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SUMMARY (400/400 words limit) 

This prospective study determined the utility of intracranially-recorded spectral responses 

during naming tasks in predicting neuropsychological performance following epilepsy surgery. 

We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative 

neuropsychological assessment and intracranial EEG (iEEG) recording. The Clinical Evaluation 

of Language Fundamentals (CELF) evaluated the baseline and postoperative language function. 

During extraoperative iEEG recording, we assigned patients to undergo auditory and picture 

naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-

related amplitude modulations, including high gamma augmentation (HGA) at 70-110 Hz. We 

surgically removed the presumed epileptogenic zone based on the extent of iEEG and MRI 

abnormalities while maximally preserving the eloquent areas defined by electrical stimulation 

mapping (ESM). The multivariate regression model incorporating auditory naming-related HGA 

predicted the postoperative changes in Core Language Score (CLS) on CELF with r2 of 0.37 (p = 

0.015) and in Expressive Language Index (ELI) with r2 of 0.32 (p = 0.047). Independently of the 

effects of epilepsy and neuroimaging profiles, higher HGA at the resected language-dominant 

hemispheric area predicted a more severe postoperative decline in CLS (p = 0.004) and ELI (p = 

0.012). Conversely, the model incorporating picture naming-related HGA predicted the change in 

Receptive Language Index (RLI) with r2 of 0.50 (p < 0.001). Higher HGA independently predicted 

a more severe postoperative decline in RLI (p = 0.03). Ancillary regression analysis indicated that 

naming-related low gamma augmentation as well as alpha/beta attenuation likewise independently 

predicted a more severe CLS decline. The machine learning-based prediction model, referred to 

as the boosted tree ensemble model, suggested that naming-related HGA, among all spectral 

responses utilized as predictors, most strongly contributed to the improved prediction of patients 
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showing a >5-point CLS decline (reflecting the lower 25 percentile among patients). We generated 

the model-based atlas visualizing sites, which, if resected, would lead to such a CLS decline. The 

auditory naming-based model predicted patients who developed the CLS decline with an accuracy 

of 0.80. The model indicated that virtual resection of an ESM-defined language site would have 

increased the relative risk of the CLS decline by 5.28 (95%CI: 3.47 to 8.02). Especially, that of an 

ESM-defined receptive language site would have maximized it to 15.90 (95%CI: 9.59-26.33). In 

summary, naming-related spectral responses predict objectively-measured neuropsychological 

outcome after epilepsy surgery. We have provided our prediction model as an open-source material, 

which will indicate the postoperative language function of future patients and facilitate external 

validation at tertiary epilepsy centers. 
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INTRODUCTION 

 Invasive recording using intracranial electrodes aims to localize the seizure onset zone 

(SOZ) and functionally-important areas for resective epilepsy surgery.1 Electrical stimulation 

mapping (ESM) remains the gold standard for defining the extent of language areas.2–5 

Investigators have implemented an alternative method for language mapping partly because ESM 

has several limitations. Stimulation of nonepileptic areas may induce non-habitual seizures,6 which 

may increase the risk of surgical complications and reduce the reliability of the subsequent ESM 

sessions. A previous study of 122 patients reported that ESM induced seizures in 36% of patients.7 

Some patients may not be able to tolerate ESM sessions lasting hours. A tertiary epilepsy center 

reported that ESM failed to localize the language areas in the presumed dominant hemisphere in 

four-fifths of children at the age of 10 years or younger.8  

 Measurement of language task-related spectral responses on intracranial EEG (iEEG) is a 

method that complements the gold-standard ESM.9–12 Task-related augmentation of high-

frequency broadband activity, including high gamma (70-110 Hz), is considered to reflect cortical 

activation at a given moment.13,14 Such amplitude augmentation was reported to be associated with 

increased local neural firing15,16 hemodynamic activation on functional MRI,17 and increased 

metabolism on glucose positron emission tomography.18 A meta-analysis of 15 studies reported 

that electrode sites showing naming-related high gamma augmentation had 6.44 times increased 

odds to be classified as the ESM-defined language areas.19 Our preliminary study reported that 

resectioning sites showing naming-related high gamma augmentation increased the risk of new 

language deficits requiring speech therapy, independent of objective neuropsychological 

assessment.20 Two iEEG studies of 11 and 17 patients recently reported that resection of high 

gamma sites was marginally associated with a postoperative decline of neuropsychological 
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function.21,22 A prospective study of a larger cohort of patients with neuropsychological data is 

necessary to provide definitive evidence supporting the clinical utility of high gamma-based 

language mapping. 

