although nanopore WGS55 could be an alternative, it would likely be more 
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challenging to study SNVs and identify chimeric artefacts from nanopore reads because of their 

higher error rate. However, it is still an open question which platform would be best suited for 

this application in the future. This will depend on factors such as the sequencing yield, quality, 

and cost per sample, for coming versions of instruments. Due to the rapid developments of the 

long-read technologies, we anticipate that several of these parameters can be radically improved 

over the coming years.  

 

In conclusion, we demonstrate that long-read genome analysis can be performed not only at a 

species, population, or individual-level, but also for a single human cell. Ultimately, new 

innovations and technical advances may in the future enable near-complete genome assemblies 

and full haplotype reconstructions from individual cells. Our work presented here is a first step 

in that direction. 
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Methods 

Single-cell samples 

T cell samples were isolated from peripheral blood mononuclear cells taken from a living 

healthy human donor.  The donor was previously vaccinated with the live, attenuated Yellow 

Fever Virus (YFV) vaccine (YFV-17D) as part of an ongoing study to investigate the dynamics 

of adaptive immunity to YFV vaccination (approved by the Regional Ethical Review Board in 

Stockholm, Sweden: 2008/1881-31/4, 2013/216-32, and 2104/1890-32). To expand CD8+ T 

cell clones from single YFV-specific memory CD8+ T-cells, mononuclear cells were isolated 

from peripheral blood by density centrifugation, and were first stained with HLA-

A2/YFV(LLWNGPMAV)-dextramer FITC (Immudex, Denmark) for 15min at 4°C, followed 

by staining with anti-CD8a-BV570 (clone RPA-T8, Biolegend), anti-CD3-PE/Cy5 (clone 

UCHT1), anti-CD14-V500 (clone MφP9), anti-CD19-V500 (clone HIB19) (all from BD 

Biosciences), and LIVE/DEAD™ Fixable Aqua Dead Cell Stain (ThermoFisher) for 20 min at 

4°C. After washing, single live CD14-CD19-CD8+CD3+HLA-A2/YFV-dextramer+ cells were 

sorted directly into 96 well U-bottom plates containing 500ng/ml HLA-A2/YFV peptide 

(LLWNGPMAV), 40U/ml human recombinant IL-2, and 40.000 irradiated (25Gy) CD3-

depleted autologous PBMCs in T-cell media (RPMI1640 with 10% heat inactivated human AB 

sera, 1mM sodium pyruvate, 10mM Hepes, 50µM 2-mercaptoethanol, 1mM L-glutamine, 

100U/ml penicillin and 50µg/ml streptomycin) and were cultured for 20 days. Every 7 days 

half of the media was replaced with fresh T-cell media containing 50U/ml IL-2, 500ng/ml 

peptide and 40.000 irradiated CD3-depleted autologous PBMCs, and the wells were visually 

inspected for proliferation. Clonal expansions of single HLA-A2/YFV-specific CD8+ T-cells 

clones was confirmed by flow cytometry by using the same staining protocol as described 

above. Clones with sufficient number of clonal progeny were subsequently cryopreserved in 

fetal bovine serum with 10% DMSO and stored in liquid nitrogen until sorting for DNA/RNA 
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sequencing analysis. To isolate single cells from two selected YFV-specific CD8+ T cell clones 

(A and B), the clones were thawed, washed twice in RPMI1640 supplemented with 10% fetal 

bovine serum, and stained with as described above for initial sort and index-sorted into 96 well 

PCR plates (Thermo Fisher) or dMDA cartridge containing lysis buffer as described in the 

following sections. 

 

Whole-genome amplification by droplet MDA (dMDA) 

The single T-cells were sorted in a FACS instrument equipped with a custom 3D printed adapter 

holding a dMDA cartridge (cat# CA20100-16, Samplix ApS, Herlev, Denmark) and deposited 

directly into 2.8 µL lysis buffer (200 mM KOH, 5 mM EDTA (pH 8) and 40 mM 1.4 DTT) 

positioned at the dMDA cartridge’s Inlet site. Single cells were lysed, and DNA denatured for 

5 minutes at room temperature followed by addition of 1.4 µL neutralization buffer (400 mM 

HCl and 600 mM Tris HCl (pH 7.5)) and incubated for 5 min at room temperature. Then, 15.8 

µL MDA amplification mixture including polymerase, primers, dNTP and reaction buffer 

(Samplix dMDA kit item# RE20300, Samplix ApS, Herlev, Denmark), was added, by injecting 

it into the dMDA cartridge Inlet site using a wide bore pipette. Finally, 75 µL dMDA oil 

