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Abstract 15 

Gut health is intimately linked to dietary habits and the microbial community (microbiota) 16 

that flourishes within. The delicate dependency of the latter on nutritional availability is also 17 

strongly influenced by symbiotic relationships (such as, parasitic or mutualistic) between the 18 

resident microbes, often affecting their growth rate and ability to produce key metabolites. 19 

Since, cultivating the entire repertoire of gut microbes is an infeasible task, metabolic models 20 

(genome-based metabolic reconstructions) could be employed to predict their growth patterns 21 

and interactions. Here, we have used 803 gut microbial metabolic models from the Virtual 22 

Metabolic Human repository, and subsequently optimized and simulated them to grow on 13 23 

dietary compositions. The presented pairwise interaction data (https://osf.io/ay8bq/) and the 24 

associated bacterial growth rates are expected to be useful for (a) deducing microbial 25 

association patterns, (b) diet-based inference of personalised gut profiles, and (c) as a 26 

steppingstone for studying multi-species metabolic interactions. 27 

 28 
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INTRODUCTION 32 

Metabolism in the host is complemented by the microbial community (microbiota) harboured 33 

in its gut. The microbiota collectively possesses a larger repertoire of enzymes which helps in 34 

digestion and nutrient uptake from sources such as, complex carbohydrates [1]. Microbes also 35 

synthesize and make available different key nutrients such as, essential amino acids, vitamins 36 

and short chain fatty acids [2,3]. Consequently, imbalances (i.e., dysbiosis) in  the gut 37 

microbiota  impacts an individual’s health and has been linked to many diseases like 38 

inflammatory bowel disease, obesity, type II diabetes, etc. [4–8]. Microbiome usually evolves 39 

as a complex community [9] and it is imperative to investigate metabolic interconnection and 40 

resultant interactions among them. While many microbiome studies derive inferences based 41 

on the correlation of abundances (or cooccurrences) of gut microbial species, often so in a 42 

disease or a dietary context [10,11], they seldom focus on their ‘metabolic communication’. 43 

Deducing such metabolic communications are often cumbersome, time consuming and costly; 44 

given that majority of gut micro-organisms are not cultivable under in-vitro conditions [12].  45 

 46 

Rapid advancement in genome sequencing in recent years have provided new impetus for 47 

development of high-quality genome-scale metabolic models which can aid in microbial 48 

metabolic network analysis. In addition to the genomic information, these metabolic models 49 

can also be adapted to use multi-omics data (viz., proteomics, transcriptomics, metabolomics, 50 

etc.) to replicate the metabolic behaviour of an organism under specific environmental 51 

conditions, such as nutrient availability, stresses, co-culturing, etc. [13,14]. Earlier works by 52 

independent research groups have established that pairwise interactions are the major drivers 53 

of bacterial communities, as opposed to their higher�order interactions [9,15]. Metabolic 54 

exchanges between two species could exemplify the nature of interactions that occurs 55 
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between them [16,17]. This is especially pivotal while considering environmental factors, 56 

such as diet which could strongly drive the microbial composition and intrinsic metabolic 57 

behaviour inside the gut [18]. Therefore, a joint genome-scale reconstruction of two different 58 

organisms, in conjunction with Flux Balance Analysis (FBA) [1,8,16,19–21], could elicit 59 

metabolic patterns that would define their innate relationship within a dietary/ nutrient 60 

regimen (Dai et al., 2019; Heinken et al., 2019; Perisin & Sund, 2018). This has been 61 

famously exemplified by Klitgord and Segrè [23], wherein the authors examined paired 62 

combinations of seven metabolically reconstructed microbes (models) to identify nutrient 63 

environments that induced symbiotic relations, which would otherwise deter growth in 64 

isolated condition. This involved a combinatorial approach in determining media that led to 65 

emergent mutualistic dependence through bidirectional exchange of nutrients necessary for 66 

growth. It was also surmised that environmental/ nutrient fluctuations could have more 67 

profound effect on microbial symbiosis than their genetic (or reactionary) perturbations. 68 