The present study intended to achieve the following three aims. [Aim 1] We aimed to 

clarify the causal relationship between cortical resection involving naming-related high gamma 

activation sites and objectively-measured neuropsychological performance following epilepsy 

surgery. We specifically determined whether high gamma-based mapping would predict 

postoperative language performance independently of epilepsy and neuroimaging profiles 

available preoperatively. [Aim 2] We determined whether naming-related modulations of iEEG 

frequency bands other than high gamma would likewise predict postoperative language 

performance. Previous iEEG studies reported that sites showing high gamma augmentation 

frequently also exhibit augmentation of low gamma activity as well as suppression of alpha/beta 

activity.23–25 While high gamma augmentation is suggested to be better time-locked to a given task 

than alpha/beta suppression,13,26 it remains to be determined whether high gamma-based mapping 

would play the most critical role in predicting postoperative language function. [Aim 3] We 

generated a machine learning-based prediction model identifying electrode sites, which, if resected, 

would lead to a postoperative decline in language function. We internally validated our prediction 

model by demonstrating concordance with the ESM findings. Specifically, our simulation-based 

assessment determined the relative risk of a postoperative language decline related to virtual 

resection of an ESM-defined language site. To facilitate external validation, we have provided our 

prediction model as open-source material. Investigators can use this model to predict a given 

patient’s postoperative language outcome at their own epilepsy centers.  
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MATERIALS AND METHODS 

Patients 

We prospectively recruited and studied a consecutive series of patients satisfying the 

following criteria. The inclusion criteria consisted of [a] drug-resistant focal epilepsy, [b] age four 

years and above, [c] neuropsychological evaluation including the baseline language function,27 [d] 

extraoperative iEEG recording as part of our presurgical evaluation at Detroit Medical Center in 

Detroit between January 2009 and February 2019, and [e] measurement of naming-related spectral 

responses on iEEG. The exclusion criteria consisted of [a] history of previous epilepsy surgery and 

[b] massive structural lesions (such as megalencephaly or perisylvian polymicrogyria), which 

would make the Sylvian or central sulcus unidentifiable. The Wayne State University Institutional 

Review Board approved the study. We obtained informed consent/assent in writing from the 

patients or the guardians of patients.  

 

Language dominant hemisphere 

We previously discussed the rationale of our approach to estimate the language dominant 

hemisphere in children.20,28,29 It is infeasible to expect all surgical candidates, especially young 

children, would successfully undergo functional MRI-based lateralization of the language 

dominant hemisphere. Thus, we estimated the dominant hemisphere based on the handedness and 

anatomical MRI findings.30–32 We treated the left hemisphere as dominant if the patient was [1] 

right-handed or [2] left-handed but free of a developmental cortical lesion (such as dysplasia) in 

the left neocortical area. Conversely, we treated the right hemisphere as dominant if the patient 

was left-handed and had a developmental cortical lesion in the left neocortex. The present study 
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aimed to generate and validate a model that can predict postoperative language function without 

relying on functional MRI studies or ESM.8,33 

 

iEEG 

We surgically implanted platinum disk electrodes on the pial surface to determine the 

boundary between the SOZ and functionally-important areas.28,34 We continuously recorded iEEG 

at the bedside with a sampling rate of 1,000 Hz and a band-pass of 0.016-300 Hz for 3-7 days.35 

We discontinued antiepileptic drugs (AEDs) to capture habitual spells and localize the SOZ 

responsible for generating habitual seizures.34 We performed the following iEEG analysis using 

common average reference (i.e., an average of iEEG voltages at all channels excluding those 

affected by SOZ, interictal spikes, MRI lesions, or artifacts).  

 

MRI 

 Before implanting intracranial electrodes, we acquired 3T MRI, including a T1-weighted 

spoiled gradient-echo volumetric scan and fluid‐attenuated inversion recovery scan.36 We co-

registered electrodes with a three‐dimensional surface image37,38 Furthermore, we spatially 

normalized all electrode locations of all patients to the FreeSurfer averaged image 

(http://surfer.nmr.mgh.harvard.edu).35,37,39 Figure 1 shows the spatial distribution of intracranial 

electrodes included in our iEEG analysis. 
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ESM 

 We previously described our ESM protocol in detail.6,37 We stimulated a pair of 

neighboring electrode sites with a frequency of 50 Hz, pulse width of 0.3 ms, train duration of ≤5 

s. Figure 1 shows the distribution of 5,203 electrode sites assessed by ESM. We initially set the 

stimulus intensity at 3 mA, increased it to 6 and 9 mA in a stepwise manner until a clinical 

symptom or afterdischarge was noted. We kept the stimulus intensity below the afterdischarge 

threshold once identified in a given patient. During each stimulation trial, a given patient was 

instructed to answer auditory questions such as ‘What flies in the sky?’ or to name pictures 

Figure 1   Distribution of intracranial electrodes. A, The FreeSurfer surface image presents 
the distribution of artifact-free electrode sites included in the present study (6,886 sites). 
Color indicates the number of patients at each cortical point. B, The distribution of sites 
assessed by electrical stimulation mapping (5,203 sites). 
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presented by a neuropsychologist (R.R.) blinded to the results of naming-related spectral responses. 

The neuropsychologist asked each patient what made her/him fail to respond when needed. 

Additional tasks (e.g., syllable repetition) specified the functional role of each stimulated site. Sites 

at which stimulation induced the following symptoms were defined as ESM-defined language 

areas. [a] Speech arrest: inability to vocalize. [b] Auditory receptive aphasia: failure to understand 

auditory questions. [c] Auditory expressive aphasia: intact vocalization, successful understanding 

of auditory questions, but failure to provide a relevant answer. [d] Visual expressive aphasia: intact 

vocalization but failure to name pictures. We visualized the group-level probability of stimulation-

induced symptoms at each cortical point on the FreeSurfer averaged surface image.37 

 