(Samplix dMDA kit item# RE20300, Samplix ApS, Herlev, Denmark) was added into the inlet 

well (general cavity). The dMDA cartridge was moved into the XdropTM droplet generator 

(item# IN00100-SF002 Samplix ApS, Herlev, Denmark) to create single emulsion dMDA 

droplets. Droplets were collected into low bind 0.2 ml PCR vials from the Collection container 

of the dMDA cartridge and excess oil was removed from the bottom. The MDA droplets were 

incubated in a thermal block at 30°C for 16 hours and then heat inactivated at 65°C for 10 

minutes and then cooled down to 4°C. Droplets were broken by adding 20 µL Break solution 

(Samplix dMDA kit item# RE20300, Samplix ApS, Herlev, Denmark) and the aqueous phase 

collected containing the amplified DNA. DNA material from XdropTM droplet MDA reactions 
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were quantified using Qubit ™ Fluorometer (ThermoFisher Inc., Waltham, MA, USA) and the 

DNA integrity investigated using Fragment Analyzer (Agilent Inc., Santa Clara, CA, USA) 

according to the manufacturer’s instructions.  

 

Whole-genome amplification by regular MDA 

For comparison to the XdropTM droplet MDA process, single T-cells were sorted in the FACS 

and singly deposited directly into 2.8 µL lysis buffer (200 mM KOH, 5 mM EDTA (pH 8) and 

40 mM 1.4 DTT) at the bottom of a 0.2 ml PCR vial or 96 well plate. Single cells were lysed, 

and DNA denatured for 5 minutes at room temperature followed by addition of 1.4 µL 

neutralization buffer (400 mM HCl and 600 mM Tris HCl (pH 7.5)) and incubation for 5 min 

at room temperature. The MDA reactions were prepared using RepliPHI Phi29 DNA 

polymerase and Reagent set (Epicentre, Illumina, Madison, WI, USA) according to the 

manufacturer’s instructions. The reactions were carried out at 30°C for 8-16 hours and then 

heat inactivated at 65°C for 10 minutes. 

 

Illumina whole genome sequencing 

Illumina libraries were prepared using an automated version of the TruSeq DNA PCR-Free kit. 

Briefly, DNA was quantified using Qubit HS DNA and 1ug of DNA was used as input. The 

samples were then fragmented using Covaris E220 system, aiming for a fragment size of 350bp. 

Fragmented DNA was end-repaired, followed by size selection using Dynabeads MyOne 

Carboxylic Acid beads. Illumina TruSeq DNA CD Indexes with sample-specific barcode 

sequences were ligated and the final product was cleaned up using AMPure XP beads. Finished 

libraries were normalized based on their concentration and pooled for clustering. Clustering 

was done by 'cBot' and samples were sequenced on NovaSeq6000 (NovaSeq Control Software 

1.6.0/RTA v3.4.4) with a 2x151 setup using 'NovaSeqXp' workflow in 'S4' mode flowcell. Bcl 
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to FastQ conversion was performed using bcl2fastq_v2.20.0.422 from the CASAVA software 

suite.  

 

Mapping and variant detection in Illumina data 

Illumina data was aligned to GRCh38 using BWA mem (0.7.17-r1188)57. The aligned data was 

sorted using Samtools sort (1.10)58, and deduplicated using Picard MarkDuplicates (2.20.4-

SNAPSHOT) (https://broadinstitute.github.io/picard/). Quality control was performed using 

Picard CollectGCMetrics and Picard WGSMetrics, as well as Samtools flagstats. The analysis 

was performed on the PCR-free bulk WGS and on each of the single cell samples. The 

subsequent bam files were searched for SNV and SV. The SNV calling was performed using 

Bcftools call (1.10+htslib-1.10) and the resulting SNV were decomposed and normalized using 

Vt59. SV detection was performed using TIDDIT (2.11.0)50 and Manta (1.6.0)49. Briefly, the 

TIDDIT calls were filtered based on the Filter column – keeping only PASS variants. Next, the 

SV calls were combined using SVDB merge (2.4.0), combining calls positioned within 200 bp 

form each other, and sharing an overlap of at least 10% bases.   