Along the same lines, it has been shown that cooperative behaviour occurs when paired-69 

microbes have fewer common growth promoting metabolites [24]. Another study on 70 

microbial consortia showed that these pairs/ consortia could produce new metabolites which 71 

were otherwise absent in mono-cultures [25]. Some earlier metabolic modelling efforts in this 72 

direction have also highlighted the capacity of paired models to produce metabolites which 73 

were non-existent in their secluded form, as well as presented examples of the paired models’ 74 

increased potential of producing metabolites as compared to the additive sum of the 75 

metabolite fluxes in their ‘mono-culture’ simulations [21]. 76 

 77 

These studies demonstrate the importance of studying interspecies relationships delineating 78 

their mutualistic or inhibitory tendencies with each other in a case dependent manner. Our 79 
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work finds its basis in the above premise, explores the same in context of a human gut habitat, 80 

and provides an extensive collection of potential interactions for all gut microbes for which 81 

viable metabolic models were available from the VMH (Virtual Metabolic Human) repository 82 

(Noronha et al., 2019). The potential interactions are derived from pairwise FBA simulations 83 

of gut microbes mimicking their growth in 13 different dietary conditions. Having access to a 84 

dietary “interactome”, could provide contextual guidance and justification towards elucidating 85 

underlying relations amongst gut microbes, especially so while drawing inference from such 86 

relationships determined through microbial abundance-based correlations. Furthermore, one 87 

can also posit an approach for delineating key microbial growth deviations within or inter 88 

dietary compositions, that would be helpful in understanding individual gut microbiome 89 

profiles during a comparative analysis. The pairwise interaction type (as well as growth 90 

potential) data for different diet types presented in this work essentially represents a semi-91 

exhaustive collection of gut bacterial ‘dyads’ (the smallest unit of interaction in a social 92 

network/ group) and lays the foundation for progressively building onto as well as studying 93 

larger gut bacterial networks/ ecosystems. 94 

 95 

 96 

RESULTS  97 

Metabolic simulations, based on flux balancing principles, were performed to gauge the 98 

growth potential of gut microbes under varying diet conditions. A total of 818 metabolic 99 

models resembling human gut associated microbes and 13 diet constraints imitating nutrient 100 

availability (to gut microbes) in different dietary habits were used (see MATERIALS AND 101 

METHODS). Simulations were performed for single organism models as well as paired 102 

organism models to mimic growth of gut microbes in both mono-culture and co-culture 103 
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conditions under different diet conditions.  Further, for each of the diet types, interactions 104 

between a pair of microbes was determined from the change in growth rates of the two 105 

organisms under co-culture (paired) and mono-culture conditions (see MATERIALS AND 106 

METHODS). 107 

 108 

 Technical validation against earlier AGORA simulations 109 

The obtained growth rates of the metabolic models representing the gut microbial species, 110 

both in mono-culture and co-culture simulations, were benchmarked against the results 111 

presented by Magnusdottir et al. [16], who had employed AGORA models (v1.0) in their 112 

study. Since their simulation outcomes were reported for only two diet conditions, viz., High-113 

Fiber (AGORA) and Western (AGORA) diet, the evaluation could be performed for these two 114 

diets only. For the 768 microbial species (metabolic models) which were common between 115 

AGORA (version v1.0) [16] and our present work, we found strong correlation in their single 116 

model (mono-culture) growth rates in both High-Fiber (AGORA) as well as Western 117 

(AGORA) diets. SRC of 0.921 and 0.954 and PCC of 0.926 and 0.952 were observed for the 118 

microbial growth rates in High-Fiber (AGORA) and Western (AGORA) diets respectively. 119 

Similarly, comparison of the collective growth rates of the pairwise model (co-culture) also 120 

showed good correlations for both the diets (considering 283,881 combinatorial pairs 121 

common to both studies). In the co-cultured simulations, SRC of 0.903 and 0.933 and PCC of 122 

0.85 and 0.87 were noted for High-Fiber (AGORA) and Western (AGORA) diets 123 

respectively. 124 

 125 

Assessment of computed interactions in the context of literature evidences 126 
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Bifidobacterium growth patterns in High Protein and High Fat diets: Using single model 127 

simulation results in different VMH Diets, the mean growth rate of 39 different available 128 

models of Bifidobacterium species was correlated to the main dietary constituents, namely 129 

lipids (%), carbohydrates (%), protein (%), dietary fibers (mg), cholesterol (mg) and sugar 130 