Surgery 

 All patients underwent epilepsy surgery within 24 hours after the completion of 

extraoperative iEEG recording. Our primary intention was to completely remove the presumed 

epileptogenic zone consisting of SOZ and the neighboring structural lesion while maximally 

preserving the eloquent areas.34,36,40 The spatial extent of ESM-defined language areas and the 

spatiotemporal profiles of naming-related high-gamma augmentation were available before the 

surgery. We considered that ESM would localize the regions essential for language, whereas 

naming-related high-gamma augmentation would localize those involved in language.20,28 With the 

patient and family, before the intracranial electrode placement as well as at least a day before the 

surgery, we discussed the pros and cons of the complete and incomplete resection of the presumed 

epileptogenic zone in case the language areas were spatially overlapped with the SOZ.34 

 Based on the intraoperative photograph taken immediately before the dural closure, the 

FreeSurfer script computed the resection size, defined as the proportion of resected tissue among 
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the hemisphere (% of the hemisphere).36 We previously reported that the resection size estimated 

with an intraoperative photograph was highly concordant with that based on postoperative MRI.40  

 

Neuropsychological assessment 

 A neuropsychologist (A.C.), being blinded to the results of any iEEG analysis, evaluated 

the preoperative and postoperative language function using the Clinical Evaluation of Language 

Fundamentals-Fourth Edition (CELF-4).27 We computed the age-corrected Core Language Score 

(CLS), Receptive Language Index (RLI), and Expressive Language Index (ELI) (average: 100; 

standard deviation: 15) for patients with ages between 4 and 21 years. Since a given patient was 

expected to gradually recover from postoperative language impairment, if any, as a function of 

time, we treated the interval between surgery and postoperative neuropsychological assessment 

(Table 1) as a covariate in the multivariate regression analysis below.  

 

Naming tasks 

We assigned auditory and picture naming tasks to patients during interictal iEEG recording 

to localize the cortical sites involved in language based on the time-frequency analysis.28,29 Our 

previous studies described the task parameters in detail.29,37 We synchronized iEEG traces, 

stimulus presentations, and patient behaviors using a photosensor and microphones.28 For the 

auditory naming task, we instructed patients to overtly provide an answer for each of up to 100 

audible sentence questions. We measured the percentage of correct answers and the response time 

defined as the interval between stimulus offset and response onset (Fig. 2). We excluded trials 

from time-frequency analysis if a given patient failed to provide a relevant answer or the response 

time was longer than two standard deviations from the individual mean.41  
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For the picture naming task, we asked patients to overtly name an object presented on an 

LCD monitor (up to 60 common objects such as ‘dog’ and ‘tree’). We likewise measured the 

percentage of correct answers and the response time defined as the interval between stimulus onset 

and response onset. We aligned iEEG traces to stimulus onset and response onset (Fig. 2). 

 

 

Measurement of naming-related high gamma responses 

 At each artifact-free channel, we determined the temporal profiles of iEEG high gamma 

(70-110Hz) amplitude augmentation during the auditory naming task. We measured amplitude 

modulations during 1,200-ms epochs centered at sentence onset, sentence offset, and response 

onset, whereas picture naming-related responses during 1,200-ms epochs centered at stimulus 

onset and response onset (Fig. 2). Using the Morlet wavelet method implemented in FieldTrip 

(http://www.fieldtriptoolbox.org/), we transformed iEEG voltage data into time-frequency bins (1 

Hz frequency bins ranging from 2 to 110 Hz; each frequency × 0.1 cycles) sliding in 10 ms steps.  

Figure 2  Naming tasks and analysis periods of interest. A, Auditory naming task. Each patient 
was instructed to verbally answer a brief sentence question (median duration of sentence 
stimuli: 1.8 s; range: 1.2 to 2.4 s). B, Picture naming task. Each patient named an object 
presented on a monitor. Each 600-ms analysis period of interest is highlighted in color and 
labeled as a to f. 
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 We minimized the unwanted direct effect of interictal spikes on naming-related high 

gamma modulations by removing the time-frequency bins showing an excessive and irregular 

increase in broadband amplitude. If the amplitude averaged across 30-85 Hz at a given time in a 

trial was greater than two standard deviations from the mean amplitude across all trials in a given 

patient, we treated the whole time-frequency bins at the corresponding time on that trial as missing 

values.42,43 We believe this analytic approach can effectively extract and eliminate the pathological 

high gamma component carried by interictal spike discharges, which would randomly occur 

without being time-locked to stimuli or responses (Fig. 3).  

We subsequently determined when naming-related high gamma augmentation reached 

significance at each electrode site. We tested the null hypothesis that high gamma amplitude at 

each 10-ms bin would be the same as that during the baseline period with a two-sided 5% 

significance level (permutation test [n = 500] with FDR correction for repeated comparisons for 

121 bins in a 1,200-ms period; Fig. 2). We treated bins showing amplitude augmentation for at 

least three consecutive high gamma cycles (i.e., >33 ms) as significant high gamma augmentation. 

We finally computed auditory naming-related high gamma augmentation averaged across the four 

analysis periods of interest (Fig. 2A) at sites showing significant high gamma augmentation. 