 

 
Downsampling and quality control of Illumina data 

Downsampling to 100M read pairs was performed for each Illumina dataset using Samtools 

view. Thereafter, the coverage was analysed using TIDDIT cov, computing the coverage in 

bins sized 5 kbp and 500 kbp across the entire genome. The 500 kbp analysis was visualized 

using Circos60, displaying coverage levels as a heatmap. The 5 kbp analysis was used to 

estimate the fraction of reads within high (>200X) coverage regions; the fraction of reads in 

such regions were computed using Samtools view, searching for reads overlapping high 

coverage regions as reported by TIDDIT cov.   
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PacBio whole genome sequencing 

Two MDA samples, one from clone A and one from clone B, were chosen for sequencing based 

on input fragment length and DNA amount. The samples were fragmented to 10 kb using 

Megaruptor 2 (Diagenode). For each fragmented sample, SMRTbell construction was 

performed using the Express Template prep kit 2.0 and incomplete SMRTbells were removed 

using the SMRTbell Enzyme Clean up Kit. SMRTbells were size selected using AMPure beads 

to remove fragments shorter than 3kb. The library preparation procedure is described in the 

protocol “Preparing HiFi Libraries from Low DNA Input Using SMRTbell Express Template 

Prep Kit 2.0” from PacBio. The SMRTbell library sizes and profiles were evaluated using the 

Agilent DNA 12000 kit on the Bioanalyzer system. PacBio sequencing was performed on the 

Sequel II instrument with 30h movie time.  

 

Mapping and variant detection in PacBio data 

The PacBio data was analyzed using tools available in the SMRTLink v8 GUI. HiFi reads were 

generated using the circular consensus sequencing (CCS) tool. The HiFi reads were aligned to 

hg38 using Minimap261. Structural variants were detected using PBSV.  DeepVariant48 (v 1.0.0) 

was used for PacBio SNVs calling. 

 

 Detection of somatic SV events 

Somatic SV were found by removing the previously mentioned germline SVs from the single-

cell sequencing WGS data. Candidate somatic SV were discovered in a variety of settings: 

through the previously mentioned PacBio analysis, through Illumina WGS analysis, or through 

the combination of Illumina and PacBio data.  The combined analysis was initiated by removing 

any germline calls from the Illumina single-cell WGS lists. Next the remaining calls were 

merged with the quality controlled PacBio calls, and the intersection was considered potential 
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somatic SV. The Illumina-only somatic analysis focused on the intersection between Manta and 

TIDDIT, searching for shared calls not present in the Germline SV list.  In all these cases, the 

intersection of callers/technologies, were found through SVDB merge. Somatic SV of interest 

were manually inspected using62. 

 

Assembly of PacBio single-cell data 

The PacBio HiFi reads were first filtered to remove intramolecular chimeras. This filtering was 

done by aligning each read to its own sequence using BLAST63 and removing all reads that 

have a secondary blast hit against themselves, at an identity higher than 90%. In this way, reads 

containing intramolecular chimeras such as inversions and duplications are efficiently removed. 

The HiFi reads that pass the chimera filtering were then assembled using hifiasm52 (v. 0.7-dirty-

r255). 
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Tables 
 
Table 1. PacBio Sequel II run statistics and alignment results for two human single T-cells  

 Single-cell A Single-cell B 
≥ Q20 reads 2,750,802 2,547,184 
≥ Q20 yield (bp) 19,880,131,345 20,169,954,798 
≥ Q20 read length (mean, bp) 7,227 7,918 
≥ Q20 read quality (median) Q36 Q36 
Number aligned reads 2,739,035 (99.57%) 2,517,588 (98.83%) 
Number of alignments 6,508,237 6,235,924 
Aligned read mean concordance 99.18% 99.11% 
Aligned read length (mean) 2,994 3,149 
Aligned read length N50 5,429 6,476 
Aligned read length 95% 8,691 9,739 
Aligned read length Max 43,386 48,731 
Mean coverage 6 6 
Covered bases 39.60% 27.71% 

 
 
 
Table 2: De novo assembly results for the two T-cells A and B 
  

Single-cell A Single-cell B 
Assembly statistics:   
Filtered CCS reads (bp) 8,794,585,174 (44.2%) 9,405,139,162 (46.6%) 
Assembly size, primary (bp) 598,293,718 454,096,399 
Assembly completeness 19.4%  14.7%  
Contig N50 34,883 41,528 
Max contig size 206,875 578,275 
Assembly size, alternative (bp) 44,706,740 36,132,542 
Contig N50, alternative 18,969 20,976 
Max contig size, alternative 79,718 94,865 
   
BUSCO gene models:   
complete 1762 (12.8%) 1236 (9.0%) 
duplicated 17 (0.1%) 14 (0.1%) 
fragmented 58 (0.4%) 250 (1.8%) 
missing 11960 (86.8%) 12294 (89.2%) 
   