(mg) (as downloaded from nutrition information table provided in www.vmh.life/#nutrition). 131 

Dietary fiber was found to have the strongest positive correlative emergent (PCC of 0.53) of 132 

growth rate in single (mono-culture) model condition, and conversely, lipid of the diet 133 

showed negative correlation (PCC of -0.49) to growth rate of Bifidobacterium. PCCs obtained 134 

for the other factors, viz., carbohydrates, protein, cholesterol, and sugar (sucrose) were 0.22, 135 

0.15, -0.19 and 0.24 respectively.  136 

 137 

Complementarity between Bacteroides thetaiotaomicron and Methanobrevibacter smithii: 138 

Two gut inhabiting organisms, Methanobrevibacter smithii and Bacteroides thetaiotaomicron, 139 

are known to exhibit mutualistic (syntrophic) behaviour when grown in a polysaccharide 140 

(dietary fiber) based diets [28,29]. We investigated if their syntrophic behavior (in fiber rich 141 

diets), could also be replicated in our in-silico results. M. Smithii (model name 142 

Methanobrevibacter_smithii_ATCC_35061) was found to have higher growth rate when co-143 

cultured (paired) with B. thetaiotaomicron (model name 144 

Bacteroides_thetaiotaomicron_VPI_5482) in fiber rich diets. Its growth rate was seen to 145 

increase by 4.51 folds in High-Fiber (AGORA) diet and by 1.44 folds in High-Fiber (VMH) 146 

diet. For diets with poor fiber content (like Unhealthy diet and High-Fat with Low-Carb diet), 147 

a reverse relationship of amensalism was observed wherein a drop in the growth rate of M. 148 

smithii by 0.99 folds was found on co-culturing with B. thetaiotaomicron.  149 

 150 
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Complementarity between Bifidobacterium adolescentis and Eubacterium hallii: In yet 151 

another instance, our simulation results could mimic the commensalistic behaviour between 152 

Eubacterium hallii (model name Eubacterium_hallii_DSM_3353), a prominent butyate-153 

producing bacterium [30] and Bifidobacterium adolescentis (model name 154 

Eubacterium_hallii_DSM_3353), in diets which are rich in starch. Notably, it has been 155 

reported that E. hallii by itself is not able to sustain in a starch rich diet and require assistance 156 

from B. adolescentis for its survival [4]. In data presented in Table 1 this pair exhibited 157 

commensalism in seven out of 13 diets and all of these diets feature higher starch content. 158 

Three of the remaining diets (viz., Unhealthy, High-Fiber and Vegan) also had higher starch 159 

content, but did not lead to any appreciable increase in the growth of E. Hallii (i.e ≥10% of 160 

growth rate) and their overall interaction was thus interpreted as neutralism for those diets. 161 

Diets with poor starch content yielded negative interactions for this pair. 162 

 163 

 164 

DISCUSSION 165 

Genome scale metabolic reconstruction is one of the prime examples of genomics aiding 166 

metabolomic research. Continuous growth in this field has propelled the gaining of metabolic 167 

insights into complex problems like estimating the growth capacity of a microbe in a 168 

nutritional environment [7,23] or cross feeding in a microbial community [17,21]. Hence, a 169 

collection of such genome scale metabolic reconstructed models (like VMH repository - 170 

www.vmh.life) along with several pre-determined dietary compositions provides an 171 

opportunity to compile and build a vast resource of individual and/or symbiotic growth 172 

capacity of gut microbes, tailored to these available diets. This, otherwise, via conventional 173 

experimental procedures would be cumbersome, time consuming and costly if not infeasible. 174 
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Here in our study we have computed growths and interactions for 4,182,618 combinations of 175 

available microbial pairs, and attempted validation of simulated growth rates and derived 176 

symbiotic relationships to existing literature.  177 

 178 

The ideal validations for the single model (mono-culture) and pairwise model (co-culture) 179 

simulation results would be to compare the in-silico results with the experimental growth 180 

rates under different diet types. However, given a multitude of factors, including difficulties 181 

to replicate the diets in culture media, and challenges in growing most gut microbes in the 182 

laboratory, the availability of experimental data to benchmark in-silico findings are limited. 183 