Likewise, we computed picture naming-related high gamma augmentation averaged across the two 

analysis periods of interest (Fig. 2B). These high gamma values were treated as the summary 

measure reflecting the degree of local task-related cortical activation and incorporated in the 

subsequent multivariate regression analysis. 
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Figure 3  Preprocessing to remove pathological components from time-frequency analysis. A, 
Identification of randomly occurring spike discharges. We identified within-trial time-frequency bins 
showing a broadband (30-85 Hz) amplitude greater than two standard deviations from the across-trial 
mean (i.e., z-score of >2).42,43 B, Removal of bins including spike discharges. We treated such time-
frequency bins including an excessive broadband amplitude as missing values (i.e., NaN). C, Averaging of 
time-frequency bins across trials. We computed the averaged amplitude modulations (i.e., percent 
change) as compared to that during the 400-ms baseline period prior to the stimulus onset.37 Here, the 
time-frequency matrices present auditory naming-related spectral responses time-locked to stimulus 
offset at four electrode sites. Upper: Across-trial averaged data before bins including spike discharges 
excluded; several matrices exhibit episodes of brief broadband augmentation attributed to randomly-
occurring spike discharges. Lower: Across-trial averaged data after excluding bins with spike discharges. In 
the present study, we adopted the time-frequency data presented in the lower row. Amplitude scale: 100% 
indicates no change in amplitude compared to the baseline, whereas 110% and 90% indicate 10% increase 
and decrease, respectively. 
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Statistical analysis: iEEG high gamma and ESM 

 We determined whether the temporal profile of naming-related high gamma augmentation 

would account for language symptoms elicited by ESM. Using the Spearman’s rank correlation 

coefficient, we visualized how well the degree of significant high gamma augmentation during a 

specific 600-ms analysis period relative to stimulus and response would be correlated to the 

probability of each of the ESM-induced language symptoms (Fig. 4).  

 

Statistical analysis: iEEG high gamma and neuropsychological data 

[Aim 1] Multivariate linear regression analysis determined whether high gamma-based 

mapping would predict postoperative language performance independently of epilepsy and 

neuroimaging data available preoperatively.44 We used MATLAB 2020a Statistics and Machine 

Learning Toolbox (MathWorks, Natick, MA, USA) and set significance at p<0.05. The predictor 

variables included: [#1] ‘maximum resected high gamma (%)’ defined as the high gamma percent 

change highest among sites included in the resected language-dominant hemispheric region, [#2] 

the resection size of the language-dominant hemispheric cortex (%), [#3] age at surgery (years), 

[#4] sex (1 if female), [#5] interval between surgery and postoperative neuropsychological 

assessment (months), [#6] number of oral antiepileptic drugs taken preoperatively (reflecting the 

severity of epilepsy-burden),40,45 [#7] MRI-visible cortical lesion (1 if present), [#8] SOZ location 

(1 if frontal or temporal), and [#9] preoperative CELF-4 score. With a sample size of 65, a power 

of 0.8, an alpha of 0.05, and nine predictors incorporated, the regression model was anticipated to 

detect a moderate effect size of f2 of 0.28. We assumed that the test-retest reproducibility would 

be comparable across patients.46,47  
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Statistical analysis: Utility of iEEG low gamma, beta, and alpha modulations 

 [Aim 2] As an ancillary analysis, we determined whether task-related modulations of 

iEEG frequency bands lower than high gamma would likewise predict postoperative language 

performance. Using the aforementioned time-frequency analysis to measure naming-related high 

gamma augmentation, we computed low gamma augmentation (30-50 Hz), beta attenuation (12-

30 Hz), and alpha attenuation (8-12 Hz) during a given naming task. The multivariate linear 

regression analysis likewise determined whether ‘maximum resected low gamma’, ‘maximum 

resected beta’, or ‘maximum resected alpha’ would predict postoperative language performance 

independently of the other covariates mentioned above. 

 

Machine learning: iEEG amplitude modulations and neuropsychological data 

[Aim 3] We generated the machine learning-based atlas visualizing the sites, which, if 

resected, would lead to a postoperative decline in CELF-4-based language function. For this 

purpose, we used the ensemble learning algorithm supported by Statistics and Machine Learning 

Toolbox implemented in the MATLAB R2020a 

(https://www.mathworks.com/help/stats/ensemble-algorithms.html). To accurately predict 

patients with a postoperative decline in CLS by more than five points (i.e., reflecting the lower 25 

percentile in our study cohort), we generated the boosted tree ensemble model initially based on 

the auditory naming-related amplitude modulations. The model incorporated the following 17 

predictors measured during the auditory naming task: [#1 to #4] ‘maximum resected high gamma 

augmentation (%)’, here defined as the high gamma percent change, in each of the four analysis 

periods (Fig. 2A), highest among electrode sites within the resected region, [#5 to #8] ‘maximum 

resected low gamma augmentation (%)’, [#9 to #12] ‘maximum resected beta attenuation (%)’, 
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[#13 to #16] ‘maximum resected alpha attenuation (%)’, and [#17] language dominance of the 

resected hemisphere (i1 if resection involved the dominant hemisphere). Thereby, we linearly 

zero-centered auditory naming-related amplitude modulations (i.e., 0% reflects no augmentation 

or attenuation compared to the baseline.48 We selected the Gentle Adaptive Boosting as the 

ensemble learning algorithm.49 We subsequently utilized the Bayesian optimization algorithm with 

the expected-improvement acquisition function, which automatically selected the best set of values 

of the following hyperparameters through 100 iterations: ‘maximum number of splits’, ‘number 

of learners’, and ‘number of predictors to sample’. The following article describes the algorithm 

outline of the Bayesian optimization used in this study 

(https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html). We evaluated 

the prediction performance of our boosted tree ensemble model in predicting patients who 

developed such a postoperative CLS decline, using [a] accuracy and [b] area under the receiver 

operating characteristic (ROC) curve in five-fold cross-validation.  