Mitochondrion:  Complete Complete 
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Figures 

 

Figure 1. Overview of the single-cell DNA amplification and sequencing experiment. A) 
An individual cell is isolated by fluorescence activated cell sorting (FACS) and placed into a 
well containing lysis buffer. DNA molecules from the lysed single cell are then encapsulated 
in picoliter droplets using the Xdrop microfluidic system, after which dMDA whole genome 
amplification takes place inside each droplet. After amplification, the droplets are broken and 
DNA is released, followed by library preparation and whole genome sequencing using short- 
(Illumina) and long-read (PacBio) technologies. B) Image showing how droplets are formed in 
the Xdrop microfluidic system. An aqueous phase containing lysed DNA and dMDA reagents 
encounters an oil layer, resulting in <100 µm diameter droplets where single DNA fragments 
are captured. The Xdrop system has capacity to produce around 50,000 droplets in 45 seconds. 
C) Two human memory T-cells from the same individual (A and B) were used as starting point 
for the experiments. Collections of daughter cells were obtained by in vitro expansion, and 
individual cells from clones A and B were analyzed using Illumina and PacBio whole genome 
sequencing. 
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Figure 2. Comparison of MDA and dMDA for whole genome amplification. These results 
are based on Illumina MDA, dMDA and bulk sequencing where the datasets that have been 
randomly downsampled to contain the same number of reads. A) The figure displays the 
average sequencing depth across the human chromosomes. The dMDA single-cell samples 
display good uniformity of coverage, whereas the MDA data show high spikes due to 
amplification bias. B) Plot showing the percentage of bases in the reference genome (y-axis) 
having a minimal coverage (x-axis). On average the dMDA samples have more bases covered 
at a range 10x-30x, as compared to the single-cell samples subjected to regular MDA. C) Circle 
plots showing sequencing coverage in 500kb bins for all of the Illumina single-cell samples, 
color coded from 0x coverage (white) to over 200x coverage (black). Four replicate samples 
are included in each of the circle plots, and the chromosomal coordinates are displayed in the 
outermost circle. The dMDA samples at the top row display more even coverage than the MDA 
samples below, with more of the bins having average coverage in 4x-15x coverage range 
(green). D) Box plot showing the percentage of reads aligning to regions of extreme (³200x) 
coverage. E) Box plot showing the percentage of reference bases that are covered by at least 
one read.  
 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.13.439527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439527
http://creativecommons.org/licenses/by/4.0/


 23 

 
 

Figure 3. Results of SNV analyses in single-cell samples. A) Total amount of data generated 
for the single cell samples. On average, 48.7 Gb was generated for the sixteen Illumina samples, 
and 20.0 Gb for the two PacBio samples. B) Number of SNV overlapping in the single cells 
that were found to be overlapping with SNVs identified in the Illumina bulk sample. 992,338 
such SNVs/sample were found in the sixteen Illumina samples, 899,827 SNVs/sample for the 
two PacBio samples. C) Example of a “dark” genic region (NBPF8) where Illumina data fails 
to align uniquely, while SNVs can be identified and phased in the PacBio single cell data. D) 
Another example of a “dark” genic region (CDC73), where PacBio reads from the two single 
cells span across a repetitive region that lacks coverage in the Illumina bulk sequencing data. 
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Figure 4. Structural variants detected in single-cell whole genome sequencing data. A) The 
box plots show the number of SVs that were found in a single cell, while also being detected 
by SV analysis of the Illumina bulk sample. A higher number of bulk-supported SVs are found 
in the dMDA samples (average 326.5 SVs) as compared to the regular MDA samples (average 
46.4 SVs), and a Welsh t-test resulted in rejection of the null hypothesis that there is no 
difference between the two distributions (p-value 0.021). However, by far the highest numbers 
of bulk-supported SVs was found in the PacBio single-cell data; 1620 for T-cell A and 1126 
for T-cell B. B) The boxplots show the same SVs as in panel A), divided into deletion (top 
panel), insertion (middle panel) and tandem duplication events (bottom panel). C) IGV plot 
showing one example of a candidate somatic 50 bp deletion, indicated by a red arrow at the top. 
This event was detected both in the PacBio and Illumina single cell data for T-cell B. However, 
it is not visible in the bulk sequencing or in the single-cell data from T-cell A. The two black 
arrows to the right indicate positions with heterozygous SNVs that can be used for phasing of 
the deletion in the PacBio data for T-cell B. 
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