Consequently, the publication presenting the original AGORA models (v1.0) [16] evaluated 184 

simulation results using growth rates of only a single pair of gut microbes under a specialized 185 

nutrient environment. This being a seminal publication on the topic, the results presented 186 

therein were considered as a benchmark while performing the technical validations for our 187 

current study. In brief, the mono-culture and co-culture growth rates of the 773 gut microbial 188 

models (from AGORA v1.0), simulated under the two AGORA diets, viz., High-Fiber 189 

(AGORA) and Western (AGORA) were used for this comparison. Subsequently, we have 190 

also evaluated some of our predicted growth rates and derived symbiotic relationships against 191 

experimentally observed diet-linked microbial growths and interaction patterns available from 192 

literature.  193 

 194 

It may be noted that the current version of AGORA models (v1.03), that has been used for 195 

simulations performed in the current study, have been updated and refined since the original 196 

publication [16].  The changes include rectification of false positive predictions of nutrient 197 

uptakes within the model, implementation of improved gap-filing protocols on a new refined 198 
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growth media [31], and introduction of new pathway reactions from several studies like 199 

aromatic amino acid degradation [32], putrefaction pathways in the gut [33], bile-acid 200 

biosynthesis [7]. Given these differences in the models used as well as certain differences in 201 

the methodology when compared to Magnusdottir et al. [16], some deviations pertaining to 202 

the computed growth values, and the interactions derived, could be anticipated. The 203 

methodological differences included usage of some revised reaction constraints (see Diet 204 

Construction sub-section of MATERIALS AND METHODS), usage of COBRApy library 205 

(python) in place of COBRA toolbox (MATLAB),  usage of glpk solver (publicly available) 206 

instead of the proprietary CPLEX solver (IBM, Inc.), using an adapted version of Mminte (a 207 

python package) for paired model reconstruction [34] (see Code Usage in Appendix 1), and 208 

employment of auxiliary flux coupling constraints, implemented within python (see 209 

MATERIALS AND METHODS section and Code Usage in Appendix 1). Despite the 210 

technical and methodological differences, the two studies displayed similar results in terms of 211 

growth rates for the individual and paired organisms (See RESULTS section). 212 

 213 

Additional validations were subsequently performed to check if the interaction patterns (and 214 

the simulated growth rates) among a pair of microbes, as reported in this work, could replicate 215 

the biologically observed phenomenon under different diet conditions. The three case studies 216 

(as shown in RESULTS section) highlight the potential use that can be extended in this 217 

regard.  218 

 219 

Numerous studies have focussed attention to Bifidobacterium, an eminent gut inhabiting 220 

species, which is particularly known for its probiotic interplay within host and with gut 221 

microbial species [35,36]. Studies suggest that Bifidobacterium species grows poorly in diet 222 
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compositions made with high protein [37], and with high-fat and low-carbohydrate [38]. Our 223 

simulation data gives similar indications for this species as shown by moderately negative 224 

correlation to lipid content (See RESULTS section).  It may be mentioned in this context that 225 

Hwang and his co-workers [37] also evaluated the growth patterns of Sutterella, another gut 226 

bacterium, in addition to Bifidobacterium and reported contrasting growth trends. 227 

Unfortunately, the two models of Sutterella which have so far been reconstructed, were a 228 

subset of 27 gut bacterial models (out of 803 used in this study) exhibiting no appreciable 229 

change in growth rates across diet types and often very poor growth in mono-cultures 230 

(Supplementary Table 1 in Appendix 1). Therefore, growth patterns of Sutterella in response 231 

to different dietary constituents could not be assessed in course of technical validation for this 232 

work. While the diet-invariant very low growth rates, possibly due to the inability of these 233 

organisms to survive in isolation in the human gut, may be construed as a limitation of this 234 

work, it may be noted that the growth rates of these organisms (including Sutterella) showed 235 

significant variations in the co-culture simulations across different diet types. 236 