Using the MATLAB ‘predictorImportance’ function 

(https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html),5

0 we determined the relative importance of each variable in predicting patients developing a >5-

point CLS decline (Fig. 5C).  

 

Validation of our machine learning-based model using virtual resection of ESM-

defined language areas 

Our boosted tree ensemble model predicted whether virtual resection of a given electrode 

site would result in a >5-point CLS decline in all 65 study patients. The model was designed to 

predict the clinical consequence associated with resection of sites in which naming-related spectral 
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responses ranged strictly within those observed in the training data (i.e., a procedure referred to as 

interpolation.51 On the FreeSurfer averaged surface image, we have provided a group-level atlas 

that visualizes the probability of a >5-point CLS decline resulting from virtual resection of given 

cortical points (Fig. 5A). To validate our boosted tree ensemble model, we computed the relative 

risk of language impairment resulting from virtual resection of ESM-defined language sites 

compared to that of the others.52 It is feasible to hypothesize that a given patient would develop a 

substantial language impairment if an ESM-defined language site were surgically removed instead 

of being preserved. 

We likewise generated the boosted tree ensemble model incorporating picture naming-

related amplitude modulations. We assessed the model performance in predicting patients who 

developed a postoperative>5-point CLS decline (Figs 5B and 5D). The picture naming-based 

model incorporated the following nine predictors: [#1 to #2] ‘maximum resected high gamma 

augmentation (%)’, in each of the two analysis periods (Fig. 2B), highest among electrode sites 

within the resected region, [#3 to #4] ‘maximum resected low gamma augmentation (%)’, [#5 to 

#6] ‘maximum resected beta attenuation (%)’, [#7 to #8] ‘maximum resected alpha attenuation 

(%)’, and [#9] language dominance of the resected hemisphere. 

 

Data and code availability 

All data and code are available upon request to the corresponding author (E.A.). We are 

pleased to re-analyze the data based on reviewers’ and readers’ specific suggestions to improve 

the language mapping method.  

 

RESULTS 
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Patient profiles 

 A total of 65 patients satisfied the inclusion and exclusion criteria (6,886 artifact-free 

electrode sites in total; 105.9 per patient on average [SD: ±17.9]). Due to the time constraint during 

the extraoperative iEEG recording, a single patient failed to complete the auditory naming task 

and six the picture naming task. Thus, 64 (105.7 ± 17.9) and 59 patients (104.2 ± 22.2) contributed 

to the analysis of auditory and picture naming-related amplitude modulations (Fig. 1A). A total of 

5,203 artifact-free electrode sites were assessed by ESM (Fig. 1B).  

 Resective surgery involved a total of 1,938 electrode sites (mean: 29.8 sites per patient; 

SD: ±24.5). Of the resected electrodes, 1,798 electrodes (92.8%) implanted on the brain surface 

without structural abnormalities (e.g., subcortical cysts or tumors) were analyzed in the 

standardized brain. The frontal (proportion: 27.8% [95%CI: 25.7 to 29.9%]) and temporal lobes 

(42.5% [95%CI: 40.2 to 44.9%]) had a greater probability of including resected electrode sites 

compared to the parietal (17.7% [95%CI: 15.9 to 19.5%]) and occipital lobes (12.0% [95%CI: 10.5 

to 13.5%]; Table 1). 

 Fifty-two patients underwent both pre and postoperative CELF assessments. One of the 52 

patients completed the postoperative evaluation of receptive language function alone due to the 

time constraint (Supplementary Table S1). The mean postoperative changes in CLS, RLI, and 

ELI standard scores were -0.1 (SD: ±9.8 in 51 patients), -1.4 (SD: ±10.6 in 52 patients), and -0.1 

(SD: 9.3 in 51 patients). Fourteen among the 51 patients showed a decline in CLS by more than 

five standard points. 

 

Concordance between ESM and iEEG high gamma-based mapping 
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 Figure 4 demonstrates the spatial concordance between language areas defined by ESM 

and those by high gamma-based mapping. The probability of ESM-induced receptive aphasia at a 

given cortical point was highly correlated to the degree of significant auditory naming-related high 

gamma augmentation during the 600-ms periods after sentence onset (rho: +0.46; p<0.001) and 

before sentence offset (rho: +0.43; p<0.001). Likewise, the probability of ESM-induced auditory 

expressive aphasia was correlated to auditory naming-related high gamma augmentation during 

the 600-ms periods after sentence offset (rho: +0.29; p<0.001) and before response onset (rho: 

+0.29; p<0.001). The probability of ESM-induced visual expressive aphasia was correlated to 

picture naming-related high gamma augmentation during the 600-ms period after stimulus onset 

(rho: +0.13; p<0.001). The probability of ESM-induced speech arrest was highly correlated to 

auditory naming-related high gamma augmentation during the 600-ms period before response 

onset (rho: +0.53; p<0.001).   
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Multivariate regression models incorporating iEEG high gamma augmentation 

Multivariate regression models incorporating auditory naming-related high gamma 

augmentation predicted the postoperative changes in CLS (r2 = 0.37; p = 0.015), RLI (r2 = 0.43; p 

= 0.003), and ELI (r2 = 0.32; p = 0.048; Supplementary Table S2). Higher ‘maximum resected 