 237 

Literature evidences also substantiates the simulation results i.e. growth rate derived 238 

interaction paradigms, obtained in our study. For instance, Bacteroides thetaiotaomicron, one 239 

of the most common gut species, and Methanobrevibacter smithii, a pre-dominant gut 240 

microbe of Archaea domain, have been notably shown to have syntrophic relationship, 241 

wherein B. thetaiotaomicron assists M. smithii to grow in polysaccharide (dietary fiber) based 242 

diets [28,29]. Aligned with the experimental evidences, we observed commensalism in our 243 

paired-model simulations between these two species in diets with high fiber content. On a 244 

similar note, our derived interactions between gut microbes could also be validated for 245 

another prominent experimental observation [4], which included Bifidobacterium adolescentis 246 
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and Eubacterium hallii. From the data presented in Table 1, the above interaction 247 

phenomenon could be observed in diets which had higher starch contents, wherein the co-248 

cultured pair tend to display commensalism in favour of E. hallii. 249 

 250 

Given the above, we believe that the provided resource would be useful in drawing inferences 251 

from putative interactions between different gut organisms or from their overall growth 252 

patterns across diverse set of pre-determined nutritional compositions. Our simulation data 253 

could aid in providing clues (from metabolic perspective) to microbial interrelationships 254 

derived solely from abundance-based correlations. And with a wider choice of dietary 255 

compositions available to the users, there is an added propensity to mimic the diet of the 256 

samples from which those correlations were derived, which makes the inferences/ 257 

justifications more meaningful.  258 

 259 

 260 

CONCLUSIONS 261 

The datasets generated in our study allows analysis/ data-inferences at intra/ inter diet level, 262 

both of which enables investigation of diet induced growth patterns of an organism, a 263 

taxonomic group or at the gross level for the entire microbiome samples. This could be useful 264 

for investigation/ validation of any symbiotic relationships and growth deviations observed 265 

for an organism of interest across single or several diets from experimental or in-silico 266 

studies. Users can also utilize the pairwise growth values and deploy different growth cut-off 267 

parameters for customizing definitions of symbiotic relationships and mining for such 268 

interactions in a dataset of interest. In addition, users can make use of the organism’s growth 269 

rates/ interaction information for pruning microbial association networks derived from 270 
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abundance-based studies, as shown in an earlier study [17]. This data makes it possible to 271 

filter or validate the edges of interaction networks of gut microbes from abundance-based 272 

correlations and justify those connections from metabolic perspective. Furthermore, the 273 

scripts provided in the repository allows for the extension of the framework to microbes 274 

residing in any ecological niche and is thus expected to be beneficial for microbiologists, 275 

ecological experts and other researchers working in allied areas. 276 

 277 

 278 

MATERIALS AND METHODS 279 

Mono-culture (single model) simulation 280 

A total of 818 models representing the metabolic potential of human gut associated microbes 281 

were retrieved from AGORA (assembly of gut organisms through reconstruction and 282 

analysis) v1.03 (version dated 25-Feb-2019) hosted at www.vmh.life (Noronha et al., 2019) 283 

(see Supplementary Table 2 in Appendix 1). While the current version of AGORA metabolic 284 

models has been reported to be curated and refined based on experimental evidences in recent 285 

scientific publications, for the purpose of the current study, each of the downloaded metabolic 286 

models were further modified in the following manner: 287 

 288 

(a) The reactions and metabolite identifiers within the models were converted to BiGG 289 

identifier notation style so as to make it compatible and convenient for its use in with 290 

COBRApy package [19]. 291 

(b) The lower bounds of the exchange reactions were modified to mimic the appropriate 292 

diet constraints (see Diet Construction sub-section of MATERIALS AND 293 
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METHODS). If an exchange reaction of the model was absent in a diet’s constraints 294 

list, then the lower bound for that reaction was set to 0. 295 

 296 

Finally, FBA was performed on each of the modified metabolic models under different diet 297 

constraints (see Diet Construction sub-section of MATERIALS AND METHODS) using glpk 298 

solver and COBRApy package in python [19]. The objective of the simulations was to predict 299 

maximum possible growth of each of the bacteria (represented by their metabolic models), 300 

when grown as anaerobic mono-culture under different diet conditions.  301 

 302 

Co-culture (paired model) simulation 303 

In order to replicate metabolic interactions among a pair of gut microbes, pairwise simulations 304 

were carried out for 13 different diets (Table 2). Notably, the metabolic models representing 305 

15 gut microbes showed infeasible FBA solution for growth optimization in at least one of the 306 

diets under mono-culture condition and were excluded from the pairwise simulation 307 

experiments. All combinations of the remaining 803 models were considered which totalled 308 

to 322,003 pairs. The Mminte package [34] in python was employed to reconstruct the paired 309 

models (representing a pair of gut microbes) using earlier suggested strategies (Magnúsdóttir 310 

et al., 2017; Mendes-Soares et al., 2016). In brief, the models were joined into a common 311 

lumen compartment which acted as an extracellular interface for the exchange of metabolites. 312 

Additionally, to avoid scenarios where an organism (metabolic model) benefits the other 313 

without producing any biomass (i.e. the objective function), flux coupling constraints were 314 

introduced which stoichiometrically coupled every reaction to the biomass objective function, 315 

as per the strategy suggested in earlier literature  [7,16]. After introducing dietary constraints 316 

to the extracellular compartment of the model (as followed for single model simulations), 317 
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FBA was run to simultaneously maximise growth of both organisms. Out of all the 322,003 318 

model pairs, 331 model pairs could not be solved for either one or more VMH diets using 319 

glpk solver that was used in this study. The output of each solvable pair, i.e. growth of each 320 

organism in paired condition, single condition, percentage growth change between the 321 

conditions and finally the interaction type was computed and saved for each diet. Thus, output 322 

from 321,692 pairs for each VMH diet and 322,003 pairs for each AGORA diet were 323 

tabulated and uploaded to the OSF Home repository. 324 

 325 

Determination of interaction 326 

Interaction types, between each pair of organisms, were evaluated from the simulated growth 327 

rates of the organisms under co-culture (paired) and mono-culture conditions (Fig. 1). In line 328 

with previous studies [16,21,34], whenever the growth rate of an organism changed by ≥10% 329 

during co-culture ([Gorg]
P), when compared to its growth rate in isolation ([Gorg]

I), a 330 

discernible interaction amounting to a symbiotic relationship was considered (Table 3). 331 

Positive influence (+) was denoted for increased growth rate, negative influence (-) for a 332 

decrease in growth rate, and no effect (0) if the growth rate did not change by at least 10%. 333 

For every given pair of organisms (in a given diet type), one of the six different interactions 334 

were assigned based on possible pairwise growth profile outcomes depicted in Table 3. 335 

 336 

Diet construction 337 

Human societies around the world have different diet preferences which differ widely in 338 

nutrient composition. Gut microbes are known to exhibit alternate metabolic behaviour, and 339 

consequently varying growth rates, in response to different diet types [4,18,39]. To mimic 340 

this, the metabolic models of the gut microbes were simulated to grow on 13 different diet 341 
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types (Table 2), as mono- and bi-cultures (paired). Of the total 13 diets used in this study, 342 

metabolic exchange constraints representing two diets (High-Fiber and Western) were 343 

obtained from Magnusdottir et al. [16]. These two diets were then edited to incorporate 344 

modified flux constraints for certain exchange reactions (such as setting lower bounds of 345 

exchanges of acetaldehyde, 2-oxoglutarate, L-lactate, L-malate, succinate to 0 346 

mmol/gDW/hr), as mentioned in AGORA v1.01 update (from www.vmh.life). The remaining 347 

11 diets were retrieved from “Nutrition” section of VMH (from www.vmh.life). Since these 348 

set of constraints defining the diet types by itself could not support growth for majority of 349 

AGORA models, an adaptation protocol was additionally followed (as described in Heinken 350 

et al., 2019). This protocol was adapted from “adaptVMHDietToAGORA” functionality of 351 

Microbiome Modeling Toolbox [40] and was implemented in python for our study (see Code 352 

Usage in Appendix 1). 353 

 354 

Data availability 355 

All data pertaining to this work has been tabulated and archived in OSF Home Data 356 

Repository [41]. Details of the data records along with the format for each of the data files are 357 

provided in Appendix 1 (see Data Record Information and Supplementary Tables 3, 4).  358 

  359 
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TABLES 543 

Table 1: Pairwise relationship between Eubacterium hallii and Bifidobacterium adolescentis 544 
under different dietary simulations. 545 
 546 

Interaction 
 

% change in growth 
rate  

(E. hallii) 

% change in growth 
rate  

(B.  adolescentis) 

Diet 
 

Starch Uptake 
(mmol/gDW/hr) 