Figure 4  Naming-related high gamma augmentation and electrical stimulation mapping (ESM).  
A, The spatial distribution of auditory naming-related high gamma augmentation during each 600-
ms analysis period of interest: a, post-sentence onset; b, pre-sentence offset; c, post-sentence 
offset; d, pre-response onset. B, The distribution of picture naming-related high gamma 
augmentation: e, post-stimulus onset; f, pre-response onset. C, The spatial distribution of the 
probability of ESM-induced symptoms, including receptive aphasia, auditory expressive aphasia, 
visual expressive aphasia, and speech arrest. D, The bar charts show the strength of correlation 
between modality-specific high gamma augmentation (at sites with a z-score of ≥2) and the 
probability of each ESM-induced symptom. *: Positive correlation with a Bonferroni-adjusted p < 
0.05.  
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high gamma’ was independently associated with greater decline in CLS (β = -0.09; t = -3.03; p = 

0.004) and ELI (β = -0.08; t = -2.63; p = 0.01), but not in RLI (β = -0.04; t = -1.20; p = 0.24). In 

other words, each 1% amplitude increase at the resected site showing the largest high gamma 

response resulted in a more severe postoperative decline in CLS by 0.09.  

 Multivariate regression models incorporating picture naming-related high gamma 

augmentation likewise predicted the postoperative changes in RLI (r2 = 0.50; p < 0.001), but not 

in CLS (r2 = 0.29; p = 0.109) or ELI (r2 = 0.27; p = 0.160; Supplementary Table S3). Higher 

‘maximum resected high gamma’ was independently associated with greater decline in RLI (β = -

0.04; t = -2.25; p = 0.030), but not in CLS (β = -0.04; t = -1.82; p = 0.077) or ELI (β = -0.04; t = -

1.67; p=0.103). 

 

Multivariate regression models incorporating iEEG lower frequency band 

modulations 

 Each of the multivariate regression models incorporating naming-related low gamma 

augmentation, beta attenuation, and alpha attenuation during auditory or picture naming task 

likewise predicted the postoperative changes in CLS, RLI, and ELI (p < 0.05; r2 ranging from 0.32 

to 0.50; Supplementary Tables S4-S9).  

 

Machine learning-based prediction of postoperative neuropsychological 

performance 

The boosted tree ensemble model, incorporating the aforementioned 16 auditory naming-

related iEEG amplitude variables in addition to the dominant hemisphere variable, predicted 

patients showing a postoperative >5-point CLS decline with an accuracy of 0.80 and area under 
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the curve of 0.65. As shown in Fig. 5, this model can highlight cortical sites predicted to result in 

a >5-point CLS decline, if resected, on the individual surface image. Figure 6A visualizes the 

group-level probability of a >5-point CLS decline resulting from the virtual resection of a given 

cortical point on the FreeSurfer averaged surface image. This group-level atlas suggests that 

resection of the left hemispheric regions, particularly the posterior portions of the temporal 

neocortices, would increase the risk of language decline. Figure 6C visualizes the relative 

contribution of the 17 variables mentioned above to the prediction model. Resection of sites 

showing high gamma augmentation during the 600-ms period after stimulus offset had the most 

substantial contribution to the improved prediction. The relative risk of language decline related 

to virtual resection of ESM-defined language sites, compared to that of sites outside, was 5.27 

(95%CI: 3.47 to 8.02; Fig. 7). Virtual resection of ESM-defined receptive language sites 

maximally increased the relative risk up to 15.9 (95%CI: 9.6-26.3). 

The boosted tree ensemble model, incorporating the eight picture naming-related iEEG 

amplitude variables (Fig. 6B) in addition to the dominant hemisphere variable, failed to predict 

patients showing a >5-point CLS decline with significance (accuracy: 0.73; area under the curve: 

0.50). 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439389


 

Figure 5  Spatial relationship between cortical prediction sites of postoperative cognitive 
decline and resection margin. The cortical surface in each individual 3D brain image is 
highlighted whether a given site, if resected, would result in a >5-point CLS decline. 
Postoperative cognitive outcome of each electrode site was predicted by the boosted-tree-
ensemble model incorporating auditory naming-related iEEG amplitude variables in addition 
to the dominant hemisphere variable. The yellow dashed lines denote the resection margin 
in a given patient. A, Case 1: The cortical sites predicted to result in a >5-point CLS decline 
(colored in red) were indeed resected, and the language decline was observed 
postoperatively. B, Case 2: The cortical sites predicted to result in >5 points of CLS decline 
were preserved, and no language decline was observed.  
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Figure 6  3D brain atlas visualizing the group-level probability of postoperative language 
decline. The averaged surface image presents the group-level probability of a >5-point CLS 
decline resulting from the virtual resection of a given cortical point. The group-level 
probability on each atlas was computed with the boosted tree ensemble model incorporating 
A, auditory naming-related or B, picture naming-related iEEG amplitude modulation variables 
in addition to the dominant hemisphere variable. C and D, Bar charts visualize the relative 
contribution of each variable to the prediction model providing atlas A and B.  
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Figure 7 Relative risk of language decline related to the virtual resection of ESM-defined 
language sites. The boosted tree ensemble model, incorporating auditory naming-related 
spectral responses, presents the group-level probability of a >5-point CLS decline resulting 
from virtual resection of a given electrode site. A, Virtual resection of an ESM-defined 
language site (i.e., cortical sites with ESM-induced receptive aphasia, auditory expressive 
aphasia, visual expressive aphasia or speech arrest). B, Virtual resection of a site outside the 
ESM-defined language areas. C, The relative risk (95%CI) of language decline related to the 
virtual resection of an ESM-defined language site, compared to that of a site outside. 
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DISCUSSION 