Amensalism -61.93 0.00 High-Fat Low-Carb 0.005 

Neutralism -1.59 0.00 Unhealthy 3.176 

Neutralism 0.00 0.00 High-Fiber 3.572 

Neutralism 8.27 0.00 Vegan 2.444 

Commensalism 33.31 0.00 Vegetarian 3.273 

Commensalism 47.32 0.00 EU Average 2.616 

Commensalism 54.08 0.00 High-Protein 2.145 

Commensalism 66.65 0.00 Type-2 Diabetes 2.010 

Commensalism 83.11 0.00 Gluten Free 5.295 

Commensalism 96.92 0.00 Mediterranean 3.248 

Commensalism 168.93 0.00 DACH 2.969 

Parasitism 314.82 -45.55 Western (Agora) 0.257 

Parasitism 385.40 -58.07 High-Fiber (Agora) 0.068 

 547 
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TABLE 2: List of the diets used in this study along with the number of their reactionary 549 
constraints and the literature where they were first defined. 550 
 551 

Diet Type Description Source 
Total 

Reactions 

DACH 
A recommended diet composition made by the society for Nutrition in 
Switzerland Germany and Austria, to guarantee healthy nutrition for an adult 
human being. 

[25] 

162 

EU Average 
A diet derived from a large nutrient based survey done where the participants 
are from many European nations different age groups   

162 

Gluten Free A diet devoid of gluten for individuals with gluten intolerance 162 

High-Fat Low-
Carb 

The high fat diet should imitate a ketogenic diet (as recommended for 
epileptic patients), which is composed of 1,7% of energy of carbohydrates, 
70% of energy of lipids and 24% of energy of proteins. 

162 

High-Protein A composition typically representing a sports-based diet for athletes. 162 

High-Fiber This diet composing of high amounts of fibers than a plant-based diet (i.e 
vegan diet) and includes animal derived products in it 

162 

Mediterranean 
This diet is consumption of fresh plant foods, dairy products, poultry, and 
fish, but minimizes on consumption of processed food, red meat, and olive 
oil (as fat source) 

162 

Type-2 Diabetes 
A diet for type 2 diabetes patient is which constitutes high content of 
vitamins (eg. Vitamin C & E) and minerals, but is low in kcal 

162 

Vegan A plant-based diet with no consumption of animal derived products 162 

Vegetarian 
An ovo-lacto-vegetarian diet which constitutes consumption of dairy, egg 
products, fruits and vegetables 162 

Unhealthy 
It contains very low amount of dietary fibers, but high kcal amount, simple 
sugars, saturated fatty acids, and cholesterol 

162 

High-Fiber 
(AGORA) 

A diet with higher fiber content but lower in simple sugars and fat content 
[16] 

177 

Western 
(AGORA) 

A diet with high amounts of simple sugars and fat content and but low in 
fiber content 

175 

 552 
  553 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.10.439264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.10.439264
http://creativecommons.org/licenses/by-nc/4.0/


 

24 
 

TABLE 3: Pairwise interaction patterns based on the growth profile outcomes of the two 554 
organisms constituting a (paired) co-culture simulation experiment. 555 
 556 

Type of Paired  
Interaction 

Description Abbreviation 

Amensalism 
One organism deteriorates in growth while 
the other organism remains unaffected 

(0, -) or (-, 0) 

Commensalism 
One organism increases in growth while 
the other organism remains unaffected 

(0, +) or (+, 0) 

Competition 
Both organisms suffer from drop in their 
individual growths under paired condition 

(-, -) 

Mutualism Both organisms have augmentation in their 
individual growths under paired condition 

(+, +) 

Neutralism 
Growths of both organisms remain 
unchanged under paired condition (0, 0) 

Parasitism 
Growth of one organism diminishes while 
the same increases in the other organism  

(-, +) or (+, -) 

Abbreviation keys -   0: Unaffected; +: positive change; -: negative change 
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FIGURES 559 

 560 

 561 

Figure 1: Schematic representation of the process followed for determining pairwise 
symbiotic interactions between gut microbial species. The ‘>’ and ‘<’ symbols denote that the 
growth of an organism in paired simulations [Gorg]

P (mimicking co-cultures) deviates at least 
by 10% or more when compared to its growth when simulated independently [Gorg]

I 
(mimicking monoculture). 
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