Causal significance of our prediction models 

This prospective study clarified the causal relationship between resection of sites showing 

naming-related iEEG amplitude modulations within the language-dominant hemisphere and 

postoperative changes in objectively-measured neuropsychological performance. We have 

generated the prediction models that neurosurgeons can utilize before and during the surgical 

procedures at their own epilepsy centers. The machine learning-based prediction model runs on an 

ordinary laptop computer with MATLAB installed (Supplementary .mat file). All variables 

incorporated in the prediction models can be determined before the completion of resective surgery. 

In other words, we did not use measures available only after surgery. It is reasonable to expect that 

seizure control and reduction of antiepileptic drugs after surgery would be associated with 

improved postoperative language development.53–56 However, such postoperative measures can 

play only a correlative role in characterizing the language function after surgery but cannot be used 

to predict future symptoms.   

 

Independent utility of high gamma modulations in predicting neuropsychological 

outcomes 

 High gamma-based mapping had a predictive value independent of the effects of each 

patient’s epilepsy and neuroimaging profiles. Expressly, the regression-based model indicated that 

greater naming-related high gamma augmentation in the resected dominant hemispheric region 

accurately predicted a more severe decline in language function after surgery. Our analysis 

successfully provided novel evidence of the biological gradient between naming-related high 

gamma augmentation and underlying language function. Thereby, the handedness and anatomical 
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MRI lesion determined the language dominant hemisphere (see the Methods Section; 20,28,29. The 

multivariate regression analysis adequately controlled the effects of covariate factors suggested 

being associated with neuropsychological decline. Investigators have indicated that the risk factors 

of postoperative language decline include more extensive resection, older age, absence of an MRI-

visible lesion, and higher preoperative neuropsychological performance.33,57–59 Our multivariate 

analysis also took into account the time interval between surgery and postoperative 

neuropsychological assessment (Table 1). It is plausible to expect that a given patient recovers 

and develops language skills as a function of time after surgery. Nonetheless, the present study did 

not find a significant effect of the time interval on neuropsychological performance. This 

observation could be attributed to a restriction of range of time post-surgery relative to the typical 

time course of recovery due to physiologic recovery or reorganization. 

Our multivariate regression analysis indicated the dissociative relationship between the 

amplitude modulations triggered by specific naming tasks and the predicted neuropsychological 

domain scores. Auditory naming-related high gamma mapping independently predicted the core 

and expressive language function after surgery, whereas picture naming data did the receptive 

language function (Supplementary Tables S2 and S3). This novel observation can be attributed 

to the extent of task-related neural activation and the underlying language function. Previous iEEG 

and functional MRI studies have suggested that the frontal lobe of the language-dominant 

hemisphere is more extensively and intensively activated by auditory naming task, whereas the 

ventral temporal-occipital regions are activated by picture naming task.29,60 Previous ESM studies 

have suggested that the left frontal lobe primarily exerts expressive language function and 

vocalization, whereas the posterior temporal and occipital regions play roles also in the perception 

and semantic understanding of language stimuli.3–5,37,61–63 Our observation does not suggest that 
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preoperative assessment of gamma augmentation with a naming task is superior to the other 

assessment methods in predicting language outcome. 

 We have successfully generated the regression- and machine learning-based models 

predicting postoperative language outcomes without relying on the ESM data (Fig. 6). Such 

models are clinically significant because not all patients can have the comprehensive ESM 

completed for various reasons. Clinicians may not be able to initiate the ESM while patients are 

prone to develop stimulation-induced seizures due to the reduction or discontinuation of AEDs.19 

Children may not sustain attentiveness or participation during an hour-long ESM mapping.8 Our 

prediction model based on iEEG high gamma augmentation triggered by naming tasks would be 

clinically useful because it could partially complement ESM assessment before resective surgery. 

In turn, we internally validated our machine learning-based model by assessing the 

simulated incidence of language impairment resulting from virtual resection of ESM-defined 

language sites (Fig. 7). According to the model, resection of an ESM-defined language site, if 

performed, would have increased the relative risk of a >5-point CLS decline by 5.27. Specifically, 

virtual resection of ESM-defined receptive language sites maximally increased the relative risk up 

to 15.90. Our machine learning-based model may provide prognostic information additive to the 

ESM because it inferred that resection of ESM language-negative sites in the left perisylvian 

regions could still result in a postoperative impairment. A meta-analysis of 15 studies suggests that 

high gamma mapping may exhibit language areas more extensively than ESM does in pediatric 

cohorts.7 Because we performed ESM using bipolar stimulation, we cannot rule out the possibility 

that only one of the pair of electrode sites would have been responsible for the symptom elicited 

during ESM.    
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The innovation of our iEEG analysis and prediction model  

Our machine learning-based model visualizes the site, which, if removed, would result in 

a language impairment at the group and individual levels. The group-level 3D atlas (Fig 6) 

visualizes the probability of a postoperative language decline resulting from resection of given 

cortical sites. The atlas can be readily utilized for counseling and education of patients, students, 

and healthcare providers. The individual-level model (Fig 5) can be used to simulate the 

postoperative language outcome resulting from the planned resection for a given patient. The 

accuracy of predicting patients developing a >5-point CLS decline was 0.80 after five-fold cross-

validation. Additional large and diverse datasets will provide an outstanding opportunity to 

externally validate our prediction models.64 At several tertiary epilepsy centers, we currently 

collect the iEEG, MRI, and neuropsychological datasets, characterized by different electrode types 

(e.g., depth electrodes), iEEG sampling approach (e.g., more restricted spatial sampling), age 

group (e.g., adult-dominant cohorts), and spoken language (i.e., other than English).65  

In the present study, our innovative analysis systematically excluded the time-frequency 

bins affected by interictal spike discharges, which would randomly take place without being time-

locked to stimuli or responses (Fig. 3). This method effectively minimized the observation of high 

gamma augmentation not attributed to task-related neural activations.28 Interictal spike discharges 

are accompanied by a temporary boost of broadband amplitude, including a 30-85 Hz band.42,43 

Thus, interictal spike discharges, if not removed from the analysis, may undesirably inflate the 

high gamma amplitudes at non-eloquent cortices, particularly within the SOZ.66 We are pleased to 

share our MATLAB code with investigators who want to replicate our analytic method.  

 

Methodological considerations 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439389


 The present study excluded the direct effect of interictal spike discharges on the 

measurement of naming-related high gamma augmentation at each electrode site. Still, our time-

frequency analysis may not consider the indirect impacts of slow-wave accompanying a given 

spike. Previous iEEG studies reported that slow-wave discharges immediately following spike 

discharges appeared to reduce task-related high gamma activation in trials affected by spike-and-

slow wave discharges.67,68 The optimal criteria for exclusion of the effects of epileptiform 

discharges remain to be determined.   

 iEEG recording inevitably suffers from a sampling limitation. Thus, we are aware of the 

possibility that an unsampled cortical site may have generated the true maximum spectral 

responses. Investigators have looked for noninvasive neurophysiological biomarkers to localize 

the language areas throughout the cortical convexity. However, the unavoidable occurrence of 

electromyographic artifacts originating from ocular and temporal muscles during spontaneous 

saccades and overt responses make the noninvasive high gamma-based language mapping 

challenging.69,70 Our multivariate regression analysis indicated the utility of naming-related 

alpha/beta attenuation in predicting postoperative language outcomes (Supplementary Tables 

S6-S9). Our study supports the potential role of task-related alpha/beta attenuation measured 

noninvasively in presurgical evaluation.71  

 The prediction performance of our machine learning-based model inevitably depends on 

the characteristics of the training data and the strength of model fitness to those data. A large 

proportion of our study patients had cortical resection involving the frontal or temporal lobe. Thus, 

our group-level atlas (Fig. 6) is expected to provide a more reliable prediction for patients with 

frontal or temporal lobe epilepsy than those with parietal or occipital lobe epilepsy. It is not 

reasonable to expect that a single diagnostic test would have a very high diagnostic accuracy 
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approaching 100% in predicting the postoperative language function. Seizure control after surgery 

is associated with better cognitive development,33,57,58,72 but clinicians do not have the seizure 

outcome before surgery. Thus, further studies also incorporating epilepsy biomarkers capable of 

predicting postoperative seizure outcome are warranted to improve our prediction model. The 

promising iEEG candidate biomarkers include high-frequency oscillations (HFOs)73,74 and cross-

frequency coupling between HFOs and slow waves.40,75  

 The present study did not include patients at the age of four years or younger. We expect 

that substantial proportions of such young patients will fail to complete an overt naming task 

satisfactorily. Thus, one would need to establish the language mapping without relying on the 

child’s attentive participation. Investigators have successfully recorded task-free high gamma 

augmentation associated with spontaneous cooing and babbling76 and during passive listening.7,77 

Measurement of spectral responses to single-pulse electrical stimulation also has the potential to 

localize the network supporting speech and language78–80 Additional measures are expected to 

improve the accuracy of machine learning-based prediction models.  
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TABLE (FOR PRINT) 
Table 1. Patient profile. 

Number of patients 65 

Mean age (years) 14.6 

Range of age (years) 5–44 

Interval (month) between surgery and postoperative language assessment (IQR) 3.6 (2.3) 

Female (%) 47.7 

Right-handedness (%) 81.5 

Language-dominant hemisphere (%)  Left: 92.3 

Side of resected hemisphere (%) Left: 58.5 

Mean number of pre-/post-operative antiepileptic drugs  2.3/ 2.0 

SOZ, n (%) 
 

 Frontal 17 (26.2) 

 Temporal 32 (49.2) 

 Parietal 22 (33.8) 

 Occipital 13 (20.0) 

 Not available * 7 (10.8) 

MRI-visible cortical lesion, n (%) 37 (56.9) 

Etiology, n (%) 
 

 Tumor 13 (20.0) 

 Dysplasia 20 (30.8) 

 Hippocampal sclerosis 4 (6.2) 

 Inflammation 2 (3.1) 

 Gliosis alone 27 (41.5) 

IQR: interquartile range. SOZ: seizure onset zone. *: The extent of cortical resection was guided 

by interictal epileptiform discharges as well as the MRI lesion.    
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